if_ndis.c has been split into if_ndis_pci.c and if_ndis_pccard.c.
The ndiscvt(8) utility should be able to parse device info for PCMCIA
devices now. The ndis_alloc_amem() has moved from kern_ndis.c to
if_ndis_pccard.c so that kern_ndis.c no longer depends on pccard.
NOTE: this stuff is not guaranteed to work 100% correctly yet. So
far I have been able to load/init my PCMCIA Cisco Aironet 340 card,
but it crashes in the interrupt handler. The existing support for
PCI/cardbus devices should still work as before.
The Am1771 driver will sometimes do the following:
- Some thread-> NdisScheduleWorkItem(some work)
- Worker thread -> do some work, KeWaitForSingleObject(some event)
- Some other thread -> NdisScheduleWorkItem(some other work)
When the second call to NdisScheduleWorkItem() occurs, the NDIS worker
thread (in our case ndis taskqueue) is suspended in KeWaitForSingleObject()
and waiting for an event to be signaled. This is different from when
the worker thread is idle and waiting on NdisScheduleWorkItem() to
send it more jobs. However, the ndis_sched() function in kern_ndis.c
always calls kthread_resume() when queueing a new job. Normally this
would be ok, but here this causes KeWaitForSingleObject() to return
prematurely, which is not what we want.
To fix this, the NDIS threads created by kern_ndis.c maintain a state
variable to indicate whether they are running (scanning the job list
and executing jobs) or sleeping (blocked on kthread_suspend() in
ndis_runq()), and ndis_sched() will only call kthread_resume() if
the thread is in the sleeping state.
Note that we can't just check to see if the thread is on the run queue:
in both cases, the thread is sleeping, but it's sleeping for different
reasons.
This stops the Am1771 driver from emitting various "NDIS ERROR" messages
and fixes some cases where it crashes.
routines to do anything except return error if the miniport adapter context
is not set (meaning we either having init'ed the driver yet, or the
initialization failed).
Also, be sure to NULL out the adapter context along with the
miniport characteristics pointers if calling the MiniportInitialize()
method fails.
802.11b chipset work. This chip is present on the SMC2602W version 3
NIC, which is what was used for testing. This driver creates kernel
threads (12 of them!) for various purposes, and required the following
routines:
PsCreateSystemThread()
PsTerminateSystemThread()
KeInitializeEvent()
KeSetEvent()
KeResetEvent()
KeInitializeMutex()
KeReleaseMutex()
KeWaitForSingleObject()
KeWaitForMultipleObjects()
IoGetDeviceProperty()
and several more. Also, this driver abuses the fact that NDIS events
and timers are actually Windows events and timers, and uses NDIS events
with KeWaitForSingleObject(). The NDIS event routines have been rewritten
to interface with the ntoskrnl module. Many routines with incorrect
prototypes have been cleaned up.
Also, this driver puts jobs on the NDIS taskqueue (via NdisScheduleWorkItem())
which block on events, and this interferes with the operation of
NdisMAllocateSharedMemoryAsync(), which was also being put on the
NDIS taskqueue. To avoid the deadlock, NdisMAllocateSharedMemoryAsync()
is now performed in the NDIS SWI thread instead.
There's still room for some cleanups here, and I really should implement
KeInitializeTimer() and friends.
that Asus provides on its CDs has both a MiniportSend() routine
and a MiniportSendPackets() function. The Microsoft NDIS docs say
that if a driver has both, only the MiniportSendPackets() routine
will be used. Although I think I implemented the support correctly,
calling the MiniportSend() routine seems to result in no packets going
out on the air, even though no error status is returned. The
MiniportSendPackets() function does work though, so at least in
this case it doesn't matter.
In if_ndis.c:ndis_getstate_80211(), if ndis_get_assoc() returns
an error, don't bother trying to obtain any other state since the
calls may fail, or worse cause the underlying driver to crash.
(The above two changes make the Asus-supplied Centrino work.)
Also, when calling the OID_802_11_CONFIGURATION OID, remember
to initialize the structure lengths correctly.
In subr_ndis.c:ndis_open_file(), set the current working directory
to rootvnode if we're in a thread that doesn't have a current
working directory set.
and NdisCancelTimer(). NdisInitializeTimer() doesn't accept an NDIS
miniport context argument, so we have to derive it from the timer
function context (which is supposed to be the adapter private context).
