on PowerPC support. This was clearly not something syscons was
designed to do (very specific assumptions about the nature of VGA
consoles on PCs), but fortunately others have long since blazed
the way on making it work regardless of that.
Sponsored by: DARPA, AFRL
In the future we may want to perform the switch even if the console is
currently in the graphics mode by trying to reset the video adapter first
(e.g. by executing vesa/vga bios post). That would probably require
some sort of a one-way flag as returning the control of the console back
to the interrupted application most likely would result in a mess.
Reviewed by: emaste
MFC after: 2 months
- put underlying keyboard(s) into the polling mode for the whole
duration of the grab, instead of the previous behavior of going into
and out of the polling mode around each polling attempt
- ditto for setting K_XLATE mode and enabling a disabled keyboard
Inspired by: bde
MFC after: 2 months
At the moment grab and ungrab methods of all console drivers are no-ops.
Current intended meaning of the calls is that the kernel takes control of
console input. In the future the semantics may be extended to mean that
the calling thread takes full ownership of the console (e.g. console
output from other threads could be suspended).
Inspired by: bde
MFC after: 2 months
The SYSCTL_NODE macro defines a list that stores all child-elements of
that node. If there's no SYSCTL_DECL macro anywhere else, there's no
reason why it shouldn't be static.
patch modifies makesyscalls.sh to prefix all of the non-compatibility
calls (e.g. not linux_, freebsd32_) with sys_ and updates the kernel
entry points and all places in the code that use them. It also
fixes an additional name space collision between the kernel function
psignal and the libc function of the same name by renaming the kernel
psignal kern_psignal(). By introducing this change now we will ease future
MFCs that change syscalls.
Reviewed by: rwatson
Approved by: re (bz)
keyboards allow console break sequences (such as ctrl-alt-esc) to be
entered, alternative break can prove useful under virtualisation and
remote console systems where entering control sequences can be
difficult or unreliable.
MFC after: 3 weeks
Approved by: re (bz)
accessible:
(1) Always compile in support for breaking into the debugger if options
KDB is present in the kernel.
(2) Disable both by default, but allow them to be enabled via tunables
and sysctls debug.kdb.break_to_debugger and
debug.kdb.alt_break_to_debugger.
(3) options BREAK_TO_DEBUGGER and options ALT_BREAK_TO_DEBUGGER continue
to behave as before -- only now instead of compiling in
break-to-debugger support, they change the default values of the
above sysctls to enable those features by default. Current kernel
configurations should, therefore, continue to behave as expected.
(4) Migrate alternative break-to-debugger state machine logic out of
individual device drivers into centralised KDB code. This has a
number of upsides, but also one downside: it's now tricky to release
sio spin locks when entering the debugger, so we don't. However,
similar logic does not exist in other device drivers, including uart.
(5) dcons requires some special handling; unlike other console types, it
allows overriding KDB's own debugger selection, so we need a new
interface to KDB to allow that to work.
GENERIC kernels in -CURRENT will now support break-to-debugger as long as
appropriate boot/run-time options are set, which should improve the
debuggability of BETA kernels significantly.
MFC after: 3 weeks
Reviewed by: kib, nwhitehorn
Approved by: re (bz)
Back in 2009 I changed the ABI of the GIO_KEYMAP and PIO_KEYMAP ioctls
to support wide characters. I created a patch to add ABI compatibility
for the old calls, but I didn't get any feedback to that.
It seems now people are upgrading from 8 to 9 they experience this
issue, so add it anyway.
- Add a separate palette data for 8-bit DAC mode when SC_PIXEL_MODE is set
and fill it up with default gray-scale palette data for text. Now we don't
have to set `hint.sc.0.vesa_mode' to get the default palette data.
- Add a new adapter flag, V_ADP_DAC8 to track whether the controller is
using 8-bit palette format and load correct palette when switching modes.
- Set 8-bit DAC mode only for non-VGA compatible graphics mode.
This replaces d_mmap() with the d_mmap2() implementation and also
changes the type of offset to vm_ooffset_t.
Purge d_mmap2().
All driver modules will need to be rebuilt since D_VERSION is also
bumped.
Reviewed by: jhb@
MFC after: Not in this lifetime...
xterm and cons25 have some incompatibilities when it comes to escape
sequences for special keys, such as F1 to F12, home, end, etc. Add a new
te_fkeystr() that can be used to override the strings.
scterm-sck won't do anything with this, but scterm-teken will use
teken_get_sequences() to obtain the proper sequence.
- VBE 3.0 says palette format resets to 6-bit mode when video mode changes.
We simply set 8-bit mode when we switch modes if the adapter supports it.
- VBE 3.0 also says if the mode is not VGA compatible, we must use VBE
function to save/restore palette. Otherwise, VGA function may be used.
Thus, reinstate the save/load palette functions only for non-VGA compatible
modes regardless of its palette format.
- Let vesa(4) set VESA modes even if vga(4) claims to support it.
- Reset default palette if VESA pixel mode is set initially.
