/* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 * $FreeBSD$ */ #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #include #endif #include #include #include #include #include #include MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); MALLOC_DEFINE(M_SESSION, "session", "session header"); static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); static struct proc *dopfind(register pid_t); static void doenterpgrp(struct proc *, struct pgrp *); static void pgdelete(struct pgrp *); static void orphanpg(struct pgrp *pg); static void proc_ctor(void *mem, int size, void *arg); static void proc_dtor(void *mem, int size, void *arg); static void proc_init(void *mem, int size); static void proc_fini(void *mem, int size); /* * Other process lists */ struct pidhashhead *pidhashtbl; u_long pidhash; struct pgrphashhead *pgrphashtbl; u_long pgrphash; struct proclist allproc; struct proclist zombproc; struct sx allproc_lock; struct sx proctree_lock; struct mtx pargs_ref_lock; uma_zone_t proc_zone; uma_zone_t ithread_zone; static int active_procs; static int cached_procs; static int allocated_procs; #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); /* * Initialize global process hashing structures. */ void procinit() { sx_init(&allproc_lock, "allproc"); sx_init(&proctree_lock, "proctree"); mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); LIST_INIT(&allproc); LIST_INIT(&zombproc); pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); proc_zone = uma_zcreate("PROC", sizeof (struct proc), proc_ctor, proc_dtor, proc_init, proc_fini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uihashinit(); } /* * Prepare a proc for use. */ static void proc_ctor(void *mem, int size, void *arg) { struct proc *p; KASSERT((size == sizeof(struct proc)), ("size mismatch: %d != %d\n", size, (int)sizeof(struct proc))); p = (struct proc *)mem; cached_procs--; active_procs++; } /* * Reclaim a proc after use. */ static void proc_dtor(void *mem, int size, void *arg) { struct proc *p; struct thread *td; struct ksegrp *kg; struct kse *ke; /* INVARIANTS checks go here */ KASSERT((size == sizeof(struct proc)), ("size mismatch: %d != %d\n", size, (int)sizeof(struct proc))); p = (struct proc *)mem; KASSERT((p->p_numthreads == 1), ("bad number of threads in exiting process")); td = FIRST_THREAD_IN_PROC(p); KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); kg = FIRST_KSEGRP_IN_PROC(p); KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); ke = FIRST_KSE_IN_KSEGRP(kg); KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); /* * We want to make sure we know the initial linkages. * so for now tear them down and remake them. * his is probably un-needed as we can probably rely * on the state coming in here from wait4(). */ proc_linkup(p, kg, ke, td); /* Stats only */ active_procs--; cached_procs++; } /* * Initialize type-stable parts of a proc (when newly created). */ static void proc_init(void *mem, int size) { struct proc *p; struct thread *td; struct ksegrp *kg; struct kse *ke; KASSERT((size == sizeof(struct proc)), ("size mismatch: %d != %d\n", size, (int)sizeof(struct proc))); p = (struct proc *)mem; vm_proc_new(p); td = thread_alloc(); ke = &p->p_kse; kg = &p->p_ksegrp; proc_linkup(p, kg, ke, td); cached_procs++; allocated_procs++; } /* * Tear down type-stable parts of a proc (just before being discarded) */ static void proc_fini(void *mem, int size) { struct proc *p; KASSERT((size == sizeof(struct proc)), ("size mismatch: %d != %d\n", size, (int)sizeof(struct proc))); p = (struct proc *)mem; vm_proc_dispose(p); cached_procs--; allocated_procs--; thread_free(FIRST_THREAD_IN_PROC(p)); } /* * KSE is linked onto the idle queue. */ void kse_link(struct kse *ke, struct ksegrp *kg) { struct proc *p = kg->kg_proc; TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist); kg->kg_kses++; ke->ke_state = KES_IDLE; TAILQ_INSERT_HEAD(&kg->kg_iq, ke, ke_kgrlist); kg->kg_idle_kses++; ke->ke_proc = p; ke->ke_ksegrp = kg; ke->ke_thread = NULL; ke->ke_oncpu = NOCPU; } void ksegrp_link(struct ksegrp *kg, struct proc *p) { TAILQ_INIT(&kg->kg_threads); TAILQ_INIT(&kg->kg_runq); /* links with td_runq */ TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */ TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */ TAILQ_INIT(&kg->kg_iq); /* all kses in ksegrp */ kg->kg_proc = p; /* the following counters are in the -zero- section and may not need clearing */ kg->kg_numthreads = 0; kg->kg_runnable = 0; kg->kg_kses = 0; kg->kg_idle_kses = 0; kg->kg_runq_kses = 0; /* XXXKSE change name */ /* link it in now that it's consistent */ p->p_numksegrps++; TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp); } /* * for a newly created process, * link up a the structure and its initial threads etc. */ void proc_linkup(struct proc *p, struct ksegrp *kg, struct kse *ke, struct thread *td) { TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */ TAILQ_INIT(&p->p_threads); /* all threads in proc */ TAILQ_INIT(&p->p_suspended); /* Threads suspended */ p->p_numksegrps = 0; p->p_numthreads = 0; ksegrp_link(kg, p); kse_link(ke, kg); thread_link(td, kg); } int thread_wakeup(struct thread *td, struct thread_wakeup_args *uap) { return(ENOSYS); } int kse_exit(struct thread *td, struct kse_exit_args *uap) { return(ENOSYS); } int kse_yield(struct thread *td, struct kse_yield_args *uap) { PROC_LOCK(td->td_proc); mtx_lock_spin(&sched_lock); thread_exit(); /* NOTREACHED */ return(0); } int kse_wakeup(struct thread *td, struct kse_wakeup_args *uap) { return(ENOSYS); } /* * No new KSEG: first call: use current KSE, don't schedule an upcall * All other situations, do allocate a new KSE and schedule an upcall on it. */ /* struct kse_new_args { struct kse_mailbox *mbx; int new_grp_flag; }; */ int kse_new(struct thread *td, struct kse_new_args *uap) { struct kse *newkse; struct proc *p; struct kse_mailbox mbx; int err; p = td->td_proc; if ((err = copyin(uap->mbx, &mbx, sizeof(mbx)))) return (err); PROC_LOCK(p); /* * If we have no KSE mode set, just set it, and skip KSE and KSEGRP * creation. You cannot request a new group with the first one as * you are effectively getting one. Instead, go directly to saving * the upcall info. */ if ((td->td_proc->p_flag & P_KSES) || (uap->new_grp_flag)) { return (EINVAL); /* XXX */ /* * If newgroup then create the new group. * Check we have the resources for this. */ /* Copy lots of fields from the current KSEGRP. */ /* Create the new KSE */ /* Copy lots of fields from the current KSE. */ } else { /* * We are switching to KSEs so just * use the preallocated ones for this call. * XXXKSE if we have to initialise any fields for KSE * mode operation, do it here. */ newkse = td->td_kse; } /* * Fill out the KSE-mode specific fields of the new kse. */ PROC_UNLOCK(p); mtx_lock_spin(&sched_lock); mi_switch(); /* Save current registers to PCB. */ mtx_unlock_spin(&sched_lock); newkse->ke_upcall = mbx.kmbx_upcall; newkse->ke_stackbase = mbx.kmbx_stackbase; newkse->ke_stacksize = mbx.kmbx_stacksize; newkse->ke_mailbox = uap->mbx; cpu_save_upcall(td, newkse); /* Note that we are the returning syscall */ td->td_retval[0] = 0; td->td_retval[1] = 0; if ((td->td_proc->p_flag & P_KSES) || (uap->new_grp_flag)) { thread_schedule_upcall(td, newkse); } else { /* * Don't set this until we are truly ready, because * things will start acting differently. Return to the * calling code for the first time. Assuming we set up * the mailboxes right, all syscalls after this will be * asynchronous. */ td->td_proc->p_flag |= P_KSES; } return (0); } /* * Is p an inferior of the current process? */ int inferior(p) register struct proc *p; { sx_assert(&proctree_lock, SX_LOCKED); for (; p != curproc; p = p->p_pptr) if (p->p_pid == 0) return (0); return (1); } /* * Locate a process by number */ struct proc * pfind(pid) register pid_t pid; { register struct proc *p; sx_slock(&allproc_lock); p = dopfind(pid); sx_sunlock(&allproc_lock); return (p); } static struct proc * dopfind(pid) register pid_t pid; { register struct proc *p; sx_assert(&allproc_lock, SX_LOCKED); LIST_FOREACH(p, PIDHASH(pid), p_hash) if (p->p_pid == pid) { PROC_LOCK(p); break; } return (p); } /* * Locate a process group by number. * The caller must hold proctree_lock. */ struct pgrp * pgfind(pgid) register pid_t pgid; { register struct pgrp *pgrp; sx_assert(&proctree_lock, SX_LOCKED); LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { if (pgrp->pg_id == pgid) { PGRP_LOCK(pgrp); return (pgrp); } } return (NULL); } /* * Create a new process group. * pgid