NdisCancelTimer is now an alias for NdisMCancelTimer().
Also add stubs for NdisMRegisterDevice() and NdisMDeregisterDevice().
These are no-ops for now, but will likely get fleshed in once I start
working on the Am1771/Am1772 wireless driver.
attached when shutting down, kill our kthreads, but don't destroy
the mutex pool and uma zone resources since the driver shutdown
routine may need them later.
problem with using taskqueue_swi is that some of the things we defer
into threads might block for up to several seconds. This is an unfriendly
thing to do to taskqueue_swi, since it is assumed the taskqueue threads
will execute fairly quickly once a task is submitted. Reorganized the
locking in if_ndis.c in the process.
Cleaned up ndis_write_cfg() and ndis_decode_parm() a little.
unexpected interrupts. If an interrupt is triggered and we're not
finished initializing yet, bail. If we have finished initializing,
but IFF_UP isn't set yet, drain the interrupt with ndis_intr() or
ndis_disable_intr() as appropriate, then return _without_ scheduling
ndis_intrtask().
In kern_ndis.c:ndis_load_driver() only relocate/dynalink a given driver
image once. Trying to relocate an image that's already been relocated
will trash the image. We poison a part of the image header that we
don't otherwise need with a magic value to indicate it's already been
fixed up. This fixes the case where there are multiple units of the
same kind of device.
these add support for listing BSSIDs via wicontrol -l. I added code
to call OID_802_11_BSSID_LIST_SCAN to allow scanning for any nearby
wirelsss nets.
Convert from using individual mutexes to a mutex pool, created in
subr_ndis.c. This deals with the problem of drivers creating locks
in their DriverEntry() routines which might get trashed later.
Put some messages under IFF_DEBUG.
which has two important flags in it: the 'allocated by NDIS' flag
and the 'media specific info present' flag. There are two Windows macros
for getting/setting media specific info fields within the ndis_packet
structure which can behave improperly if these flags are not initialized
correctly when a packet is allocated. It seems the correct thing
to do is always set the NDIS_PACKET_ALLOCATED_BY_NDIS flag on
all newly allocated packets.
This fixes the crashes with the Intel Centrino wireless driver.
My sample card now seems to work correctly.
Also, fix a potential LOR involving ndis_txeof() in if_ndis.c.
By default, we search for files in /compat/ndis. This can be changed with
a systcl. These routines are used by some drivers which need to download
firmware or microcode into their respective devices during initialization.
Also, remove extraneous newlines from the 'built-in' sysctl/registry
variables.
so we increment the right thing. (All work and not enough parens
make Bill something something...) This makes the RealTek 8139C+
driver work correctly.
Also fix some mtx_lock_spin()s and mtx_unlock_spin()s that should
have been just plain mtx_lock()s and mtx_unlock()s.
In kern_ndis.c: remove duplicate code from ndis_send_packets() and
just call the senddone handler (ndis_txeof()).
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
and MiniportHandleInterrupt() is fired off later via a task queue in
ndis_intrtask(). This more accurately follows the NDIS interrupt handling
model, where the ISR does a minimal amount of work in interrupt context
and the handler is defered and run at a lower priority.
Create a separate ndis_intrmtx mutex just for the guarding the ISR.
Modify NdisSynchronizeWithInterrupt() to aquire the ndis_intrmtx
mutex before invoking the synchronized procedure. (The purpose of
this function is to provide mutual exclusion for code that shares
variables with the ISR.)
Modify NdisMRegisterInterrupt() to save a pointer to the miniport
block in the ndis_miniport_interrupt structure so that
NdisSynchronizeWithInterrupt() can grab it later and derive
ndis_intrmtx from it.
calling the haltfunc. If an interrupt is triggered by the init
or halt func, the IFF_UP flag must be set in order for us to be able
to service it.
In kern_ndis.c: implement a handler for NdisMSendResourcesAvailable()
(currently does nothing since we don't really need it).
In subr_ndis.c:
- Correct ndis_init_string() and ndis_unicode_to_ansi(),
which were both horribly broken.
