802.11n router.
The flash layout defaults to a 1 MiB section for the kernel so I'm trying
very hard to squeeze a minimialistic (LZMA compressde) kernel image into
that.
I've verified that it boots through to single user mode fine.
Issues:
* USB doesn't yet work as a module - I need to add something else to the
USB AR71xx build before that will work.
* There's no switch PHY support - but for now it quite happily behaves
as a useful dumb switch out of the box. Phew.
* Since a previous flash attempt trashed my radio configuration block,
I haven't yet verified whether the wireless works correctly.
I'll test that out shortly (read: once I re-calibrate the board somehow.)
Thanks to ray@ and the zrouter project for doing some of the initial
hard work in figuring out how to bring this board up.
restructuring of the driver. I've tried to preserve the other silicon
workarounds that we've added over the years, but haven't had a chance
to extensively test on other hardware. On my AT91RM9200 with 30MHz/1
wire/64 block transfers, I've been able to go from ~.66MB/s to
2.25MB/s in the simple tests I performed, almost a 3.5x improvement.
This cuts the boot time almost in half when everything else goes
right (timed from rtc message to login: prompt).
PR: 155214
Submitted by: Ian Lapore
The comparison assumes maxFirstepLevel is a count, rather than a maximum
value. The array is 3 entries in size however 'maxFirstepLevel' is 2.
This bug also exists in the AR5212 HAL.
MPSAFE.
- Preallocate a full set of QCBs during attach rather than allocating new
ones on demand to avoid allocations in the I/O path.
- Remove the explicit bus space tag/handle and use bus_*() on the
relevant 'struct resource' instead.
- Defer logical drive probing to an intrhook.
- Fix ida_detach() to detach and delete child devices (logical drives).
- Update the DMA handling to support EINPROGRESS by moving the work to
submit a mapped request into the bus_dma callback routine as well as
add support for freezing the queue when EINPROGRESS is encountered.
Tested by: Marco Steinbach coco executive-computing de
explicltly enable that. The driver chose to use 60MHz / 2 (30MHz)
most of the time rather than 60MHz / 4 (15MHz) based on the Linux
driver of the time. This pushes the spec a little in order to not
suffer the penalty of running at 15MHz. However, when other bus
masters are active in the system, and the user tries 4-wire mode, the
internal bus arbitration would fail with data loss as a result.
# Comments from PR were reworked to reflect my historical perspective
PR: 155214 (partial)
Submitted by: Ian Lepore
pthread_suspend_all_np() may have already suspended its parent thread.
Add locking code in pthread_suspend_all_np() to only allow one thread
to suspend other threads, this eliminates a deadlock where two or more
threads try to suspend each others.
Terasic DE-4 board. Allow LED configuration to be set using loader
tunables, not just from userspace, and preconfigure LED 8 as a kernel
heartbeat. For now, this is a Nexus-attached, BERI-only driver, but it
could be used with other hard and soft cores on Altera FPGAs as well, in
principle.
Sponsored by: DARPA, AFRL
are written out.
This allows EEPROM-less NICs on the AR7241 PCIe bus to be correctly
initialised.
Tested:
* AP91 (AR7240+AR9285) - the existing board support didn't break;
* AP99 (AR7241+AR9287) - this fixed the configuration of the AR9287 PCI.
option from CXXFLAGS, otherwise these libraries will not build.
Similarly, filter out any -std=xxx options that aren't supported.
Submitted by: Yamaya Takashi <yamayan@kbh.biglobe.ne.jp>
MFC after: 2 weeks
used with Terasic's DE-4 and other similar FPGA boards. This display
is 800x480 and includes a capacitive touch screen, multi-touch
gesture recognition, etc. This device driver depends on a Cambridge-
provided IP core that allows the MTL device to be hooked up to the
Altera Avalon SoC bus, and also provides a VGA-like text frame buffer.
Although it is compiled as a single device driver, it actually
implements a number of different device nodes exporting various
aspects of this multi-function device to userspace:
- Simple memory-mapped driver for the MTL 24-bit pixel frame buffer.
- Simple memory-mapped driver for the MTL control register set.
- Simple memory-mapped driver for the MTL text frame buffer.
- syscons attachment for the MTL text frame buffer.
This driver attaches directly to Nexus as is common for SoC device
drivers, and for the time being is considered BERI-specific, although
in principle it might be used with other hard and soft cores on
Altera FPGAs.
Control registers, including touchscreen input, are simply memory
mapped; in the future it would be desirable to hook up a more
conventional device node that can stream events, support kqueue(2)/
poll(2)/select(2), etc.
This is the first use of syscons on MIPS, as far as I can tell, and
there are some loose ends, such as an inability to use the hardware
cursor. More fundamentally, it appears that syscons(4) assumes that
either a host is PC-like (i386, amd64) *or* it must be using a
graphical frame buffer. While the MTL supports a graphical frame
buffer, using the text frame buffer is preferable for console use.
Fixing this issue in syscons(4) requires non-trivial changes, as the
text frame buffer support assumes that direct memory access can be
done to the text frame buffer without using bus accessor methods,
which is not the case on MIPS. As a workaround for this, we instead
double-buffer and pretend to be a graphical frame buffer exposing
text accessor methods, leading to some quirks in syscons behaviour.
Sponsored by: DARPA, AFRL