further refinement is required as some device drivers intended to be
portable over FreeBSD versions rely on __FreeBSD_version to decide whether
to include capability.h.
MFC after: 3 weeks
in the future in a backward compatible (API and ABI) way.
The cap_rights_t represents capability rights. We used to use one bit to
represent one right, but we are running out of spare bits. Currently the new
structure provides place for 114 rights (so 50 more than the previous
cap_rights_t), but it is possible to grow the structure to hold at least 285
rights, although we can make it even larger if 285 rights won't be enough.
The structure definition looks like this:
struct cap_rights {
uint64_t cr_rights[CAP_RIGHTS_VERSION + 2];
};
The initial CAP_RIGHTS_VERSION is 0.
The top two bits in the first element of the cr_rights[] array contain total
number of elements in the array - 2. This means if those two bits are equal to
0, we have 2 array elements.
The top two bits in all remaining array elements should be 0.
The next five bits in all array elements contain array index. Only one bit is
used and bit position in this five-bits range defines array index. This means
there can be at most five array elements in the future.
To define new right the CAPRIGHT() macro must be used. The macro takes two
arguments - an array index and a bit to set, eg.
#define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL)
We still support aliases that combine few rights, but the rights have to belong
to the same array element, eg:
#define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL)
#define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL)
#define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP)
There is new API to manage the new cap_rights_t structure:
cap_rights_t *cap_rights_init(cap_rights_t *rights, ...);
void cap_rights_set(cap_rights_t *rights, ...);
void cap_rights_clear(cap_rights_t *rights, ...);
bool cap_rights_is_set(const cap_rights_t *rights, ...);
bool cap_rights_is_valid(const cap_rights_t *rights);
void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src);
void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src);
bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little);
Capability rights to the cap_rights_init(), cap_rights_set(),
cap_rights_clear() and cap_rights_is_set() functions are provided by
separating them with commas, eg:
cap_rights_t rights;
cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT);
There is no need to terminate the list of rights, as those functions are
actually macros that take care of the termination, eg:
#define cap_rights_set(rights, ...) \
__cap_rights_set((rights), __VA_ARGS__, 0ULL)
void __cap_rights_set(cap_rights_t *rights, ...);
Thanks to using one bit as an array index we can assert in those functions that
there are no two rights belonging to different array elements provided
together. For example this is illegal and will be detected, because CAP_LOOKUP
belongs to element 0 and CAP_PDKILL to element 1:
cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL);
Providing several rights that belongs to the same array's element this way is
correct, but is not advised. It should only be used for aliases definition.
This commit also breaks compatibility with some existing Capsicum system calls,
but I see no other way to do that. This should be fine as Capsicum is still
experimental and this change is not going to 9.x.
Sponsored by: The FreeBSD Foundation
kernel for FreeBSD 9.0:
Add a new capability mask argument to fget(9) and friends, allowing system
call code to declare what capabilities are required when an integer file
descriptor is converted into an in-kernel struct file *. With options
CAPABILITIES compiled into the kernel, this enforces capability
protection; without, this change is effectively a no-op.
Some cases require special handling, such as mmap(2), which must preserve
information about the maximum rights at the time of mapping in the memory
map so that they can later be enforced in mprotect(2) -- this is done by
narrowing the rights in the existing max_protection field used for similar
purposes with file permissions.
In namei(9), we assert that the code is not reached from within capability
mode, as we're not yet ready to enforce namespace capabilities there.
This will follow in a later commit.
Update two capability names: CAP_EVENT and CAP_KEVENT become
CAP_POST_KEVENT and CAP_POLL_KEVENT to more accurately indicate what they
represent.
Approved by: re (bz)
Submitted by: jonathan
Sponsored by: Google Inc
I really don't want any pieces of code to include ioctl_compat.h, so let
the ibcs2 and svr4 compat leave sgtty alone. If they want to support
sgtty, they should emulate it on top of termios, not sgtty.
The code has been marked with BURN_BRIDGES for a long time. ibcs2 and
svr4 are not really popular pieces of code anyway.
osf1_signal.c:1.41, amd64/amd64/trap.c:1.291, linux_socket.c:1.60,
svr4_fcntl.c:1.36, svr4_ioctl.c:1.23, svr4_ipc.c:1.18, svr4_misc.c:1.81,
svr4_signal.c:1.34, svr4_stat.c:1.21, svr4_stream.c:1.55,
svr4_termios.c:1.13, svr4_ttold.c:1.15, svr4_util.h:1.10,
ext2_alloc.c:1.43, i386/i386/trap.c:1.279, vm86.c:1.58,
unaligned.c:1.12, imgact_elf.c:1.164, ffs_alloc.c:1.133:
Now that Giant is acquired in uprintf() and tprintf(), the caller no
longer leads to acquire Giant unless it also holds another mutex that
would generate a lock order reversal when calling into these functions.