- Implement NdisImmediateReadPciSlotInformation() and
NdisImmediateWritePciSlotInformation().
- Implement NdisBufferLength().
- Work around my first confirmed NDIS driver bug.
The SMC 9462 gigE driver (natsemi 83820-based copper)
incorrectly creates a spinlock in its DriverEntry()
routine and then destroys it in its MiniportHalt()
handler. This is wrong: spinlocks should be created
in MiniportInit(). In a Windows environment, this is
often not a problem because DriverEntry()/MiniportInit()
are called once when the system boots and MiniportHalt()
or the shutdown handler is called when the system halts.
With this stuff in place, this driver now seems to work:
ndis0: <SMC EZ Card 1000> port 0xe000-0xe0ff mem 0xda000000-0xda000fff irq 10 at device 9.0 on pci0
ndis0: assign PCI resources...
ndis_open_file("FLASH9.hex", 18446744073709551615)
ndis0: Ethernet address: 00:04:e2:0e:d3:f0
copyrights to the inf parser files.
Add a -n flag to ndiscvt to allow the user to override the default
device name of NDIS devices. Instead of "ndis0, ndis1, etc..."
you can have "foo0, foo1, etc..." This allows you to have more than
one kind of NDIS device in the kernel at the same time.
Convert from printf() to device_printf() in if_ndis.c, kern_ndis.c
and subr_ndis.c.
Create UMA zones for ndis_packet and ndis_buffer structs allocated
on transmit. The zones are created and destroyed in the modevent
handler in kern_ndis.c.
printf() and UMA changes submitted by green@freebsd.org
ndis_var.h
- In kern_ndis.c:ndis_send_packets(), avoid dereferencing NULL pointers
created when the driver's send routine immediately calls the txeof
handler (which releases the packets for us anyway).
- In if_ndis.c:ndis_80211_setstate(), implement WEP support.
method with something a little more intelligent: use BUS_GET_RESOURCE_LIST()
to run through all resources allocated to us and map them as needed. This
way we know exactly what resources need to be mapped and what their RIDs
are without having to guess. This simplifies both ndis_attach() and
ndis_convert_res(), and eliminates the unfriendly "ndisX: couldn't map
<foo>" messages that are sometimes emitted during driver load.
For received packets, an status of NDIS_STATUS_RESOURCES means we need
to copy the packet data and return the ndis_packet to the driver immediatel.
NDIS_STATUS_SUCCESS means we get to hold onto the packet, but we have
to set the status to NDIS_STATUS_PENDING so the driver knows we're
going to hang onto it for a while.
For transmit packets, NDIS_STATUS_PENDING means the driver will
asynchronously return the packet to us via the ndis_txeof() routine,
and NDIS_STATUS_SUCCESS means the driver sent the frame, and NDIS
(i.e. the OS) retains ownership of the packet and can free it
right away.
evaluate them. Whatever they're meant to do, they're doing it wrong.
Also:
- Clean up last bits of NULL fallout in subr_pe
- Don't let ndis_ifmedia_sts() do anything if the IFF_UP flag isn't set
- Implement NdisSystemProcessorCount() and NdisQueryMapRegisterCount().
packet being freed has NDIS_STATUS_PENDING in the status field of
the OOB data. Finish implementing the "alternative" packet-releasing
function so it doesn't crash.
For those that are curious about ndis0: <ORiNOCO 802.11abg ComboCard Gold>:
1123 packets transmitted, 1120 packets received, 0% packet loss
round-trip min/avg/max/stddev = 3.837/6.146/13.919/1.925 ms
Not bad!
mbuf<->packet housekeeping. Instead, add a couple of extra fields
to the end of ndis_packet. These should be invisible to the Windows
driver module.
This also lets me get rid of a little bit of evil from ndis_ptom()
(frobbing of the ext_buf field instead of relying on the MEXTADD()
macro).
- Add explicit cardbus attachment in if_ndis.c
- Clean up after moving bus_setup_intr() in ndis_attach().
- When setting an ssid, program an empty ssid as a 1-byte string
with a single 0 byte. The Microsoft documentation says this is
how you're supposed to tell the NIC to attach to 'any' ssid.
