- Unify bus reset/probe sequence. Whenever bus attached at boot or later,
CAM will automatically reset and scan it. It allows to remove duplicate
code from many drivers.
- Any bus, attached before CAM completed it's boot-time initialization,
will equally join to the process, delaying boot if needed.
- New kern.cam.boot_delay loader tunable should help controllers that
are still unable to register their buses in time (such as slow USB/
PCCard/ CardBus devices), by adding one more event to wait on boot.
- To allow synchronization between different CAM levels, concept of
requests priorities was extended. Priorities now split between several
"run levels". Device can be freezed at specified level, allowing higher
priority requests to pass. For example, no payload requests allowed,
until PMP driver enable port. ATA XPT negotiate transfer parameters,
periph driver configure caching and so on.
- Frozen requests are no more counted by request allocation scheduler.
It fixes deadlocks, when frozen low priority payload requests occupying
slots, required by higher levels to manage theit execution.
- Two last changes were holding proper ATA reinitialization and error
recovery implementation. Now it is done: SATA controllers and Port
Multipliers now implement automatic hot-plug and should correctly
recover from timeouts and bus resets.
- Improve SCSI error recovery for devices on buses without automatic sense
reporting, such as ATAPI or USB. For example, it allows CAM to wait, while
CD drive loads disk, instead of immediately return error status.
- Decapitalize diagnostic messages and make them more readable and sensible.
- Teach PMP driver to limit maximum speed on fan-out ports.
- Make boot wait for PMP scan completes, and make rescan more reliable.
- Fix pass driver, to return CCB to user level in case of error.
- Increase number of retries in cd driver, as device may return several UAs.
Limit early revisions from 6Gb/s to 3Gb/s by default, or they negotiate
only 1.5Gbps, when 3Gb/s devices connected.
Add dummy driver for PATA part of these controllers, preventing generic
driver attach them. It causes system freeze when SATA controller used after
PATA was touched.
- These revisions no longer have cable detection capability.
- The UDMA support bit of register 0x4b has been dropped without an
replacement.
- According to Linux it's crucial for working ATAPI DMA support to
also set the reserved bit 1 of regsiter 0x53 with these revisions.
MFC after: 1 week
native, i.e. big-endian, format and convert as appropriate like we
also do with the multibyte fields of the other pages. This fixes
the output of acd_describe() to match reality on big-endian machines
without breaking it on little-endian ones. While at it, also convert
the remaining multibyte fields of the pages read although they are
currently unused for consistency and in order to prevent possible
similar bugs in the future.
MFC after: 1 week
Introduce ATA_CAM kernel option, turning ata(4) controller drivers into
cam(4) interface modules. When enabled, this options deprecates all ata(4)
peripheral drivers (ad, acd, ...) and interfaces and allows cam(4) drivers
(ada, cd, ...) and interfaces to be natively used instead.
As side effect of this, ata(4) mode setting code was completely rewritten
to make controller API more strict and permit above change. While doing
this, SATA revision was separated from PATA mode. It allows DMA-incapable
SATA devices to operate and makes hw.ata.atapi_dma tunable work again.
Also allow ata(4) controller drivers (except some specific or broken ones)
to handle larger data transfers. Previous constraint of 64K was artificial
and is not really required by PCI ATA BM specification or hardware.
Submitted by: nwitehorn (powerpc part)
normal in case of media read error and some ATAPI cases, when transfer size
is unknown beforehand. PCI ATA BM specification tells that in case of such
underrun driver should just manually stop DMA engine. DMA engine should
same time guarantie that all bus mastering transfers completed at the moment
of driver reads interrupt flag asserted.
This change should fix interrupt storms and command timeouts in many cases.
PR: kern/103602, sparc64/121539, kern/133122, kern/139654
long as I remember, and completely superseded by better maintained umass(4).
It's main idea was to optionally avoid CAM dependency for such devices, but
with move ATA to CAM, it is not actual any more.
No objections: hselasky@, thompsa@, arch@
Binary divider value 10 specified in datasheet is not a hex 0x10.
UDMA2 should be 33/2 instead of 66/4, which is documented as reverved,
UDMA4 should be 66/2 instead of 66/4, which is definitely wrong.
and Marvell handled. Instead of trying to attach two different drivers to
single device, wrapping each call, make one of them (atajmicron, atamarvell)
attach do device solely, but create child device for AHCI driver,
passing it all required resources. It is quite easy, as none of
resources are shared, except IRQ.
As result, it:
- makes drivers operation more independent and straitforward,
- allows to use new ahci(4) driver with such devices, adding support for
new features, such as PMP and NCQ, same time keeping legacy PATA support,
- will allow to just drop old ataahci driver, when it's time come.
These controllers provide combination of AHCI for SATA and legacy
PCI ATA for PATA. Use same solution as used for JMicron controllers.
Add IDs of Marvell 88SX6102, 88SX6111. 88SX6141 alike controllers
- Remove most of direct relations between ATA(4) peripherial and controller
levels. It makes logic more transparent and is a mandatory step to wrap
ATA(4) controller level into ATA-native CAM SIM.
- Tune AHCI and SATA2 SiI drivers memory allocation a bit to allow bigger
I/O transaction sizes without additional cost.
obsoleted in 1996 by ATA-2, and crashes some modern hardware like some
revisions of the Serverworks K2 SATA controller. Even very ancient
hardware seems not to require it. In the unlikely event this causes
problems, the previous behavior can be re-enabled by defining
ATA_LEGACY_SUPPORT at the top of this file.
Reviewed by: Alexander Motin <mav@freebsd.org>