- No emulation of A/D bits is required since AMD-V RVI
supports A/D bits.
- Enable pmap PT_RVI support(w/o PAT) which is required for
memory over-commit support.
- Other minor fixes:
* Make use of VMCB EXITINTINFO field. If a #VMEXIT happens while
delivering an interrupt, EXITINTINFO has all the details that bhyve
needs to inject the same interrupt.
* SVM h/w decode assist code was incomplete - removed for now.
* Some minor code clean-up (more coming).
Submitted by: Anish Gupta (akgupt3@gmail.com)
When the guest is bringing up the APs in the x2APIC mode a write to the
ICR register will now trigger a return to userspace with an exitcode of
VM_EXITCODE_SPINUP_AP. This gets SMP guests working again with x2APIC.
Change the vlapic timer lock to be a spinlock because the vlapic can be
accessed from within a critical section (vm run loop) when guest is using
x2apic mode.
Reviewed by: grehan@
This decouples the guest's 'hz' from the host's 'hz' setting. For e.g. it is
now possible to have a guest run at 'hz=1000' while the host is at 'hz=100'.
Discussed with: grehan@
Tested by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
vcpu and destroy its thread context. Also modify the 'HLT' processing to ignore
pending interrupts in the IRR if interrupts have been disabled by the guest.
The interrupt cannot be injected into the guest in any case so resuming it
is futile.
With this change "halt" from a Linux guest works correctly.
Reviewed by: grehan@
Tested by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
has outgrown its original name. Originally this function simply sent an IPI
to the host cpu that a vcpu was executing on but now it does a lot more than
just that.
Reviewed by: grehan@
shifts into the sign bit. Instead use (1U << 31) which gets the
expected result.
This fix is not ideal as it assumes a 32 bit int, but does fix the issue
for most cases.
A similar change was made in OpenBSD.
Discussed with: -arch, rdivacky
Reviewed by: cperciva
commit level triggered interrupts would work as long as the pin was not shared
among multiple interrupt sources.
The vlapic now keeps track of level triggered interrupts in the trigger mode
register and will forward the EOI for a level triggered interrupt to the
vioapic. The vioapic in turn uses the EOI to sample the level on the pin and
re-inject the vector if the pin is still asserted.
The vhpet is the first consumer of level triggered interrupts and advertises
that it can generate interrupts on pins 20 through 23 of the vioapic.
Discussed with: grehan@
bhyve supports a single timer block with 8 timers. The timers are all 32-bit
and capable of being operated in periodic mode. All timers support interrupt
delivery using MSI. Timers 0 and 1 also support legacy interrupt routing.
At the moment the timers are not connected to any ioapic pins but that will
be addressed in a subsequent commit.
This change is based on a patch from Tycho Nightingale (tycho.nightingale@pluribusnetworks.com).
to inject edge triggered legacy interrupts into the guest.
Start using the new API in device models that use edge triggered interrupts:
viz. the 8254 timer and the LPC/uart device emulation.
Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
upcoming in-kernel device emulations like the HPET.
The ioctls VM_IOAPIC_ASSERT_IRQ and VM_IOAPIC_DEASSERT_IRQ are used to
manipulate the ioapic pin state.
Discussed with: grehan@
Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
in the kernel. This abstraction was redundant because the only device emulated
inside vmm.ko is the local apic and it is always at a fixed guest physical
address.
Discussed with: grehan
all vcpus belonging to a guest. This means that when different vcpus belonging
to the same guest are executing on the same host cpu there may be "leakage"
in the mappings created by one vcpu to another.
The proper fix for this is being worked on and will be committed shortly.
In the meantime workaround this bug by flushing the guest TLB entries on every
VM entry.
Submitted by: Anish Gupta (akgupt3@gmail.com)
'invpcid' instruction to the guest. Currently bhyve will try to enable this
capability unconditionally if it is available.
Consolidate code in bhyve to set the capabilities so it is no longer
duplicated in BSP and AP bringup.
Add a sysctl 'vm.pmap.invpcid_works' to display whether the 'invpcid'
instruction is available.
Reviewed by: grehan
MFC after: 3 days
hang on console output (due to a missing interrupt).
SVM does exit processing and then handles ASTPENDING which
overwrites the already handled SVM exit cause and corrupts
virtual machine state. For example, if the SVM exit was due to
an I/O port access but the main loop detected an ASTPENDING,
the exit would be processed as ASTPENDING and leave the
device (e.g. emulated UART) for that I/O port in bad state.
Submitted by: Anish Gupta (akgupt3@gmail.com)
Reviewed by: grehan
the 'vmmdev_mtx' in vmmdev_rw().
Rely on the 'si_threadcount' accounting to ensure that we never destroy the
VM device node while it has operations in progress (e.g. ioctl, mmap etc).
Reported by: grehan
Reviewed by: grehan
Make the amd64/pmap code aware of nested page table mappings used by bhyve
guests. This allows bhyve to associate each guest with its own vmspace and
deal with nested page faults in the context of that vmspace. This also
enables features like accessed/dirty bit tracking, swapping to disk and
transparent superpage promotions of guest memory.
Guest vmspace:
Each bhyve guest has a unique vmspace to represent the physical memory
allocated to the guest. Each memory segment allocated by the guest is
mapped into the guest's address space via the 'vmspace->vm_map' and is
backed by an object of type OBJT_DEFAULT.
pmap types:
The amd64/pmap now understands two types of pmaps: PT_X86 and PT_EPT.
The PT_X86 pmap type is used by the vmspace associated with the host kernel
as well as user processes executing on the host. The PT_EPT pmap is used by
the vmspace associated with a bhyve guest.
