due to conditions that suggest the possible need for stack growth.
This has two beneficial effects: (1) we can
now remove calls to vm_map_growstack() from the MD trap handlers and (2)
simple page faults are faster because we no longer unnecessarily perform
vm_map_growstack() on every page fault.
o Remove vm_map_growstack() from the i386's trap_pfault().
o Remove the acquisition and release of Giant from i386's trap_pfault().
(vm_fault() still acquires it.)
environment needed at boot time to a dynamic subsystem when VM is
up. The dynamic kernel environment is protected by an sx lock.
This adds some new functions to manipulate the kernel environment :
freeenv(), setenv(), unsetenv() and testenv(). freeenv() has to be
called after every getenv() when you have finished using the string.
testenv() only tests if an environment variable is present, and
doesn't require a freeenv() call. setenv() and unsetenv() are self
explanatory.
The kenv(2) syscall exports these new functionalities to userland,
mainly for kenv(1).
Reviewed by: peter
and pmap_copy_page(). This gets rid of a couple more physical addresses
in upper layers, with the eventual aim of supporting PAE and dealing with
the physical addressing mostly within pmap. (We will need either 64 bit
physical addresses or page indexes, possibly both depending on the
circumstances. Leaving this to pmap itself gives more flexibilitly.)
Reviewed by: jake
Tested on: i386, ia64 and (I believe) sparc64. (my alpha was hosed)
trying to run X on some Athlon systems where the BIOS does odd things
(mines an ASUS A7A266, but it seems to also help on other systems).
Here's a description of the problem and my fix:
The problem with the old MTRR code is that it only expects
to find documented values in the bytes of MTRR registers.
To convert the MTRR byte into a FreeBSD "Memory Range Type"
(mrt) it uses the byte value and looks it up in an array.
If the value is not in range then the mrt value ends up
containing random junk.
This isn't an immediate problem. The mrt value is only used
later when rewriting the MTRR registers. When we finally
go to write a value back again, the function i686_mtrrtype()
searches for the junk value and returns -1 when it fails
to find it. This is converted to a byte (0xff) and written
back to the register, causing a GPF as 0xff is an illegal
value for a MTRR byte.
To work around this problem I've added a new mrt flag
MDF_UNKNOWN. We set this when we read a MTRR byte which
we do not understand. If we try to convert a MDF_UNKNOWN
back into a MTRR value, then the new function, i686_mrt2mtrr,
just returns the old value of the MTRR byte. This leaves
the memory range type unchanged.
I'd like to merge this before the 4.6 code freeze, so if people
can test this with XFree 4 that would be very useful.
PR: 28418, 25958
Tested by: jkh, Christopher Masto <chris@netmonger.net>
MFC after: 2 weeks
the indentation more like the other multi-line assembley in
this file.
Someone who understands gcc constraints could update the
constraints for do_cpuid.
o Recent changes to osigreturn() and sigreturn() have made them MPSAFE. Add
a comment to this effect.
Submitted by: bde (bullet #1)
Reviewed by: jhb (bullet #2)
without a few patches for the rest of the kernel to allow the image
activator to override exec_copyout_strings and setregs.
None of the syscall argument translation has been done. Possibly, this
translation layer can be shared with any platform that wants to support
running ILP32 binaries on an LP64 host (e.g. sparc32 binaries?)
PCPU_LAZY_INC() which increments elements in it for cases where we
can afford the occassional inaccuracy. Use of per-cpu stats counters
avoids significant cache stalls in various critical paths that would
otherwise severely limit our cpu scaleability.
Adjust all sysctl's accessing cnt.* elements to now use a procedure
which aggregates the requested field for all cpus and for the global
vmmeter.
The global vmmeter is retained, since some stats counters, like v_free_min,
cannot be made per-cpu. Also, this allows us to convert counters from
the global vmmeter to the per-cpu vmmeter in a piecemeal fashion, so
have at it!
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
In the i386 case, options BOOTP requires options NFS_ROOT as well as
options NFSCLIENT. With *both* the NFS options, a bootpc_init()
prototype is brought in by nfsclient/nfsdiskless.h.
In the ia64 case, it just doesn't work and my change just pushes it
further away from working.
Suggested to be wrong by: bde
they aren't in the usual path of execution for syscalls and traps.
The main complication for this is that we have to set flags to control
ast() everywhere that changes the signal mask.
Avoid locking in userret() in most of the remaining cases.
Submitted by: luoqi (first part only, long ago, reorganized by me)
Reminded by: dillon
Unfortunately, this level doesn't really provide enough granularity. We
probably need several MI NOTES type files for things that are shared by
several architectures but not by all. For example, the PCI options could
live in a NOTES.pci.
This also updates the Makefile for i386 to generate LINT. The only changes
in the generated LINT are the order of various options.
Suggestions for improvement welcome.
in dump byte order (=network byte order). Swap blocksize and dumptime
to avoid extraneous padding on 64-bit architectures. Use CTASSERT
instead of runtime checks to make sure the header is 512 bytes large.
Various style(9) fixes.
