/* $FreeBSD$ */ /* * PCI specific probe and attach routines for Qlogic ISP SCSI adapters. * FreeBSD Version. * *--------------------------------------- * Copyright (c) 1997, 1998, 1999 by Matthew Jacob * NASA/Ames Research Center * All rights reserved. *--------------------------------------- * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include static u_int16_t isp_pci_rd_reg __P((struct ispsoftc *, int)); static void isp_pci_wr_reg __P((struct ispsoftc *, int, u_int16_t)); #ifndef ISP_DISABLE_1080_SUPPORT static u_int16_t isp_pci_rd_reg_1080 __P((struct ispsoftc *, int)); static void isp_pci_wr_reg_1080 __P((struct ispsoftc *, int, u_int16_t)); #endif static int isp_pci_mbxdma __P((struct ispsoftc *)); static int isp_pci_dmasetup __P((struct ispsoftc *, ISP_SCSI_XFER_T *, ispreq_t *, u_int16_t *, u_int16_t)); static void isp_pci_dmateardown __P((struct ispsoftc *, ISP_SCSI_XFER_T *, u_int32_t)); static void isp_pci_reset1 __P((struct ispsoftc *)); static void isp_pci_dumpregs __P((struct ispsoftc *)); #ifndef ISP_CODE_ORG #define ISP_CODE_ORG 0x1000 #endif #ifndef ISP_1040_RISC_CODE #define ISP_1040_RISC_CODE NULL #endif #ifndef ISP_1080_RISC_CODE #define ISP_1080_RISC_CODE NULL #endif #ifndef ISP_2100_RISC_CODE #define ISP_2100_RISC_CODE NULL #endif #ifndef ISP_2200_RISC_CODE #define ISP_2200_RISC_CODE NULL #endif #ifndef ISP_DISABLE_1020_SUPPORT static struct ispmdvec mdvec = { isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, ISP_1040_RISC_CODE, 0, ISP_CODE_ORG, 0, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64, 0 }; #endif #ifndef ISP_DISABLE_1080_SUPPORT static struct ispmdvec mdvec_1080 = { isp_pci_rd_reg_1080, isp_pci_wr_reg_1080, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, ISP_1080_RISC_CODE, 0, ISP_CODE_ORG, 0, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64, 0 }; #endif #ifndef ISP_DISABLE_2100_SUPPORT static struct ispmdvec mdvec_2100 = { isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, ISP_2100_RISC_CODE, 0, ISP_CODE_ORG, 0, 0, 0 }; #endif #ifndef ISP_DISABLE_2200_SUPPORT static struct ispmdvec mdvec_2200 = { isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, ISP_2200_RISC_CODE, 0, ISP_CODE_ORG, 0, 0, 0 }; #endif #ifndef SCSI_ISP_PREFER_MEM_MAP #define SCSI_ISP_PREFER_MEM_MAP 0 #endif #ifndef PCIM_CMD_INVEN #define PCIM_CMD_INVEN 0x10 #endif #ifndef PCIM_CMD_BUSMASTEREN #define PCIM_CMD_BUSMASTEREN 0x0004 #endif #ifndef PCIM_CMD_PERRESPEN #define PCIM_CMD_PERRESPEN 0x0040 #endif #ifndef PCIM_CMD_SEREN #define PCIM_CMD_SEREN 0x0100 #endif #ifndef PCIR_COMMAND #define PCIR_COMMAND 0x04 #endif #ifndef PCIR_CACHELNSZ #define PCIR_CACHELNSZ 0x0c #endif #ifndef PCIR_LATTIMER #define PCIR_LATTIMER 0x0d #endif #ifndef PCIR_ROMADDR #define PCIR_ROMADDR 0x30 #endif #ifndef PCI_VENDOR_QLOGIC #define PCI_VENDOR_QLOGIC 0x1077 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1020 #define PCI_PRODUCT_QLOGIC_ISP1020 0x1020 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1080 #define PCI_PRODUCT_QLOGIC_ISP1080 0x1080 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1240 #define PCI_PRODUCT_QLOGIC_ISP1240 0x1240 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1280 #define PCI_PRODUCT_QLOGIC_ISP1280 0x1280 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2100 #define PCI_PRODUCT_QLOGIC_ISP2100 0x2100 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2200 #define PCI_PRODUCT_QLOGIC_ISP2200 0x2200 #endif #define PCI_QLOGIC_ISP ((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1080 \ ((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1240 \ ((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1280 \ ((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2100 \ ((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2200 \ ((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC) #define IO_MAP_REG 0x10 #define MEM_MAP_REG 0x14 #define PCI_DFLT_LTNCY 0x40 #define PCI_DFLT_LNSZ 0x10 static const char *isp_pci_probe __P((pcici_t tag, pcidi_t type)); static void isp_pci_attach __P((pcici_t config_d, int unit)); /* This distinguishing define is not right, but it does work */ #ifdef __alpha__ #define IO_SPACE_MAPPING ALPHA_BUS_SPACE_IO #define MEM_SPACE_MAPPING ALPHA_BUS_SPACE_MEM #else #define IO_SPACE_MAPPING I386_BUS_SPACE_IO #define MEM_SPACE_MAPPING I386_BUS_SPACE_MEM #endif struct isp_pcisoftc { struct ispsoftc pci_isp; pcici_t pci_id; bus_space_tag_t pci_st; bus_space_handle_t pci_sh; int16_t pci_poff[_NREG_BLKS]; bus_dma_tag_t parent_dmat; bus_dma_tag_t cntrol_dmat; bus_dmamap_t cntrol_dmap; bus_dmamap_t *dmaps; }; static u_long ispunit; static struct pci_device isp_pci_driver = { "isp", isp_pci_probe, isp_pci_attach, &ispunit, NULL }; COMPAT_PCI_DRIVER (isp_pci, isp_pci_driver); static const char * isp_pci_probe(pcici_t tag, pcidi_t type) { static int oneshot = 1; char *x; switch (type) { #ifndef ISP_DISABLE_1020_SUPPORT case PCI_QLOGIC_ISP: x = "Qlogic ISP 1020/1040 PCI SCSI Adapter"; break; #endif #ifndef ISP_DISABLE_1080_SUPPORT case PCI_QLOGIC_ISP1080: x = "Qlogic ISP 1080 PCI SCSI Adapter"; break; case PCI_QLOGIC_ISP1240: x = "Qlogic ISP 1240 PCI SCSI Adapter"; break; case PCI_QLOGIC_ISP1280: x = "Qlogic ISP 1280 PCI SCSI Adapter"; break; #endif #ifndef ISP_DISABLE_2100_SUPPORT case PCI_QLOGIC_ISP2100: x = "Qlogic ISP 2100 PCI FC-AL Adapter"; break; #endif #ifndef ISP_DISABLE_2200_SUPPORT case PCI_QLOGIC_ISP2200: x = "Qlogic ISP 2200 PCI FC-AL Adapter"; break; #endif default: return (NULL); } if (oneshot) { oneshot = 0; CFGPRINTF("Qlogic ISP Driver, FreeBSD Version %d.