- Fix more style nits.
Right now if applications want to use the mouse on the command line,
they use sysmouse(4) and install a signal handler in the kernel to
deliver signals when mouse events arrive. This conflicts with my plan to
change to TERM=xterm, so implement proper VT200-style mouse input.
Because mouse input is now streamed through the TTY, it means you can
now SSH to another system on the console and use the mouse there as
well. The disadvantage of the VT200 mouse protocol, is that it doesn't
seem to generate events when moving the cursor. Only when pressing and
releasing mouse buttons.
There are different protocols as well, but this one seems to be most
commonly supported.
Reported by: Paul B. Mahol <onemda gmail com>
Tested with: vim(1)
This code seems to do exactly the same as ttydisc_rint_simple() does
nowadays. Just remove it.
Obtained from: //depot/user/ed/newcons/sys/dev/syscons/syscons.c
"set vesa mode" and higher 16bits of the flag would be the desired mode.
One can now set, for instance, hint.sc.0.flags=0x01680180, which means
that the system should set VESA mode 0x168 upon boot.
Submitted by: paradox <ddkprog yahoo com>, swell k at gmail.com with
some minor changes.
I don't want people to override the mutex when allocating a TTY. It has
to be there, to keep drivers like syscons happy. So I'm creating a
tty_alloc_mutex() which can be used in those cases. tty_alloc_mutex()
should eventually be removed.
The advantage of this approach, is that we can just remove a function,
without breaking the regular API in the future.
Apart from the 16 virtual terminals, Syscons allocates two device nodes
that should not really be TTYs, even though they are. One of them is
consolectl. In RELENG_7 and before, these device nodes are used in
single user mode. After I simplified input path, we only use this device
node to call ioctl() on (moused, Xorg, vidcontrol).
When you call ioctl() on consolectl, it will behave the same as being
called on the first window.
After I imported libteken into the source tree, I noticed syscons didn't
store the cursor position inside the terminal emulator, but inside the
virtual terminal stat. This is not very useful, because when you
implement more complex forms of line wrapping, you need to keep track of
more state than just the cursor position.
Because the kernel messages didn't share the same terminal emulator as
ttyv0, this caused a lot of strange things, like kernel messages being
misplaced and a missing notification to resize the terminal emulator for
kernel messages never to be resized when using vidcontrol.
This patch just removes kernel_console_ts and adds a special parameter
to te_puts to determine whether messages should be printed using regular
colors or the ones for kernel messages.
Reported by: ache
Tested by: nyan, garga (older version)
We should just leave the underlying TTY objects alone when scrolling
around in KDB. It should be handled by Syscons exclusively.
Reported by: pluknet gmail com
Some time ago I started working on a library called libteken, which is
terminal emulator. It does not buffer any screen contents, but only
keeps terminal state, such as cursor position, attributes, etc. It
should implement all escape sequences that are implemented by the
cons25 terminal emulator, but also a fair amount of sequences that are
present in VT100 and xterm.
A lot of random notes, which could be of interest to users/developers:
- Even though I'm leaving the terminal type set to `cons25', users can
do experiments with placing `xterm-color' in /etc/ttys. Because we
only implement a subset of features of xterm, this may cause
artifacts. We should consider extending libteken, because in my
opinion xterm is the way to go. Some missing features:
- Keypad application mode (DECKPAM)
- Character sets (SCS)
- libteken is filled with a fair amount of assertions, but unfortunately
we cannot go into the debugger anymore if we fail them. I've done
development of this library almost entirely in userspace. In
sys/dev/syscons/teken there are two applications that can be helpful
when debugging the code:
- teken_demo: a terminal emulator that can be started from a regular
xterm that emulates a terminal using libteken. This application can
be very useful to debug any rendering issues.
- teken_stress: a stress testing application that emulates random
terminal output. libteken has literally survived multiple terabytes
of random input.
- libteken also includes support for UTF-8, but unfortunately our input
layer and font renderer don't support this. If users want to
experiment with UTF-8 support, they can enable `TEKEN_UTF8' in
teken.h. If you recompile your kernel or the teken_demo application,
you can hold some nice experiments.
- I've left PC98 the way it is right now. The PC98 platform has a custom
syscons renderer, which supports some form of localised input. Maybe
we should port PC98 to libteken by the time syscons supports UTF-8?
- I've removed the `dumb' terminal emulator. It has been broken for
years. It hasn't survived the `struct proc' -> `struct thread'
conversion.
- To prevent confusion among people that want to hack on libteken:
unlike syscons, the state machines that parse the escape sequences are
machine generated. This means that if you want to add new escape
sequences, you have to add an entry to the `sequences' file. This will
cause new entries to be added to `teken_state.h'.
- Any rendering artifacts that didn't occur prior to this commit are by
accident. They should be reported to me, so I can fix them.