- Keep trace of callout handles for timers externally from the
ndis_miniport_timer structs, and run through and clobber them
all after invoking the haltfunc just in case the driver left one
running. (We need to make sure all timers are cancelled on driver
unload.)
- Handle the 'cancelled' argument in ndis_cancel_timer() correctly.
supposed to be opaque to the driver, however it is exposed through
several macros which expect certain behavior. In my original
implementation, I used the mappedsystemva member of the structure
to hold a pointer to the buffer and bytecount to hold the length.
It turns out you must use the startva pointer to point to the
page containing the start of the buffer and set byteoffset to
the offset within the page where the buffer starts. So, for a buffer
with address 'baseva,' startva is baseva & ~(PAGE_SIZE -1) and
byteoffset is baseva & (PAGE_SIZE -1). We have to maintain this
convention everywhere that ndis_buffers are used.
Fortunately, Microsoft defines some macros for initializing and
manipulating NDIS_BUFFER structures in ntddk.h. I adapted some
of them for use here and used them where appropriate.
This fixes the discrepancy I observed between how RX'ed packet sizes
were being reported in the Broadcom wireless driver and the sample
ethernet drivers that I've tested. This should also help the
Intel Centrino wireless driver work.
Also try to properly initialize the 802.11 BSS and IBSS channels.
(Sadly, the channel value is meaningless since there's no way
in the existing NDIS API to get/set the channel, but this should
take care of any 'invalid channel (NULL)' messages printed on
the console.
- Make ndis_get_info()/ndis_set_info() sleep on the setdone/getdone
routines if they get back NDIS_STATUS_PENDING.
- Add a bunch of net80211 support so that 802.11 cards can be twiddled
with ifconfig. This still needs more work and is not guaranteed to
work for everyone. It works on my 802.11b/g card anyway.
The problem here is Microsoft doesn't provide a good way to a) learn
all the rates that a card supports (if it has more than 8, you're
kinda hosed) and b) doesn't provide a good way to distinguish between
802.11b, 802.11b/g an 802.11a/b/g cards, so you sort of have to guess.
Setting the SSID and switching between infrastructure/adhoc modes
should work. WEP still needs to be implemented. I can't find any API
for getting/setting the channel other than the registry/sysctl keys.
definitions for more than one device (usually differentiated by
the PCI subvendor/subdevice ID). Each device also has its own tree
of registry keys. In some cases, each device has the same keys, but
sometimes each device has a unique tree but with overlap. Originally,
I just had ndiscvt(8) dump out all the keys it could find, and we
would try to apply them to every device we could find. Now, each key
has an index number that matches it to a device in the device ID list.
This lets us create just the keys that apply to a particular device.
I also added an extra field to the device list to hold the subvendor
and subdevice ID.
Some devices are generic, i.e. there is no subsystem definition. If
we have a device that doesn't match a specific subsystem value and
we have a generic entry, we use the generic entry.
make it more robust. This should fix problems with crashes under
heavy traffic loads that have been reported. Also add a 'query done'
callback handler to satisfy the e100bex.sys sample Intel driver.
it's an error to set the buffer bytecount to anything larger than
the buffer's original allocation size, but anything less than that
is ok.
Also, in ndis_ptom(), use the same logic: if the bytecount is
larger than the allocation size, consider the bytecount invalid
and the allocation size as the packet fragment length (m_len)
instead of the bytecount.
This corrects a consistency problem between the Broadcom wireless
driver and some of the ethernet drivers I've tested: the ethernet
drivers all report the packet frag sizes in buf->nb_bytecount, but
the Broadcom wireless driver reports them in buf->nb_size. This
seems like a bug to me, but it clearly must work in Windows, so
we have to deal with it here too.
is provided to NDIS via the the miniport characteristics structure
supplied in the call to NdisMRegisterMiniport(). But in NDIS 5.0
and earlier, you had to call NdisMRegisterAdapterShutdownHandler()
and supply both a function pointer and context pointer.
We try to handle both cases in ndis_shutdown_nic(). If the
driver registered a shutdown routine and a context,then used
that context, otherwise pass it the adapter context from
NdisMSetAttributesEx().
This fixes a panic on shutdown with the sample Intel 82559 e100bex.sys
driver from the Windows DDK.
function pointer
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page