for our use. Use the same search order for BIOS memory size functions
as the kernel will later use.
Allow the loader to use all of the detected physical memory (this will
greatly help people trying to load enormous memory disk images).
More correctly handle running out of memory when loading an object.
Use the end of base memory for the top of the heap, rather than
blindly hoping that there is 384k left.
Add copyrights to a couple of files I forgot.
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.
USB ethernet chip. Adapters that use this chip include the LinkSys
USB100TX. There are a few others, but I'm not certain of their
availability in the U.S. I used an ADMtek eval board for development.
Note that while the ADMtek chip is a 100Mbps device, you can't really
get 100Mbps speeds over USB. Regardless, this driver uses miibus to
allow speed and duplex mode selection as well as autonegotiation.
Building and kldloading the driver as a module is also supported.
Note that in order to make this driver work, I had to make what some
may consider an ugly hack to sys/dev/usb/usbdi.c. The usbd_transfer()
function will use tsleep() for synchronous transfers that don't complete
right away. This is a problem since there are times when we need to
do sync transfers from an interrupt context (i.e. when reading registers
from the MAC via the control endpoint), where tsleep() us a no-no.
My hack allows the driver to have the code poll for transfer completion
subject to the xfer->timeout timeout rather that calling tsleep().
This hack is controlled by a quirk entry and is only enabled for the
ADMtek device.
Now, I'm sure there are a few of you out there ready to jump on me
and suggest some other approach that doesn't involve a busy wait. The
only solution that might work is to handle the interrupts in a kernel
thread, where you may have something resembling a process context that
makes it okay to tsleep(). This is lovely, except we don't have any
mechanism like that now, and I'm not about to implement such a thing
myself since it's beyond the scope of driver development. (Translation:
I'll be damned if I know how to do it.) If FreeBSD ever aquires such
a mechanism, I'll be glad to revisit the driver to take advantage of
it. In the meantime, I settled for what I perceived to be the solution
that involved the least amount of code changes. In general, the hit
is pretty light.
Also note that my only USB test box has a UHCI controller: I haven't
I don't have a machine with an OHCI controller available.
Highlights:
- Updated usb_quirks.* to add UQ_NO_TSLEEP quirk for ADMtek part.
- Updated usbdevs and regenerated generated files
- Updated HARDWARE.TXT and RELNOTES.TXT files
- Updated sysinstall/device.c and userconfig.c
- Updated kernel configs -- device aue0 is commented out by default
- Updated /sys/conf/files
- Added new kld module directory
Files sysdep.[ch] are now in ${MACHINE_ARCH} subdirectory. Internal
#if's used to identify the platform where removed.
Make rule for target testmain was greatly simplified, because it was
easier simplifying it than changing it to support the new location of
sysdep.[ch].
(a repo-copy was done on sysdep.[ch], of course)
-fschedule-insns as it wasn't such a big win with 2.95 after all.
Add the *BIG* win "-mpreferred-stack-boundary=2" optimiztion submitted by
Dima. GCC 2.95 ensures the stack frame is always properly [opitimally]
aligned by surrounding every function call by code simular to
"addl $-12, %esp" / "addl $12, %esp". Here we need the reduction in space,
with speed not an issue.
All Makefiles now use MACHINE_ARCH for the target architecture.
Unification is required for cross-building.
Tags added to:
sys/boot/Makefile
sys/boot/arc/loader/Makefile
sys/kern/Makefile
usr.bin/cpp/Makefile
usr.bin/gcore/Makefile
usr.bin/truss/Makefile
usr.bin/gcore/Makefile:
fixed typo: MACHINDE -> MACHINE_ARCH
Remove some printf() calls, reduce size of buffers, and abbreviate
some strings.
Hopefully the boot people will fix this spamage after the cut over to
Gcc 2.95.2 as the system compiler.
either one gives us an additional 32 bytes of additional space available
when using EGCS 1.1.2. With GCC 2.95.2 -fforce-addr gives us 12 more bytes,
and adding -fschedule-insns gives us an additional 4 bytes.
Mike says the whole idea of a current device was a bad idea in first place,
and will be doing away with currdev.
Anyway, people are not supposed to even notice this. :-)