The interrupts-extended property is a list of controller-specific
interrupt tuples for more than one controller. The decode routine of
every PIC gets called in the pre-INTRNG code (nexus doesn't know which
device instance belongs to which fdt node), so the GIC code has to
check each FDT node it is asked to decode to ensure it is the owner.
Because in the pre-INTRNG world there can only be one instance of a GIC,
it's safe to cache the results of a positive lookup in a static variable
to avoid the expensive lookups on subsequent calls.
Submitted by: Svatopluk Kraus <onwahe@gmail.com>
Differential Revision: https://reviews.freebsd.org/D2345
and armv6 architecures. The primary enhancement over the old design is
support for hierarchical interrupt controllers (such as a gpio driver
which can receive interrupts from a root PIC and act as a PIC itself for
clients interested in handling a change of gpio pin state as an
interrupt). The new code also provides an infrastructure for mapping
interrupts described in metadata in the form of a "controller reference
plus interrupt number" tuple into the simple "0-n" flat numeric space
understood by rman and the bus resource mechanisms.
Use of the new code is enabled by setting the ARM_INTRNG option, and by
making a few simple changes to the platform's support code. In addition
each existing PIC driver needs changes to be ready for INTRNG; this commit
contains the changes for the arm/gic driver, which most armv6 SoCs use, but
it does not enable the new code yet on any platform.
This project has been many years in the making, starting as a GSoC project
by Jakub Klama (jceel@) in 2012. That didn't get committed right away and
the source base evolved out from under it to some degree. In 2014 I rebased
the diffs to then -current and did some enhancements in the area of mapping
interrupt numbers and storing associated fdt data, then the project went
cold again for a while. Eventually Svata Kraus took that work in progress
and did another big round of work on it, removing most of the remaining
rough edges. Finally I took that and made one more pass through it, mostly
disabling the "INTR_SOLO" feature for now, pending further design
discussions on how to most efficiently dispatch a pending interrupt through
more than one layer of PIC. The current code with the INTR_SOLO feature
disabled uses approximate 100 extra cpu cycles for each cascaded PIC the
interrupt has to be passed to, so what's left to do is about efficiency, not
correct operation.
Differential Revision: https://reviews.freebsd.org/D2047
the name the function will have when the new ARM_INTRNG code is integrated,
and doing this rename first will make it easier to toggle the new interrupt
handling code on/off with a config option for debugging.
In the fdt data we've written for ourselves, the interrupt properties
for GIC interrupts have just been a bare interrupt number. In standard
data that conforms to the published bindings, GIC interrupt properties
contain 3-tuples that describe the interrupt as shared vs private, the
interrupt number within the shared/private address space, and configuration
info such as level vs edge triggered.
The new gic_decode_fdt() function parses both types of data, based on the
#interrupt-cells property. Previously, each platform implemented a decode
routine and put a pointer to it into fdt_pic_table. Now they can just
list this function in their table instead if they use arm/gic.c.
memory ordering model allows writes to different devices to complete out
of order, leading to a situation where the write that clears an interrupt
source at a device can complete after a write that unmasks and EOIs the
interrupt at the interrupt controller, leading to a spurious re-interrupt.
This adds a generic barrier function specific to the needs of interrupt
controllers, and calls that function from the GIC and TI AINTC controllers.
There may still be other soc-specific controllers that need to make the call.
Reviewed by: cognet, Svatopluk Kraus <onwahe@gmail.com>
MFC after: 3 days
Add suport for setting triggering level and polarity in GIC.
New function pointer was added to nexus which corresponds
to the function which sets level/sense in the hardware (GIC).
Submitted by: Wojciech Macek <wma@semihalf.com>
Obtained from: Semihalf
Qualcomm Snapdragon S4 and Snapdragon 400/600/800 SoCs and has architectural
similarities to ARM Cortex-A15. As for development boards IFC6400 series embedded
boards from Inforce Computing uses Snapdragon S4 Pro/APQ8064.
Approved by: stas (mentor)
interrupt counts and names, by making the names into an array of fixed-length
strings that can be directly indexed. This eliminates extra memory accesses
on every interrupt to increment the counts.
As a side effect, it also fixes a bug that would corrupt the names data
if a name was longer than MAXCOMLEN, which led to incorrect vmstat -i output.
Approved by: cognet (mentor)
MSI are implemented via software interrupt. PCIe cards will write
into software interrupt register which will cause inbound shared
interrupt which will be interpreted as a MSI.
Obtained from: Marvell, Semihalf
- Add functions to calculate clocks instead using hardcoded values
- Update reset and timers functions
- Update number of interrupts
- Change name of platform from db88f78100 to db78460
- Correct DRAM size and PCI IRQ routing in dts file.
Obtained from: Semihalf
Cummulative patch of changes that are not vendor-specific:
- ARMv6 and ARMv7 architecture support
- ARM SMP support
- VFP/Neon support
- ARM Generic Interrupt Controller driver
- Simplification of startup code for all platforms
the implementation can guarantee forward progress in the event of
a stuck interrupt or interrupt storm. This is especially critical
for fast interrupt handlers, as they can cause a hard hang in that
case. When first called, arm_get_next_irq() is passed -1.
Obtained from: Juniper Networks, Inc.
o recognize ixp435 cpu
o change memory layout for for ixp4xx to not assume memory is aliases
to 0x10000000 (Cambria/ixp435 memory starts at zero)
o handle 64 irqs for ixp435
o dual EHCI USB 2.0 controller integral to ixp435
o overhaul NPE code for ixp435 and better MAC+MII naming
o updated NPE firmware (including NPE-A image for ixp435/ixp465)
o Gateworks Cambria board support:
- IDE compact flash
- MCU
- front panel LED on i2c bus
- Octal LED latch
Sanity-tested with NFS-root on Avila and Cambria boards. Requires
pending boot2 mods for CF-boot on Cambria.
* Orion
- 88F5181
- 88F5182
- 88F5281
* Kirkwood
- 88F6281
* Discovery
- MV78100
The above families of SOCs are built around CPU cores compliant with ARMv5TE
instruction set architecture definition. They share a number of integrated
peripherals. This commit brings support for the following basic elements:
* GPIO
* Interrupt controller
* L1, L2 cache
* Timers, watchdog, RTC
* TWSI (I2C)
* UART
Other peripherals drivers will be introduced separately.
Reviewed by: imp, marcel, stass (Thanks guys!)
Obtained from: Marvell, Semihalf
- Fix nexus_setup_intr() abuse of setting up multiple IRQs in one go. Calling
arm_setup_irqhandler() in loop is bogus, as there's just one cookie given
from the caller and it is overwritten in each iteration so that only the
last handler's cookie value prevails.
- Proper intr masking/unmasking handling: the IRQ source is masked at PIC level
only after the last handler has been removed from the list.
Reviewed by: cognet, imp, sam, stass
Obtained from: Grzegorz Bernacki gjb ! semihalf dot com
boards. This is enough to net-boot to multiuser.
Also supported is the SMSC LAN91C111 parts used on the netCF, netDUO and netMMC
add-on boards.
I'll be putting some instructions on how to boot this on the Gumstix boards
online soon.
This is still fairly rough and will be refined over time but I felt it was
better to get this out there where other people can help out.
interrupt. So, add a new function pointer, arm_post_filter, which defaults
to NULL, and which will be used as the post_filter arg for
intr_event_create(). Set it properly for the AT91, so that it boots again.
Reported by: hps
It only supports sa1110 (on simics) right now, but xscale support should come
soon.
Some of the initial work has been provided by :
Stephane Potvin <sepotvin at videotron.ca>
Most of this comes from NetBSD.