- Call acpi_resync_clock() to reset system time before hardclock is ready
to tick. Note we assume the current timecounter hardware and RTC are
already available for read operation.
Tested by: mav
This code is heavily inspired by Takanori Watanabe's experimental SMP patch
for i386 and large portion was shamelessly cut and pasted from Peter Wemm's
AP boot code.
different "platforms" on x86 machines. The existing code already handles
having two platforms: ACPI and legacy. However, the existing approach was
rather hardcoded and difficult to extend. These changes take the approach
that each x86 hardware platform should provide its own nexus(4) driver (it
can inherit most of its behavior from the default legacy nexus(4) driver)
which is responsible for probing for the platform and performing
appropriate platform-specific setup during attach (such as adding a
platform-specific bus device). This does mean changing the x86 platform
busses to no longer use an identify routine for probing, but to move that
logic into their matching nexus(4) driver instead.
- Make the default nexus(4) driver in nexus.c on i386 and amd64 handle the
legacy platform. It's probe routine now returns BUS_PROBE_GENERIC so it
can be overriden.
- Expose a nexus_init_resources() routine which initializes the various
resource managers so that subclassed nexus(4) drivers can invoke it from
their attach routine.
- The legacy nexus(4) driver explicitly adds a legacy0 device in its
attach routine.
- The ACPI driver no longer contains an new-bus identify method. Instead
it exposes a public function (acpi_identify()) which is a probe routine
that the MD nexus(4) drivers can use to probe for ACPI. All of the
probe logic in acpi_probe() is now moved into acpi_identify() and
acpi_probe() is just a stub.
- On i386 and amd64, an ACPI-specific nexus(4) driver checks for ACPI via
acpi_identify() and claims the nexus0 device if the probe succeeds. It
then explicitly adds an acpi0 device in its attach routine.
- The legacy(4) driver no longer knows anything about the acpi0 device.
- On ia64 if acpi_identify() fails you basically end up with no devices.
This matches the previous behavior where the old acpi_identify() would
fail to add an acpi0 device again leaving you with no devices.
Discussed with: imp
Silence on: arch@
a heavily stripped down FreeBSD/i386 (brutally stripped down actually) to
attempt to get a stable base to start from. There is a lot missing still.
Worth noting:
- The kernel runs at 1GB in order to cheat with the pmap code. pmap uses
a variation of the PAE code in order to avoid having to worry about 4
levels of page tables yet.
- It boots in 64 bit "long mode" with a tiny trampoline embedded in the
i386 loader. This simplifies locore.s greatly.
- There are still quite a few fragments of i386-specific code that have
not been translated yet, and some that I cheated and wrote dumb C
versions of (bcopy etc).
- It has both int 0x80 for syscalls (but using registers for argument
passing, as is native on the amd64 ABI), and the 'syscall' instruction
for syscalls. int 0x80 preserves all registers, 'syscall' does not.
- I have tried to minimize looking at the NetBSD code, except in a couple
of places (eg: to find which register they use to replace the trashed
%rcx register in the syscall instruction). As a result, there is not a
lot of similarity. I did look at NetBSD a few times while debugging to
get some ideas about what I might have done wrong in my first attempt.
branches:
Initialize struct cdevsw using C99 sparse initializtion and remove
all initializations to default values.
This patch is automatically generated and has been tested by compiling
LINT with all the fields in struct cdevsw in reverse order on alpha,
sparc64 and i386.
Approved by: re(scottl)
macro for use when parsing MADT tables, thus we always tried to set the
interrupt model to APIC. This proved to be harmful on UP machines with
IO APIC's (or for UP kernels on SMP machines) since the wrong interrupt
routing information would be returned.
Pointy hat to: jhb
Approved by: re (rwatson)
and attach routines have succeeded so that if they fail we can still use
the PnP BIOS to find ISA on-board devices. The fact that we do this here
is gross but fixing it properly involves a lot more work.
This emulates APM device node interface APIs (mainly ioctl) and
provides APM services for the applications. The goal is to support
most of APM applications without any changes.
Implemented ioctls in this commit are:
- APMIO_SUSPEND (mapped ACPI S3 as default but changable by sysctl)
- APMIO_STANDBY (mapped ACPI S1 as default but changable by sysctl)
- APMIO_GETINFO and APMIO_GETINFO_OLD
- APMIO_GETPWSTATUS
With above, many APM applications which get batteries, ac-line
info. and transition the system into suspend/standby mode (such as
wmapm, xbatt) should work with ACPI enabled kernel (if ACPI works well :-)
Reviewed by: arch@, audit@ and some guys