%d, " "Core Version %d.%d\n", ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR, ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR); } return (x); } static void isp_pci_attach(pcici_t cfid, int unit) { #ifdef SCSI_ISP_WWN const char *name = SCSI_ISP_WWN; char *vtp = NULL; #endif int mapped, prefer_mem_map, bitmap; pci_port_t io_port; u_int32_t data, rev, linesz, psize, basetype; struct isp_pcisoftc *pcs; struct ispsoftc *isp; vm_offset_t vaddr, paddr; struct ispmdvec *mdvp; bus_size_t lim; ISP_LOCKVAL_DECL; pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_NOWAIT); if (pcs == NULL) { printf("isp%d: cannot allocate softc\n", unit); return; } bzero(pcs, sizeof (struct isp_pcisoftc)); /* * Figure out if we're supposed to skip this one. */ if (getenv_int("isp_disable", &bitmap)) { if (bitmap & (1 << unit)) { printf("isp%d: not configuring\n", unit); return; } } /* * Figure out which we should try first - memory mapping or i/o mapping? */ #if SCSI_ISP_PREFER_MEM_MAP == 1 prefer_mem_map = 1; #else prefer_mem_map = 0; #endif bitmap = 0; if (getenv_int("isp_mem_map", &bitmap)) { if (bitmap & (1 << unit)) prefer_mem_map = 1; } bitmap = 0; if (getenv_int("isp_io_map", &bitmap)) { if (bitmap & (1 << unit)) prefer_mem_map = 0; } vaddr = paddr = NULL; mapped = 0; linesz = PCI_DFLT_LNSZ; /* * Note that pci_conf_read is a 32 bit word aligned function. */ data = pci_conf_read(cfid, PCIR_COMMAND); if (prefer_mem_map) { if (data & PCI_COMMAND_MEM_ENABLE) { if (pci_map_mem(cfid, MEM_MAP_REG, &vaddr, &paddr)) { pcs->pci_st = MEM_SPACE_MAPPING; pcs->pci_sh = vaddr; mapped++; } } if (mapped == 0 && (data & PCI_COMMAND_IO_ENABLE)) { if (pci_map_port(cfid, PCI_MAP_REG_START, &io_port)) { pcs->pci_st = IO_SPACE_MAPPING; pcs->pci_sh = io_port; mapped++; } } } else { if (data & PCI_COMMAND_IO_ENABLE) { if (pci_map_port(cfid, PCI_MAP_REG_START, &io_port)) { pcs->pci_st = IO_SPACE_MAPPING; pcs->pci_sh = io_port; mapped++; } } if (mapped == 0 && (data & PCI_COMMAND_MEM_ENABLE)) { if (pci_map_mem(cfid, MEM_MAP_REG, &vaddr, &paddr)) { pcs->pci_st = MEM_SPACE_MAPPING; pcs->pci_sh = vaddr; mapped++; } } } if (mapped == 0) { printf("isp%d: unable to map any ports!\n", unit); free(pcs, M_DEVBUF); return; } if (bootverbose) printf("isp%d: using %s space register mapping\n", unit, pcs->pci_st == IO_SPACE_MAPPING? "I/O" : "Memory"); data = pci_conf_read(cfid, PCI_ID_REG); rev = pci_conf_read(cfid, PCI_CLASS_REG) & 0xff; /* revision */ pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF; pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF; pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF; pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF; pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF; /* * GCC! */ mdvp = &mdvec; basetype = ISP_HA_SCSI_UNKNOWN; psize = sizeof (sdparam); lim = BUS_SPACE_MAXSIZE_32BIT; #ifndef ISP_DISABLE_1020_SUPPORT if (data == PCI_QLOGIC_ISP) { mdvp = &mdvec; basetype = ISP_HA_SCSI_UNKNOWN; psize = sizeof (sdparam); lim = BUS_SPACE_MAXSIZE_24BIT; } #endif #ifndef ISP_DISABLE_1080_SUPPORT if (data == PCI_QLOGIC_ISP1080) { mdvp = &mdvec_1080; basetype = ISP_HA_SCSI_1080; psize = sizeof (sdparam); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (data == PCI_QLOGIC_ISP1240) { mdvp = &mdvec_1080; basetype = ISP_HA_SCSI_1240; psize = 2 * sizeof (sdparam); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (data == PCI_QLOGIC_ISP1280) { mdvp = &mdvec_1080; basetype = ISP_HA_SCSI_1280; psize = 2 * sizeof (sdparam); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } #endif #ifndef ISP_DISABLE_2100_SUPPORT if (data == PCI_QLOGIC_ISP2100) { mdvp = &mdvec_2100; basetype = ISP_HA_FC_2100; psize = sizeof (fcparam); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF; if (rev < 3) { /* * XXX: Need to get the actual revision * XXX: number of the 2100 FB. At any rate, * XXX: lower cache line size for early revision * XXX; boards. */ linesz = 1; } } #endif #ifndef ISP_DISABLE_2200_SUPPORT if (data == PCI_QLOGIC_ISP2200) { mdvp = &mdvec_2200; basetype = ISP_HA_FC_2200; psize = sizeof (fcparam); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF; } #endif isp = &pcs->pci_isp; isp->isp_param = malloc(psize, M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { printf("isp%d: cannot allocate parameter data\n", unit); return; } bzero(isp->isp_param, psize); isp->isp_mdvec = mdvp; isp->isp_type = basetype; isp->isp_revision = rev; (void) snprintf(isp->isp_name, sizeof (isp->isp_name), "isp%d", unit); isp->isp_osinfo.unit = unit; ISP_LOCK(isp); /* * Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER * are set. */ data = pci_cfgread(cfid, PCIR_COMMAND, 2); data |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN | PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN; pci_cfgwrite(cfid, PCIR_COMMAND, 2, data); /* * Make sure the Cache Line Size register is set sensibly. */ data = pci_cfgread(cfid, PCIR_CACHELNSZ, 1); if (data != linesz) { data = PCI_DFLT_LNSZ; CFGPRINTF("%s: set PCI line size to %d\n", isp->isp_name, data); pci_cfgwrite(cfid, PCIR_CACHELNSZ, data, 1); } /* * Make sure the Latency Timer is sane. */ data = pci_cfgread(cfid, PCIR_LATTIMER, 1); if (data < PCI_DFLT_LTNCY) { data = PCI_DFLT_LTNCY; CFGPRINTF("%s: set PCI latency to %d\n", isp->isp_name, data); pci_cfgwrite(cfid, PCIR_LATTIMER, data, 1); } /* * Make sure we've disabled the ROM. */ data = pci_cfgread(cfid, PCIR_ROMADDR, 4); data &= ~1; pci_cfgwrite(cfid, PCIR_ROMADDR, data, 4); ISP_UNLOCK(isp); if (bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, lim + 1, 255, lim, 0, &pcs->parent_dmat) != 0) { printf("%s: could not create master dma tag\n", isp->isp_name); free(pcs, M_DEVBUF); return; } if (pci_map_int(cfid, (void (*)(void *))isp_intr, (void *)isp, &IMASK) == 0) { printf("%s: could not map interrupt\n", isp->isp_name); free(pcs, M_DEVBUF); return; } pcs->pci_id = cfid; #ifdef SCSI_ISP_NO_FWLOAD_MASK if (SCSI_ISP_NO_FWLOAD_MASK && (SCSI_ISP_NO_FWLOAD_MASK & (1 << unit))) isp->isp_confopts |= ISP_CFG_NORELOAD; #endif if (getenv_int("isp_no_fwload", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts |= ISP_CFG_NORELOAD; } if (getenv_int("isp_fwload", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts &= ~ISP_CFG_NORELOAD; } #ifdef SCSI_ISP_NO_NVRAM_MASK if (SCSI_ISP_NO_NVRAM_MASK && (SCSI_ISP_NO_NVRAM_MASK & (1 << unit))) { printf("%s: ignoring NVRAM\n", isp->isp_name); isp->isp_confopts |= ISP_CFG_NONVRAM; } #endif if (getenv_int("isp_no_nvram", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts |= ISP_CFG_NONVRAM; } if (getenv_int("isp_nvram", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts &= ~ISP_CFG_NONVRAM; } #ifdef SCSI_ISP_FCDUPLEX if (IS_FC(isp)) { if (SCSI_ISP_FCDUPLEX && (SCSI_ISP_FCDUPLEX & (1 << unit))) { isp->isp_confopts |= ISP_CFG_FULL_DUPLEX; } } #endif if (getenv_int("isp_fcduplex", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts |= ISP_CFG_FULL_DUPLEX; } if (getenv_int("isp_no_fcduplex", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts &= ~ISP_CFG_FULL_DUPLEX; } /* * Look for overriding WWN. This is a Node WWN so it binds to * all FC instances. A Port WWN will be constructed from it * as appropriate. */ #ifdef SCSI_ISP_WWN isp->isp_osinfo.default_wwn = strtoq(name, &vtp, 16); if (vtp != name && *vtp == 0) { isp->isp_confopts |= ISP_CFG_OWNWWN; } else #endif if (!getenv_quad("isp_wwn", (quad_t *) &isp->isp_osinfo.default_wwn)) { int i; u_int64_t seed = (u_int64_t) (intptr_t) isp; seed <<= 16; seed &= ((1LL << 48) - 1LL); /* * This isn't very random, but it's the best we can do for * the real edge case of cards that don't have WWNs. If * you recompile a new vers.c, you'll get a different WWN. */ for (i = 0; version[i] != 0; i++) { seed += version[i]; } /* * Make sure the top nibble has something vaguely sensible. */ isp->isp_osinfo.default_wwn |= (4LL << 60) | seed; } else { isp->isp_confopts |= ISP_CFG_OWNWWN; } (void) getenv_int("isp_debug", &isp_debug); #ifdef ISP_TARGET_MODE (void) getenv_int("isp_tdebug", &isp_tdebug); #endif ISP_LOCK(isp); isp_reset(isp); if (isp->isp_state != ISP_RESETSTATE) { (void) pci_unmap_int(cfid); ISP_UNLOCK(isp); free(pcs, M_DEVBUF); return; } isp_init(isp); if (isp->isp_state != ISP_INITSTATE) { /* If we're a Fibre Channel Card, we allow deferred attach */ if (IS_SCSI(isp)) { isp_uninit(isp); (void) pci_unmap_int(cfid); /* Does nothing */ ISP_UNLOCK(isp); free(pcs, M_DEVBUF); return; } } isp_attach(isp); if (isp->isp_state != ISP_RUNSTATE) { /* If we're a Fibre Channel Card, we allow deferred attach */ if (IS_SCSI(isp)) { isp_uninit(isp); (void) pci_unmap_int(cfid); /* Does nothing */ ISP_UNLOCK(isp); free(pcs, M_DEVBUF); return; } } ISP_UNLOCK(isp); } static u_int16_t isp_pci_rd_reg(isp, regoff) struct ispsoftc *isp; int regoff; { u_int16_t rv; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int offset, oldconf = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { /* * We will assume that someone has paused the RISC processor. */ oldconf = isp_pci_rd_reg(isp, BIU_CONF1); isp_pci_wr_reg(isp, BIU_CONF1, oldconf | BIU_PCI_CONF1_SXP); } offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; offset += (regoff & 0xff); rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset); if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { isp_pci_wr_reg(isp, BIU_CONF1, oldconf); } return (rv); } static void isp_pci_wr_reg(isp, regoff, val) struct ispsoftc *isp; int regoff; u_int16_t val; { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int offset, oldconf = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { /* * We will assume that someone has paused the RISC processor. */ oldconf = isp_pci_rd_reg(isp, BIU_CONF1); isp_pci_wr_reg(isp, BIU_CONF1, oldconf | BIU_PCI_CONF1_SXP); } offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; offset += (regoff & 0xff); bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val); if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { isp_pci_wr_reg(isp, BIU_CONF1, oldconf); } } #ifndef ISP_DISABLE_1080_SUPPORT static u_int16_t isp_pci_rd_reg_1080(isp, regoff) struct ispsoftc *isp; int regoff; { u_int16_t rv, oc = 0; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int offset; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { u_int16_t tc; /* * We will assume that someone has paused the RISC processor. */ oc = isp_pci_rd_reg(isp, BIU_CONF1); tc = oc & ~BIU_PCI1080_CONF1_DMA; if (regoff & SXP_BANK1_SELECT) tc |= BIU_PCI1080_CONF1_SXP1; else tc |= BIU_PCI1080_CONF1_SXP0; isp_pci_wr_reg(isp, BIU_CONF1, tc); } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { oc = isp_pci_rd_reg(isp, BIU_CONF1); isp_pci_wr_reg(isp, BIU_CONF1, oc | BIU_PCI1080_CONF1_DMA); } offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; offset += (regoff & 0xff); rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset); if (oc) { isp_pci_wr_reg(isp, BIU_CONF1, oc); } return (rv); } static void isp_pci_wr_reg_1080(isp, regoff, val) struct ispsoftc *isp; int regoff; u_int16_t val; { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int offset, oc = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { u_int16_t tc; /* * We will assume that someone has paused the RISC processor. */ oc = isp_pci_rd_reg(isp, BIU_CONF1); tc = oc & ~BIU_PCI1080_CONF1_DMA; if (regoff & SXP_BANK1_SELECT) tc |= BIU_PCI1080_CONF1_SXP1; else tc |= BIU_PCI1080_CONF1_SXP0; isp_pci_wr_reg(isp, BIU_CONF1, tc); } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { oc = isp_pci_rd_reg(isp, BIU_CONF1); isp_pci_wr_reg(isp, BIU_CONF1, oc | BIU_PCI1080_CONF1_DMA); } offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; offset += (regoff & 0xff); bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val); if (oc) { isp_pci_wr_reg(isp, BIU_CONF1, oc); } } #endif static void isp_map_rquest __P((void *, bus_dma_segment_t *, int, int)); static void isp_map_result __P((void *, bus_dma_segment_t *, int, int)); static void isp_map_fcscrt __P((void *, bus_dma_segment_t *, int, int)); struct imush { struct ispsoftc *isp; int error; }; static void isp_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct imush *imushp = (struct imush *) arg; if (error) { imushp->error = error; } else { imushp->isp->isp_rquest_dma = segs->ds_addr; } } static void isp_map_result(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct imush *imushp = (struct imush *) arg; if (error) { imushp->error = error; } else { imushp->isp->isp_result_dma = segs->ds_addr; } } static void isp_map_fcscrt(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct imush *imushp = (struct imush *) arg; if (error) { imushp->error = error; } else { fcparam *fcp = imushp->isp->isp_param; fcp->isp_scdma = segs->ds_addr; } } static int isp_pci_mbxdma(struct ispsoftc *isp) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; caddr_t base; u_int32_t len; int i, error; bus_size_t lim; struct imush im; /* * Already been here? If so, leave... */ if (isp->isp_rquest) { return (0); } len = sizeof (ISP_SCSI_XFER_T **) * isp->isp_maxcmds; isp->isp_xflist = (ISP_SCSI_XFER_T **) malloc(len, M_DEVBUF, M_WAITOK); if (isp->isp_xflist == NULL) { printf("%s: can't alloc xflist array\n", isp->isp_name); return (1); } bzero(isp->isp_xflist, len); len = sizeof (bus_dmamap_t) * isp->isp_maxcmds; pci->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF, M_WAITOK); if (pci->dmaps == NULL) { printf("%s: can't alloc dma maps\n", isp->isp_name); free(isp->isp_xflist, M_DEVBUF); return (1); } if (IS_FC(isp) || IS_ULTRA2(isp)) lim = BUS_SPACE_MAXADDR + 1; else lim = BUS_SPACE_MAXADDR_24BIT + 1; /* * Allocate and map the request, result queues, plus FC scratch area. */ len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN); len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN); if (IS_FC(isp)) { len += ISP2100_SCRLEN; } if (bus_dma_tag_create(pci->parent_dmat, PAGE_SIZE, lim, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1, BUS_SPACE_MAXSIZE_32BIT, 0, &pci->cntrol_dmat) != 0) { printf("%s: cannot create a dma tag for control spaces\n", isp->isp_name); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); return (1); } if (bus_dmamem_alloc(pci->cntrol_dmat, (void **)&base, BUS_DMA_NOWAIT, &pci->cntrol_dmap) != 0) { printf("%s: cannot allocate %d bytes of CCB memory\n", isp->isp_name, len); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); return (1); } isp->isp_rquest = base; im.isp = isp; im.error = 0; bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_rquest, ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN), isp_map_rquest, &im, 0); if (im.error) { printf("%s: error %d loading dma map for DMA