Page Table Entries:
The EPT page table entries as mostly similar in functionality to regular
page table entries although there are some differences in terms of what
bits are used to express that functionality. For e.g. the dirty bit is
represented by bit 9 in the nested PTE as opposed to bit 6 in the regular
x86 PTE. Therefore the bitmask representing the dirty bit is now computed
at runtime based on the type of the pmap. Thus PG_M that was previously a
macro now becomes a local variable that is initialized at runtime using
'pmap_modified_bit(pmap)'.
An additional wrinkle associated with EPT mappings is that older Intel
processors don't have hardware support for tracking accessed/dirty bits in
the PTE. This means that the amd64/pmap code needs to emulate these bits to
provide proper accounting to the VM subsystem. This is achieved by using
the following mapping for EPT entries that need emulation of A/D bits:
Bit Position Interpreted By
PG_V 52 software (accessed bit emulation handler)
PG_RW 53 software (dirty bit emulation handler)
PG_A 0 hardware (aka EPT_PG_RD)
PG_M 1 hardware (aka EPT_PG_WR)
The idea to use the mapping listed above for A/D bit emulation came from
Alan Cox (alc@).
The final difference with respect to x86 PTEs is that some EPT implementations
do not support superpage mappings. This is recorded in the 'pm_flags' field
of the pmap.
TLB invalidation:
The amd64/pmap code has a number of ways to do invalidation of mappings
that may be cached in the TLB: single page, multiple pages in a range or the
entire TLB. All of these funnel into a single EPT invalidation routine called
'pmap_invalidate_ept()'. This routine bumps up the EPT generation number and
sends an IPI to the host cpus that are executing the guest's vcpus. On a
subsequent entry into the guest it will detect that the EPT has changed and
invalidate the mappings from the TLB.
Guest memory access:
Since the guest memory is no longer wired we need to hold the host physical
page that backs the guest physical page before we can access it. The helper
functions 'vm_gpa_hold()/vm_gpa_release()' are available for this purpose.
PCI passthru:
Guest's with PCI passthru devices will wire the entire guest physical address
space. The MMIO BAR associated with the passthru device is backed by a
vm_object of type OBJT_SG. An IOMMU domain is created only for guest's that
have one or more PCI passthru devices attached to them.
Limitations:
There isn't a way to map a guest physical page without execute permissions.
This is because the amd64/pmap code interprets the guest physical mappings as
user mappings since they are numerically below VM_MAXUSER_ADDRESS. Since PG_U
shares the same bit position as EPT_PG_EXECUTE all guest mappings become
automatically executable.
Thanks to Alan Cox and Konstantin Belousov for their rigorous code reviews
as well as their support and encouragement.
Thanks for John Baldwin for reviewing the use of OBJT_SG as the backing
object for pci passthru mmio regions.
Special thanks to Peter Holm for testing the patch on short notice.
Approved by: re
Discussed with: grehan
Reviewed by: alc, kib
Tested by: pho
immediate operand. The presence of an SIB byte in decoding the ModR/M field
would cause 'imm_bytes' to not be set to the correct value.
Fix this by initializing 'imm_bytes' independent of the ModR/M decoding.
Reported by: grehan@
Approved by: re@
the maximum number of VT-d domains (256 on a Sandybridge). We now allocate a
VT-d domain for a guest only if the administrator has explicitly configured
one or more PCI passthru device(s).
If there are no PCI passthru devices configured (the common case) then the
number of virtual machines is no longer limited by the maximum number of
VT-d domains.
Reviewed by: grehan@
Approved by: re@
This is a workaround to hide the fact that we do not have any code to
demote a superpage mapping before we unmap a single page that is part
of the superpage.
architectural state on CR vmexits by guaranteeing
that EFER, CR0 and the VMCS entry controls are
all in sync when transitioning to IA-32e mode.
Submitted by: Tycho Nightingale (tycho.nightingale <at> plurisbusnetworks.com)
of unloading the module while VMs existed. This would
result in EBUSY, but would prevent further operations
on VMs resulting in the module being impossible to
unload.
Submitted by: Tycho Nightingale (tycho.nightingale <at> plurisbusnetworks.com)
Reviewed by: grehan, neel
This was exposed with AP spinup of Linux, and
booting OpenBSD, where the CR0 register is unconditionally
written to prior to the longjump to enter protected
mode. The CR-vmexit handling was not updating CPU state which
resulted in a vmentry failure with invalid guest state.
A follow-on submit will fix the CPU state issue, but this
fix prevents the CR-vmexit prior to entering protected
mode by properly initializing and maintaining CR* state.
Reviewed by: neel
Reported by: Gopakumar.T @ netapp
bhyve process when an unhandled one is encountered.
Hide some additional capabilities from the guest (e.g. debug store).
This fixes the issue with FreeBSD 9.1 MP guests exiting the VM on
AP spinup (where CPUID is used when sync'ing the TSCs) and the
issue with the Java build where CPUIDs are issued from a guest
userspace.
Submitted by: tycho nightingale at pluribusnetworks com
Reviewed by: neel
Reported by: many
An array-type stat in vmm.ko is defined as follows:
VMM_STAT_ARRAY(IPIS_SENT, VM_MAXCPU, "ipis sent to vcpu");
It is incremented as follows:
vmm_stat_array_incr(vm, vcpuid, IPIS_SENT, array_index, 1);
And output of 'bhyvectl --get-stats' looks like:
ipis sent to vcpu[0] 3114
ipis sent to vcpu[1] 0
Reviewed by: grehan
Obtained from: NetApp