Specifically not backed out is the acquisition of Giant in nfs_socket.c
and rpcclnt.c, where local mutexes are held and would otherwise violate
the lock order with Giant.
This aligns this code more with the eventual locking of ttys.
Suggested by: bde
as they both interact with the tty code (!MPSAFE) and may sleep if the
tty buffer is full (per comment).
Modify all consumers of uprintf() and tprintf() to hold Giant around
calls into these functions. In most cases, this means adding an
acquisition of Giant immediately around the function. In some cases
(nfs_timer()), it means acquiring Giant higher up in the callout.
With these changes, UFS no longer panics on SMP when either blocks are
exhausted or inodes are exhausted under load due to races in the tty
code when running without Giant.
NB: Some reduction in calls to uprintf() in the svr4 code is probably
desirable.
NB: In the case of nfs_timer(), calling uprintf() while holding a mutex,
or even in a callout at all, is a bad idea, and will generate warnings
and potential upset. This needs to be fixed, but was a problem before
this change.
NB: uprintf()/tprintf() sleeping is generally a bad ideas, as is having
non-MPSAFE tty code.
MFC after: 1 week
pointer types, and remove a huge number of casts from code using it.
Change struct xfile xf_data to xun_data (ABI is still compatible).
If we need to add a #define for f_data and xf_data we can, but I don't
think it will be necessary. There are no operational changes in this
commit.
o Add a mutex (sb_mtx) to struct sockbuf. This protects the data in a
socket buffer. The mutex in the receive buffer also protects the data
in struct socket.
o Determine the lock strategy for each members in struct socket.
o Lock down the following members:
- so_count
- so_options
- so_linger
- so_state
o Remove *_locked() socket APIs. Make the following socket APIs
touching the members above now require a locked socket:
- sodisconnect()
- soisconnected()
- soisconnecting()
- soisdisconnected()
- soisdisconnecting()
- sofree()
- soref()
- sorele()
- sorwakeup()
- sotryfree()
- sowakeup()
- sowwakeup()
Reviewed by: alfred
Seigo Tanimura (tanimura) posted the initial delta.
I've polished it quite a bit reducing the need for locking and
adapting it for KSE.
Locks:
1 mutex in each filedesc
protects all the fields.
protects "struct file" initialization, while a struct file
is being changed from &badfileops -> &pipeops or something
the filedesc should be locked.
1 mutex in each struct file
protects the refcount fields.
doesn't protect anything else.
the flags used for garbage collection have been moved to
f_gcflag which was the FILLER short, this doesn't need
locking because the garbage collection is a single threaded
container.
could likely be made to use a pool mutex.
1 sx lock for the global filelist.
struct file * fhold(struct file *fp);
/* increments reference count on a file */
struct file * fhold_locked(struct file *fp);
/* like fhold but expects file to locked */
struct file * ffind_hold(struct thread *, int fd);
/* finds the struct file in thread, adds one reference and
returns it unlocked */
struct file * ffind_lock(struct thread *, int fd);
/* ffind_hold, but returns file locked */
I still have to smp-safe the fget cruft, I'll get to that asap.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
opt_global.h and opt_svr4.h, instead of from the command line. This
brings them in-line with most of the rest of the kernel.
svr4_ioctl.c has also failed to compile with debugging for a while
now; fixed by adding systm.h and socketvar.
Some svr4 source files are automatically generated from syscalls.master;
these have been committed as consequential changes, otherwise everyone
will have to "make svr4_sysent.c".
Changes:
sys/svr4/svr4.h include opt_global.h and opt_svr4.h
sys/svr4/svr4_ioctl.c include svr4.h, sys/systm.h and sys/socketvar.h
sys/svr4/svr4_ipc.c include svr4.h
sys/svr4/svr4_resource.c include svr4.h
sys/svr4/svr4_socket.c include svr4.h
sys/svr4/svr4_ttold.c include svr4.h
sys/svr4/syscalls.master include svr4.h
sys/svr4/svr4_syscallnames.c dependent on syscalls.master
sys/svr4/svr4_sysent.c dependent on syscalls.master
sys/svr4/svr4_syscall.h dependent on syscalls.master
sys/svr4/svr4_proto.h dependent on syscalls.master
sys/modules/svr4/Makefile create opt_global.h and opt_svr4.h