request queue\n", isp->isp_name, im.error); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); isp->isp_rquest = NULL; return (1); } isp->isp_result = base + ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN); im.error = 0; bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_result, ISP_QUEUE_SIZE(RESULT_QUEUE_LEN), isp_map_result, &im, 0); if (im.error) { printf("%s: error %d loading dma map for DMA result queue\n", isp->isp_name, im.error); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); isp->isp_rquest = NULL; return (1); } for (i = 0; i < isp->isp_maxcmds; i++) { error = bus_dmamap_create(pci->parent_dmat, 0, &pci->dmaps[i]); if (error) { printf("%s: error %d creating per-cmd DMA maps\n", isp->isp_name, error); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); isp->isp_rquest = NULL; return (1); } } if (IS_FC(isp)) { fcparam *fcp = (fcparam *) isp->isp_param; fcp->isp_scratch = base + ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN) + ISP_QUEUE_SIZE(RESULT_QUEUE_LEN); im.error = 0; bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, fcp->isp_scratch, ISP2100_SCRLEN, isp_map_fcscrt, &im, 0); if (im.error) { printf("%s: error %d loading FC scratch area\n", isp->isp_name, im.error); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); isp->isp_rquest = NULL; return (1); } } return (0); } typedef struct { struct ispsoftc *isp; void *cmd_token; void *rq; u_int16_t *iptrp; u_int16_t optr; u_int error; } mush_t; #define MUSHERR_NOQENTRIES -2 #ifdef ISP_TARGET_MODE /* * We need to handle DMA for target mode differently from initiator mode. * * DMA mapping and construction and submission of CTIO Request Entries * and rendevous for completion are very tightly coupled because we start * out by knowing (per platform) how much data we have to move, but we * don't know, up front, how many DMA mapping segments will have to be used * cover that data, so we don't know how many CTIO Request Entries we * will end up using. Further, for performance reasons we may want to * (on the last CTIO for Fibre Channel), send status too (if all went well). * * The standard vector still goes through isp_pci_dmasetup, but the callback * for the DMA mapping routines comes here instead with the whole transfer * mapped and a pointer to a partially filled in already allocated request * queue entry. We finish the job. */ static void dma2_tgt __P((void *, bus_dma_segment_t *, int, int)); static void dma2_tgt_fc __P((void *, bus_dma_segment_t *, int, int)); static void dma2_tgt(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) { mush_t *mp; struct ccb_scsiio *csio; struct isp_pcisoftc *pci; bus_dmamap_t *dp; u_int8_t scsi_status, send_status; ct_entry_t *cto; u_int32_t handle; int nctios; mp = (mush_t *) arg; if (error) { mp->error = error; return; } csio = mp->cmd_token; cto = mp->rq; cto->ct_xfrlen = 0; cto->ct_resid = 0; cto->ct_seg_count = 0; bzero(cto->ct_dataseg, sizeof (cto->ct_dataseg)); if (nseg == 0) { cto->ct_header.rqs_entry_count = 1; ISP_TDQE(mp->isp, "dma2_tgt[no data]", *mp->iptrp, cto); if (isp_tdebug) { printf("%s:CTIO lun %d->iid%d flgs 0x%x sts 0x%x ssts " "0x%x res %u\n", mp->isp->isp_name, csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags, cto->ct_status, cto->ct_scsi_status, cto->ct_resid); } ISP_SWIZ_CTIO(isp, cto, cto); return; } /* * Save handle, and potentially any SCSI status, which * we'll reinsert on the last CTIO we're going to send. */ handle = cto->ct_reserved; cto->ct_reserved = 0; scsi_status = cto->ct_scsi_status; cto->ct_scsi_status = 0; send_status = cto->ct_flags & CT_SENDSTATUS; cto->ct_flags &= ~CT_SENDSTATUS; nctios = nseg / ISP_RQDSEG; if (nseg % ISP_RQDSEG) { nctios++; } pci = (struct isp_pcisoftc *)mp->isp; dp = &pci->dmaps[handle - 1]; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); } else { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); } while (nctios--) { int seg, seglim; seglim = nseg; if (seglim > ISP_RQDSEG) seglim = ISP_RQDSEG; for (seg = 0; seg < seglim; seg++) { cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr; cto->ct_dataseg[seg].ds_count = dm_segs->ds_len; cto->ct_xfrlen += dm_segs->ds_len; dm_segs++; } cto->ct_seg_count = seg; cto->ct_flags &= CT_DATAMASK; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { cto->ct_flags |= CT_DATA_IN; } else { cto->ct_flags |= CT_DATA_OUT; } if (nctios == 0) { /* * We're the last in a sequence of CTIOs, so mark this * CTIO and save the handle to the CCB such that when * this CTIO completes we can free dma resources and * do whatever else we need to do to finish the rest * of the command. */ cto->ct_header.rqs_seqno = 1; cto->ct_reserved = handle; cto->ct_scsi_status = scsi_status; cto->ct_flags |= send_status; ISP_TDQE(mp->isp, "last dma2_tgt", *mp->iptrp, cto); if (isp_tdebug) { printf("%s:CTIO lun %d->iid%d flgs 0x%x sts " "0x%x ssts 0x%x res %u\n", mp->isp->isp_name, csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags, cto->ct_status, cto->ct_scsi_status, cto->ct_resid); } ISP_SWIZ_CTIO(isp, cto, cto); } else { ct_entry_t *octo = cto; cto->ct_reserved = 0; cto->ct_header.rqs_seqno = 0; ISP_TDQE(mp->isp, "dma2_tgt", *mp->iptrp, cto); if (isp_tdebug) { printf("%s:CTIO lun %d->iid%d flgs 0x%x res" " %u\n", mp->isp->isp_name, csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags, cto->ct_resid); } cto = (ct_entry_t *) ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp); *mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN); if (*mp->iptrp == mp->optr) { printf("%s: Queue Overflow in dma2_tgt\n", mp->isp->isp_name); mp->error = MUSHERR_NOQENTRIES; return; } /* * Fill in the new CTIO with info from the old one. */ cto->ct_header.rqs_entry_type = RQSTYPE_CTIO; cto->ct_header.rqs_entry_count = 1; cto->ct_header.rqs_flags = 0; /* ct_header.rqs_seqno && ct_reserved filled in later */ cto->ct_lun = octo->ct_lun; cto->ct_iid = octo->ct_iid; cto->ct_reserved2 = octo->ct_reserved2; cto->ct_tgt = octo->ct_tgt; cto->ct_flags = octo->ct_flags & ~CT_DATAMASK; cto->ct_status = 0; cto->ct_scsi_status = 0; cto->ct_tag_val = octo->ct_tag_val; cto->ct_tag_type = octo->ct_tag_type; cto->ct_xfrlen = 0; cto->ct_resid = 0; cto->ct_timeout = octo->ct_timeout; cto->ct_seg_count = 0; bzero(cto->ct_dataseg, sizeof (cto->ct_dataseg)); ISP_SWIZ_CTIO(isp, octo, octo); } } } static void dma2_tgt_fc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) { mush_t *mp; struct ccb_scsiio *csio; struct isp_pcisoftc *pci; bus_dmamap_t *dp; ct2_entry_t *cto; u_int16_t scsi_status, send_status, send_sense; u_int32_t handle, totxfr; u_int8_t sense[QLTM_SENSELEN]; int nctios; int32_t resid; mp = (mush_t *) arg; if (error) { mp->error = error; return; } csio = mp->cmd_token; cto = mp->rq; if (nseg == 0) { if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) { printf("%s: dma2_tgt_fc, a status CTIO2 without MODE1 " "set (0x%x)\n", mp->isp->isp_name, cto->ct_flags); mp->error = EINVAL; return; } cto->ct_header.rqs_entry_count = 1; /* ct_reserved contains the handle set by caller */ /* * We preserve ct_lun, ct_iid, ct_rxid. We set the data * flags to NO DATA and clear relative offset flags. * We preserve the ct_resid and the response area. */ cto->ct_flags |= CT2_NO_DATA; cto->ct_seg_count = 0; cto->ct_reloff = 0; ISP_TDQE(mp->isp, "dma2_tgt_fc[no data]", *mp->iptrp, cto); if (isp_tdebug) { scsi_status = cto->rsp.m1.ct_scsi_status; printf("%s:CTIO2 RX_ID 0x%x lun %d->iid%d flgs 0x%x " "sts 0x%x ssts 0x%x res %u\n", mp->isp->isp_name, cto->ct_rxid, csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags, cto->ct_status, cto->rsp.m1.ct_scsi_status, cto->ct_resid); } ISP_SWIZ_CTIO2(isp, cto, cto); return; } if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) { printf("%s: dma2_tgt_fc, a data CTIO2 without MODE0 set " "(0x%x)\n\n", mp->isp->isp_name, cto->ct_flags); mp->error = EINVAL; return; } nctios = nseg / ISP_RQDSEG_T2; if (nseg % ISP_RQDSEG_T2) { nctios++; } /* * Save the handle, status, reloff, and residual. We'll reinsert the * handle into the last CTIO2 we're going to send, and reinsert status * and residual (and possibly sense data) if that's to be sent as well. * * We preserve ct_reloff and adjust it for each data CTIO2 we send past * the first one. This is needed so that the FCP DATA IUs being sent * out have the correct offset (they can arrive at the other end out * of order). */ handle = cto->ct_reserved; cto->ct_reserved = 0; if ((send_status = (cto->ct_flags & CT2_SENDSTATUS)) != 0) { cto->ct_flags &= ~CT2_SENDSTATUS; /* * Preserve residual. */ resid = cto->ct_resid; /* * Save actual SCSI status. We'll reinsert the * CT2_SNSLEN_VALID later if appropriate. */ scsi_status = cto->rsp.m0.ct_scsi_status & 0xff; send_sense = cto->rsp.m0.ct_scsi_status & CT2_SNSLEN_VALID; /* * If we're sending status and have a CHECK CONDTION and * have sense data, we send one more CTIO2 with just the * status and sense data. The upper layers have stashed * the sense data in the dataseg structure for us. */ if ((scsi_status & 0xf) == SCSI_STATUS_CHECK_COND && send_sense) { bcopy(cto->rsp.m0.ct_dataseg, sense, QLTM_SENSELEN); nctios++; } } else { scsi_status = send_sense = resid = 0; } totxfr = cto->ct_resid = 0; cto->rsp.m0.ct_scsi_status = 0; bzero(&cto->rsp, sizeof (cto->rsp)); pci = (struct isp_pcisoftc *)mp->isp; dp = &pci->dmaps[handle - 1]; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); } else { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); } while (nctios--) { int seg, seglim; seglim = nseg; if (seglim) { if (seglim > ISP_RQDSEG_T2) seglim = ISP_RQDSEG_T2; for (seg = 0; seg < seglim; seg++) { cto->rsp.m0.ct_dataseg[seg].ds_base = dm_segs->ds_addr; cto->rsp.m0.ct_dataseg[seg].ds_count = dm_segs->ds_len; cto->rsp.m0.ct_xfrlen += dm_segs->ds_len; totxfr += dm_segs->ds_len; dm_segs++; } cto->ct_seg_count = seg; } else { /* * This case should only happen when we're sending a * synthesized MODE1 final status with sense data. */ if (send_sense == 0) { printf("%s: dma2_tgt_fc ran out of segments, " "no SENSE DATA\n", mp->isp->isp_name); mp->error = EINVAL; return; } } /* * At