Discussed on: current@, hackers@
Discussed with: philip (at 25C3)
The syscons code disabled scroll lock inside sc_cnputs() if it's going
to print a system message. The code currently wants to process any TTY
output data as well, but we cannot do this, because the TTY lock is a
sleep mutex, while cnputs() picks up a spin mutex.
Disable the code for now. It solves a panic when a console message is
printed while scroll lock is enabled. One solution would be to
initialize a task structure here.
Reported by: Paul B. Mahol <onemda gmail com>
When I was hacking on uart(4) to make it work with the MPSAFE TTY layer,
I noticed there was a difference between the way syscons and uart work
with respect to consoles:
- The uart(4) driver sets cn_name to the corresponding ttyu%r node,
which means init(8) (which opens /dev/console) will have its output
redirected to /dev/ttyu%r. After /etc/rc is done, it can spawn a getty
on that device node as well.
- Syscons used a little different approach. Apart from the /dev/ttyv%r
nodes, it creates a /dev/consolectl node. This device node is used by
moused and others to deliver their data, but for some reason it also
acts as a TTY, which shares its stat structure with ttyv0. This device
node is used as a console (run conscontrol).
There are a couple advantages of this approach:
- Because we use two different TTY's to represent the 0th syscons
window, we allocate two sets of TTY buffers. Even if you don't use
/dev/consolectl after the system has booted (systems that don't run
moused), it seems the buffers are still allocated.
- We have to apply an evil hack to redirect input to /dev/consolectl.
Because each window (stat) is associated not associated with one TTY,
syscons solves this by redirecting all input to closed TTY's to
consolectl.
This means that opening /dev/ttyv0 while in single user mode will
probably cause strange things to happen with respect to keyboard input
redirection.
The first patch that I discussed with philip@ turned consolectl into a
symlink to ttyv0, but this was not a good idea, because in theory we
would want consolectl to be a simple device node, which contains all the
`privileged' ioctl()'s. Apart from that, it didn't work, because each
time /dev/ttyv0 got revoked, moused also lost its descriptor to deliver
input, which meant you had to plug out/in your mouse to make it work
again. This version just leaves the consolectl device the way it is. It
can still be used to write output to ttyv0, but it can no longer receive
any input.
In my opinion this patch is not a complete solution, but it's already a
step in the good direction. It would allow us to turn consolectl into a
special (non-TTY) device node in the far future. It shaves off 15 KB of
wasted TTY buffer space.
Discussed with: philip
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
PZERO + 1. The sleeping process at the priority <= PZERO is counted as
blocked, or, as comment states, 'disk wait'. PZERO + 1 works as well,
and does not cause user confusion.
Reported by: sam <samflanker at gmail com>
MFC after: 1 week
these days, so de-generalize the acquire_timer/release_timer api
to just deal with speakers.
The new (optional) MD functions are:
timer_spkr_acquire()
timer_spkr_release()
and
timer_spkr_setfreq()
the last of which configures the timer to generate a tone of a given
frequency, in Hz instead of 1/1193182th of seconds.
Drop entirely timer2 on pc98, it is not used anywhere at all.
Move sysbeep() to kern/tty_cons.c and use the timer_spkr*() if
they exist, and do nothing otherwise.
Remove prototypes and empty acquire-/release-timer() and sysbeep()
functions from the non-beeping archs.
This eliminate the need for the speaker driver to know about
i8254frequency at all. In theory this makes the speaker driver MI,
contingent on the timer_spkr_*() functions existing but the driver
does not know this yet and still attaches to the ISA bus.
Syscons is more tricky, in one function, sc_tone(), it knows the hz
and things are just fine.
In the other function, sc_bell() it seems to get the period from
the KDMKTONE ioctl in terms if 1/1193182th second, so we hardcode
the 1193182 and leave it at that. It's probably not important.
Change a few other sysbeep() uses which obviously knew that the
argument was in terms of i8254 frequency, and leave alone those
that look like people thought sysbeep() took frequency in hertz.
This eliminates the knowledge of i8254_freq from all but the actual
clock.c code and the prof_machdep.c on amd64 and i386, where I think
it would be smart to ask for help from the timecounters anyway [TBD].
implemented with macros. This patch improves code readability. Reasoning
behind vidd_* is a sort of "video discipline".
List of macros is supposed to be complete--all methods of video_switch
ought to have their respective macros from now on.
Functionally, this code should be no-op. My intention is to leave current
behaviour of touched code as is.
No objections: rwatson
Silence on: freebsd-current@
Approved by: cognet
implemented with macros. This patch improves code readability. Reasoning
behind kbdd_* is a "keyboard discipline".
List of macros is supposed to be complete--all methods of keyboard_switch
should have their respective macros from now on.
Functionally, this code should be no-op. My intention is to leave current
behaviour of code as is.
Glanced at by: rwatson
Reviewed by: emax, marcel
Approved by: cognet
for that argument. This will allow DDB to detect the broad category of
reason why the debugger has been entered, which it can use for the
purposes of deciding which DDB script to run.
Assign approximate why values to all current consumers of the
kdb_enter() interface.