Reviewed by: phk, bde, mike
various machdep.c's to being declared in kern_mutex.c.
- Add a new function mutex_init() used to perform early initialization
needed for mutexes such as setting up thread0's contested lock list
and initializing MI mutexes. Change the various MD startup routines
to call this function instead of duplicating all the code themselves.
Tested on: alpha, i386
and cpu_critical_exit() and moves associated critical prototypes into their
own header file, <arch>/<arch>/critical.h, which is only included by the
three MI source files that need it.
Backout and re-apply improperly comitted syntactical cleanups made to files
that were still under active development. Backout improperly comitted program
structure changes that moved localized declarations to the top of two
procedures. Partially re-apply one of the program structure changes to
move 'mask' into an intermediate block rather then in three separate
sub-blocks to make the code more readable. Re-integrate bug fixes that Jake
made to the sparc64 code.
Note: In general, developers should not gratuitously move declarations out
of sub-blocks. They are where they are for reasons of structure, grouping,
readability, compiler-localizability, and to avoid developer-introduced bugs
similar to several found in recent years in the VFS and VM code.
Reviewed by: jake
general cleanup of the API. The entire API now consists of two functions
similar to the pre-KSE API. The suser() function takes a thread pointer
as its only argument. The td_ucred member of this thread must be valid
so the only valid thread pointers are curthread and a few kernel threads
such as thread0. The suser_cred() function takes a pointer to a struct
ucred as its first argument and an integer flag as its second argument.
The flag is currently only used for the PRISON_ROOT flag.
Discussed on: smp@
Caveats:
The new savecore program is not complete in the sense that it emulates
enough of the old savecores features to do the job, but implements none
of the options yet.
I would appreciate if a userland hacker could help me out getting savecore
to do what we want it to do from a users point of view, compression,
email-notification, space reservation etc etc. (send me email if
you are interested).
Currently, savecore will scan all devices marked as "swap" or "dump" in
/etc/fstab _or_ any devices specified on the command-line.
All architectures but i386 lack an implementation of dumpsys(), but
looking at the i386 version it should be trivial for anybody familiar
with the platform(s) to provide this function.
Documentation is quite sparse at this time, more to come.
Details:
ATA and SCSI drivers should work as the dump formatting code has been
removed. The IDA, TWE and AAC have not yet been converted.
Dumpon now opens the device and uses ioctl(DIOCGKERNELDUMP) to set
the device as dumpdev. To implement the "off" argument, /dev/null
is used as the device.
Savecore will fail if handed any options since they are not (yet)
implemented. All devices marked "dump" or "swap" in /etc/fstab
will be scanned and dumps found will be saved to diskfiles
named from the MD5 hash of the header record. The header record
is dumped in readable format in the .info file. The kernel
is not saved. Only complete dumps will be saved.
All maintainer rights for this code are disclaimed: feel free to
improve and extend.
Sponsored by: DARPA, NAI Labs
the osigcontext or ucontext_t rather than useracc() followed by direct user-
space memory accesses. This reduces (o)sigreturn()'s execution time by 5-
50%.
Submitted by: bde
with this flag. Remove the dup_list and dup_ok code from subr_witness. Now
we just check for the flag instead of doing string compares.
Also, switch the process lock, process group lock, and uma per cpu locks over
to this interface. The original mechanism did not work well for uma because
per cpu lock names are unique to each zone.
Approved by: jhb
disablement assumptions in kern_fork.c by adding another API call,
cpu_critical_fork_exit(). Cleanup the td_savecrit field by moving it
from MI to MD. Temporarily move cpu_critical*() from <arch>/include/cpufunc.h
to <arch>/<arch>/critical.c (stage-2 will clean this up).
Implement interrupt deferral for i386 that allows interrupts to remain
enabled inside critical sections. This also fixes an IPI interlock bug,
and requires uses of icu_lock to be enclosed in a true interrupt disablement.
This is the stage-1 commit. Stage-2 will occur after stage-1 has stabilized,
and will move cpu_critical*() into its own header file(s) + other things.
This commit may break non-i386 architectures in trivial ways. This should
be temporary.
Reviewed by: core
Approved by: core
not removing tabs before "__P((", and not outdenting continuation lines
to preserve non-KNF lining up of code with parentheses. Switch to KNF
formatting and/or rewrap the whole prototype in some cases.
not removing tabs before "__P((", and not outdenting continuation lines
to preserve non-KNF lining up of code with parentheses. Switch to KNF
formatting and/or rewrap the whole prototype in some cases.
not removing tabs before "__P((", and not outdenting continuation lines
to preserve non-KNF lining up of code with parentheses. Switch to KNF
formatting and/or rewrap the whole prototype in some cases.
Instead of caching the ucred reference, just go ahead and eat the
decerement and increment of the refcount. Now that Giant is pushed down
into crfree(), we no longer have to get Giant in the common case. In the
case when we are actually free'ing the ucred, we would normally free it on
the next kernel entry, so the cost there is not new, just in a different
place. This also removse td_cache_ucred from struct thread. This is
still only done #ifdef DIAGNOSTIC.
Tested on: i386, alpha