this point, the fields ct_lun, ct_iid, ct_rxid, * ct_timeout have been carried over unchanged from what * our caller had set. * * The field ct_reloff is either what the caller set, or * what we've added to below. * * The dataseg fields and the seg_count fields we just got * through setting. The data direction we've preserved all * along and only clear it if we're sending a MODE1 status * as the last CTIO. * */ if (nctios == 0) { /* * We're the last in a sequence of CTIO2s, so mark this * CTIO2 and save the handle to the CCB such that when * this CTIO2 completes we can free dma resources and * do whatever else we need to do to finish the rest * of the command. */ cto->ct_reserved = handle; cto->ct_header.rqs_seqno = 1; if (send_status) { if (send_sense) { bcopy(sense, cto->rsp.m1.ct_resp, QLTM_SENSELEN); cto->rsp.m1.ct_senselen = QLTM_SENSELEN; scsi_status |= CT2_SNSLEN_VALID; cto->rsp.m1.ct_scsi_status = scsi_status; cto->ct_flags &= CT2_FLAG_MMASK; cto->ct_flags |= CT2_FLAG_MODE1 | CT2_NO_DATA| CT2_SENDSTATUS; } else { cto->rsp.m0.ct_scsi_status = scsi_status; cto->ct_flags |= CT2_SENDSTATUS; } cto->ct_resid = resid - totxfr; } ISP_TDQE(mp->isp, "last dma2_tgt_fc", *mp->iptrp, cto); if (isp_tdebug) { printf("%s:CTIO2 RX_ID 0x%x lun %d->iid%d flgs" "0x%x sts 0x%x ssts 0x%x res %u\n", mp->isp->isp_name, cto->ct_rxid, csio->ccb_h.target_lun, (int) cto->ct_iid, cto->ct_flags, cto->ct_status, cto->rsp.m1.ct_scsi_status, cto->ct_resid); } ISP_SWIZ_CTIO2(isp, cto, cto); } else { ct2_entry_t *octo = cto; /* * Make sure handle fields are clean */ cto->ct_reserved = 0; cto->ct_header.rqs_seqno = 0; ISP_TDQE(mp->isp, "dma2_tgt_fc", *mp->iptrp, cto); if (isp_tdebug) { printf("%s:CTIO2 RX_ID 0x%x lun %d->iid%d flgs" "0x%x\n", mp->isp->isp_name, cto->ct_rxid, csio->ccb_h.target_lun, (int) cto->ct_iid, cto->ct_flags); } /* * Get a new CTIO2 */ cto = (ct2_entry_t *) ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp); *mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN); if (*mp->iptrp == mp->optr) { printf("%s: Queue Overflow in dma2_tgt_fc\n", mp->isp->isp_name); mp->error = MUSHERR_NOQENTRIES; return; } /* * Fill in the new CTIO2 with info from the old one. */ cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2; cto->ct_header.rqs_entry_count = 1; cto->ct_header.rqs_flags = 0; /* ct_header.rqs_seqno && ct_reserved done later */ cto->ct_lun = octo->ct_lun; cto->ct_iid = octo->ct_iid; cto->ct_rxid = octo->ct_rxid; cto->ct_flags = octo->ct_flags; cto->ct_status = 0; cto->ct_resid = 0; cto->ct_timeout = octo->ct_timeout; cto->ct_seg_count = 0; /* * Adjust the new relative offset by the amount which * is recorded in the data segment of the old CTIO2 we * just finished filling out. */ cto->ct_reloff += octo->rsp.m0.ct_xfrlen; bzero(&cto->rsp, sizeof (cto->rsp)); ISP_SWIZ_CTIO2(isp, cto, cto); } } } #endif static void dma2 __P((void *, bus_dma_segment_t *, int, int)); static void dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) { mush_t *mp; struct ccb_scsiio *csio; struct isp_pcisoftc *pci; bus_dmamap_t *dp; bus_dma_segment_t *eseg; ispreq_t *rq; ispcontreq_t *crq; int seglim, datalen; mp = (mush_t *) arg; if (error) { mp->error = error; return; } if (nseg < 1) { printf("%s: bad segment count (%d)\n", mp->isp->isp_name, nseg); mp->error = EFAULT; return; } csio = mp->cmd_token; rq = mp->rq; pci = (struct isp_pcisoftc *)mp->isp; dp = &pci->dmaps[rq->req_handle - 1]; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); } else { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); } datalen = XS_XFRLEN(csio); /* * We're passed an initial partially filled in entry that * has most fields filled in except for data transfer * related values. * * Our job is to fill in the initial request queue entry and * then to start allocating and filling in continuation entries * until we've covered the entire transfer. */ if (IS_FC(mp->isp)) { seglim = ISP_RQDSEG_T2; ((ispreqt2_t *)rq)->req_totalcnt = datalen; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { ((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN; } else { ((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT; } } else { seglim = ISP_RQDSEG; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { rq->req_flags |= REQFLAG_DATA_IN; } else { rq->req_flags |= REQFLAG_DATA_OUT; } } eseg = dm_segs + nseg; while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) { if (IS_FC(mp->isp)) { ispreqt2_t *rq2 = (ispreqt2_t *)rq; rq2->req_dataseg[rq2->req_seg_count].ds_base = dm_segs->ds_addr; rq2->req_dataseg[rq2->req_seg_count].ds_count = dm_segs->ds_len; } else { rq->req_dataseg[rq->req_seg_count].ds_base = dm_segs->ds_addr; rq->req_dataseg[rq->req_seg_count].ds_count = dm_segs->ds_len; } datalen -= dm_segs->ds_len; #if 0 if (IS_FC(mp->isp)) { ispreqt2_t *rq2 = (ispreqt2_t *)rq; printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n", mp->isp->isp_name, rq->req_seg_count, rq2->req_dataseg[rq2->req_seg_count].ds_count, rq2->req_dataseg[rq2->req_seg_count].ds_base); } else { printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n", mp->isp->isp_name, rq->req_seg_count, rq->req_dataseg[rq->req_seg_count].ds_count, rq->req_dataseg[rq->req_seg_count].ds_base); } #endif rq->req_seg_count++; dm_segs++; } while (datalen > 0 && dm_segs != eseg) { crq = (ispcontreq_t *) ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp); *mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN); if (*mp->iptrp == mp->optr) { #if 0 printf("%s: Request Queue Overflow++\n", mp->isp->isp_name); #endif mp->error = MUSHERR_NOQENTRIES; return; } rq->req_header.rqs_entry_count++; bzero((void *)crq, sizeof (*crq)); crq->req_header.rqs_entry_count = 1; crq->req_header.rqs_entry_type = RQSTYPE_DATASEG; seglim = 0; while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) { crq->req_dataseg[seglim].ds_base = dm_segs->ds_addr; crq->req_dataseg[seglim].ds_count = dm_segs->ds_len; #if 0 printf("%s: seg%d[%d] cnt 0x%x paddr 0x%08x\n", mp->isp->isp_name, rq->req_header.rqs_entry_count-1, seglim, crq->req_dataseg[seglim].ds_count, crq->req_dataseg[seglim].ds_base); #endif rq->req_seg_count++; dm_segs++; seglim++; datalen -= dm_segs->ds_len; } } } static int isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq, u_int16_t *iptrp, u_int16_t optr) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; bus_dmamap_t *dp = NULL; mush_t mush, *mp; void (*eptr) __P((void *, bus_dma_segment_t *, int, int)); #ifdef ISP_TARGET_MODE if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) { if (IS_FC(isp)) { eptr = dma2_tgt_fc; } else { eptr = dma2_tgt; } if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) { rq->req_seg_count = 1; mp = &mush; mp->isp = isp; mp->cmd_token = csio; mp->rq = rq; mp->iptrp = iptrp; mp->optr = optr; mp->error = 0; (*eptr)(mp, NULL, 0, 0); goto exit; } } else #endif eptr = dma2; /* * NB: if we need to do request queue entry swizzling, * NB: this is where it would need to be done for cmds * NB: that move no data. For commands that move data, * NB: swizzling would take place in those functions. */ if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) { rq->req_seg_count = 1; return (CMD_QUEUED); } /* * Do a virtual grapevine step to collect info for * the callback dma allocation that we have to use... */ mp = &mush; mp->isp = isp; mp->cmd_token = csio; mp->rq = rq; mp->iptrp = iptrp; mp->optr = optr; mp->error = 0; if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) { if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) { int error, s; dp = &pci->dmaps[rq->req_handle - 1]; s = splsoftvm(); error = bus_dmamap_load(pci->parent_dmat, *dp, csio->data_ptr, csio->dxfer_len, eptr, mp, 0); if (error == EINPROGRESS) { bus_dmamap_unload(pci->parent_dmat, *dp); mp->error = EINVAL; printf("%s: deferred dma allocation not " "supported\n", isp->isp_name); } else if (error && mp->error == 0) { #ifdef DIAGNOSTIC printf("%s: error %d in dma mapping code\n", isp->isp_name, error); #endif mp->error = error; } splx(s); } else { /* Pointer to physical buffer */ struct bus_dma_segment seg; seg.ds_addr = (bus_addr_t)csio->data_ptr; seg.ds_len = csio->dxfer_len; (*eptr)(mp, &seg, 1, 0); } } else { struct bus_dma_segment *segs; if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) { printf("%s: Physical segment pointers unsupported", isp->isp_name); mp->error = EINVAL; } else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) { printf("%s: Virtual segment addresses unsupported", isp->isp_name); mp->error = EINVAL; } else { /* Just use the segments provided */ segs = (struct bus_dma_segment *) csio->data_ptr; (*eptr)(mp, segs, csio->sglist_cnt, 0); } } #ifdef ISP_TARGET_MODE exit: #endif if (mp->error) { int retval = CMD_COMPLETE; if (mp->error == MUSHERR_NOQENTRIES) { retval = CMD_EAGAIN; } else if (mp->error == EFBIG) { XS_SETERR(csio, CAM_REQ_TOO_BIG); } else if (mp->error == EINVAL) { XS_SETERR(csio, CAM_REQ_INVALID); } else { XS_SETERR(csio, CAM_UNREC_HBA_ERROR); } return (retval); } else { /* * Check to see if we weren't cancelled while sleeping on * getting DMA resources... */ if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { if (dp) { bus_dmamap_unload(pci->parent_dmat, *dp); } return (CMD_COMPLETE); } return (CMD_QUEUED); } } static void isp_pci_dmateardown(struct ispsoftc *isp, ISP_SCSI_XFER_T *xs, u_int32_t handle) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; bus_dmamap_t *dp = &pci->dmaps[handle - 1]; KASSERT((handle > 0 && handle <= isp->isp_maxcmds), ("bad handle in isp_pci_dmateardonw")); if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTREAD); } else { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTWRITE); } bus_dmamap_unload(pci->parent_dmat, *dp); } static void isp_pci_reset1(struct ispsoftc *isp) { /* Make sure the BIOS is disabled */ isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS); } static void isp_pci_dumpregs(struct ispsoftc *isp) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; printf("%s: PCI Status Command/Status=%lx\n", pci->pci_isp.isp_name, pci_conf_read(pci->pci_id, PCIR_COMMAND)); }