scheduling classes in the chip and to bind tx queue(s) to a scheduling
class respectively. These can be used for various kinds of tx traffic
throttling (to force selected tx queues to drain at a fixed Kbps rate,
or a % of the port's total bandwidth, or at a fixed pps rate, etc.).
Obtained from: Chelsio
to this event, adding if_var.h to files that do need it. Also, include
all includes that now are included due to implicit pollution via if_var.h
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
and there are ifnets, that do that via counter(9). Provide a flag that
would skip cache line trashing '+=' operation in ether_input().
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
Reviewed by: melifaro, adrian
Approved by: re (marius)
set to 15 to indicate that the peer did not send a window scale option
with its SYN. Do not send a window scale option in the SYN|ACK reply
in that case.
cards.
This is a T4 and T5 chip feature which lets the chip deliver multiple
Ethernet frames in a single buffer. This is more efficient within the
chip, in the driver, and reduces wastage of space in rx buffers.
- Always allocate rx buffers from the jumbop zone, no matter what the
MTU is. Do not use the normal cluster refcounting mechanism.
- Reserve space for an mbuf and a refcount in the cluster itself and let
the chip DMA multiple frames in the rest.
- Use the embedded mbuf for the first frame and allocate mbufs on the
fly for any additional frames delivered in the cluster. Each of these
mbufs has a reference on the underlying cluster.
- tom_uninit had to be reworked not to hold the adapter lock (a mutex)
around t4_deactivate_uld, which acquires the uld_list_lock.
- the ifc_match for the interface cloner that creates the tracer ifnet
had to be reworked as the kernel calls ifc_match with the global
if_cloners_mtx held.
all T4 and T5 based cards and is useful for analyzing TSO, LRO, TOE, and
for general purpose monitoring without tapping any cxgbe or cxl ifnet
directly.
Tracers on the T4/T5 chips provide access to Ethernet frames exactly as
they were received from or transmitted on the wire. On transmit, a
tracer will capture a frame after TSO segmentation, hw VLAN tag
insertion, hw L3 & L4 checksum insertion, etc. It will also capture
frames generated by the TCP offload engine (TOE traffic is normally
invisible to the kernel). On receive, a tracer will capture a frame
before hw VLAN extraction, runt filtering, other badness filtering,
before the steering/drop/L2-rewrite filters or the TOE have had a go at
it, and of course before sw LRO in the driver.
There are 4 tracers on a chip. A tracer can trace only in one direction
(tx or rx). For now cxgbetool will set up tracers to capture the first
128B of every transmitted or received frame on a given port. This is a
small subset of what the hardware can do. A pseudo ifnet with the same
name as the nexus driver (t4nex0 or t5nex0) will be created for tracing.
The data delivered to this ifnet is an additional copy made inside the
chip. Normal delivery to cxgbe<n> or cxl<n> will be made as usual.
/* watch cxl0, which is the first port hanging off t5nex0. */
# cxgbetool t5nex0 tracer 0 tx0 (watch what cxl0 is transmitting)
# cxgbetool t5nex0 tracer 1 rx0 (watch what cxl0 is receiving)
# cxgbetool t5nex0 tracer list
# tcpdump -i t5nex0 <== all that cxl0 sees and puts on the wire
If you were doing TSO, a tcpdump on cxl0 may have shown you ~64K
"frames" with no L3/L4 checksum but this will show you the frames that
were actually transmitted.
/* all done */
# cxgbetool t5nex0 tracer 0 disable
# cxgbetool t5nex0 tracer 1 disable
# cxgbetool t5nex0 tracer list
# ifconfig t5nex0 destroy
when the interface is up.
- Add a tunable to control the TOE's rx coalesce feature (enabled by
default as it always has been). Consider the interface MTU or the
coalesce size when deciding which cluster zone to use to fill the
offload rx queue's free list. The tunable is:
dev.{t4nex,t5nex}.<N>.toe.rx_coalesce
MFC after: 1 day