Commit Graph

5 Commits

Author SHA1 Message Date
Pawel Jakub Dawidek
d295bdee07 Add support for AES-XTS.
Obtained from:	OpenBSD
MFC after:	1 week
2010-09-23 11:52:32 +00:00
George V. Neville-Neil
559d3390d0 Integrate the Camellia Block Cipher. For more information see RFC 4132
and its bibliography.

Submitted by:   Tomoyuki Okazaki <okazaki at kick dot gr dot jp>
MFC after:      1 month
2007-05-09 19:37:02 +00:00
Pawel Jakub Dawidek
f6c4bc3b91 - Fix a very old bug in HMAC/SHA{384,512}. When HMAC is using SHA384
or SHA512, the blocksize is 128 bytes, not 64 bytes as anywhere else.
  The bug also exists in NetBSD, OpenBSD and various other independed
  implementations I look at.
- We cannot decide which hash function to use for HMAC based on the key
  length, because any HMAC function can use any key length.
  To fix it split CRYPTO_SHA2_HMAC into three algorithm:
  CRYPTO_SHA2_256_HMAC, CRYPTO_SHA2_384_HMAC and CRYPTO_SHA2_512_HMAC.
  Those names are consistent with OpenBSD's naming.
- Remove authsize field from auth_hash structure.
- Allow consumer to define size of hash he wants to receive.
  This allows to use HMAC not only for IPsec, where 96 bits MAC is requested.
  The size of requested MAC is defined at newsession time in the cri_mlen
  field - when 0, entire MAC will be returned.
- Add swcr_authprepare() function which prepares authentication key.
- Allow to provide key for every authentication operation, not only at
  newsession time by honoring CRD_F_KEY_EXPLICIT flag.
- Make giving key at newsession time optional - don't try to operate on it
  if its NULL.
- Extend COPYBACK()/COPYDATA() macros to handle CRYPTO_BUF_CONTIG buffer
  type as well.
- Accept CRYPTO_BUF_IOV buffer type in swcr_authcompute() as we have
  cuio_apply() now.
- 16 bits for key length (SW_klen) is more than enough.

Reviewed by:	sam
2006-05-17 18:24:17 +00:00
Warner Losh
60727d8b86 /* -> /*- for license, minor formatting changes 2005-01-07 02:29:27 +00:00
Sam Leffler
091d81d134 In-kernel crypto framework derived from openbsd. This facility provides
a consistent interface to h/w and s/w crypto algorithms for use by the
kernel and (for h/w at least) by user-mode apps.  Access for user-level
code is through a /dev/crypto device that'll eventually be used by openssl
to (potentially) accelerate many applications.  Coming soon is an IPsec
that makes use of this service to accelerate ESP, AH, and IPCOMP protocols.

Included here is the "core" crypto support, /dev/crypto driver, various
crypto algorithms that are not already present in the KAME crypto area,
and support routines used by crypto device drivers.

Obtained from:	openbsd
2002-10-04 20:31:23 +00:00