must be equal to the pid of p. * Begin a new session if required. */ int enterpgrp(p, pgid, pgrp, sess) register struct proc *p; pid_t pgid; struct pgrp *pgrp; struct session *sess; { struct pgrp *pgrp2; sx_assert(&proctree_lock, SX_XLOCKED); KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); KASSERT(p->p_pid == pgid, ("enterpgrp: new pgrp and pid != pgid")); pgrp2 = pgfind(pgid); KASSERT(pgrp2 == NULL, ("enterpgrp: pgrp with pgid exists")); KASSERT(!SESS_LEADER(p), ("enterpgrp: session leader attempted setpgrp")); mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); if (sess != NULL) { /* * new session */ mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); PROC_LOCK(p); p->p_flag &= ~P_CONTROLT; PROC_UNLOCK(p); PGRP_LOCK(pgrp); sess->s_leader = p; sess->s_sid = p->p_pid; sess->s_count = 1; sess->s_ttyvp = NULL; sess->s_ttyp = NULL; bcopy(p->p_session->s_login, sess->s_login, sizeof(sess->s_login)); pgrp->pg_session = sess; KASSERT(p == curproc, ("enterpgrp: mksession and p != curproc")); } else { pgrp->pg_session = p->p_session; SESS_LOCK(pgrp->pg_session); pgrp->pg_session->s_count++; SESS_UNLOCK(pgrp->pg_session); PGRP_LOCK(pgrp); } pgrp->pg_id = pgid; LIST_INIT(&pgrp->pg_members); /* * As we have an exclusive lock of proctree_lock, * this should not deadlock. */ LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); pgrp->pg_jobc = 0; SLIST_INIT(&pgrp->pg_sigiolst); PGRP_UNLOCK(pgrp); doenterpgrp(p, pgrp); return (0); } /* * Move p to an existing process group */ int enterthispgrp(p, pgrp) register struct proc *p; struct pgrp *pgrp; { sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); KASSERT(pgrp->pg_session == p->p_session, ("%s: pgrp's session %p, p->p_session %p.\n", __func__, pgrp->pg_session, p->p_session)); KASSERT(pgrp != p->p_pgrp, ("%s: p belongs to pgrp.", __func__)); doenterpgrp(p, pgrp); return (0); } /* * Move p to a process group */ static void doenterpgrp(p, pgrp) struct proc *p; struct pgrp *pgrp; { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); savepgrp = p->p_pgrp; /* * Adjust eligibility of affected pgrps to participate in job control. * Increment eligibility counts before decrementing, otherwise we * could reach 0 spuriously during the first call. */ fixjobc(p, pgrp, 1); fixjobc(p, p->p_pgrp, 0); PGRP_LOCK(pgrp); PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = pgrp; PROC_UNLOCK(p); LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); PGRP_UNLOCK(savepgrp); PGRP_UNLOCK(pgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); } /* * remove process from process group */ int leavepgrp(p) register struct proc *p; { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); savepgrp = p->p_pgrp; PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = NULL; PROC_UNLOCK(p); PGRP_UNLOCK(savepgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); return (0); } /* * delete a process group */ static void pgdelete(pgrp) register struct pgrp *pgrp; { struct session *savesess; sx_assert(&proctree_lock, SX_XLOCKED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pgid. */ funsetownlst(&pgrp->pg_sigiolst); PGRP_LOCK(pgrp); if (pgrp->pg_session->s_ttyp != NULL && pgrp->pg_session->s_ttyp->t_pgrp == pgrp) pgrp->pg_session->s_ttyp->t_pgrp = NULL; LIST_REMOVE(pgrp, pg_hash); savesess = pgrp->pg_session; SESS_LOCK(savesess); savesess->s_count--; SESS_UNLOCK(savesess); PGRP_UNLOCK(pgrp); if (savesess->s_count == 0) { mtx_destroy(&savesess->s_mtx); FREE(pgrp->pg_session, M_SESSION); } mtx_destroy(&pgrp->pg_mtx); FREE(pgrp, M_PGRP); } /* * Adjust pgrp jobc counters when specified process changes process group. * We count the number of processes in each process group that "qualify" * the group for terminal job control (those with a parent in a different * process group of the same session). If that count reaches zero, the * process group becomes orphaned. Check both the specified process' * process group and that of its children. * entering == 0 => p is leaving specified group. * entering == 1 => p is entering specified group. */ void fixjobc(p, pgrp, entering) register struct proc *p; register struct pgrp *pgrp; int entering; { register struct pgrp *hispgrp; register struct session *mysession; sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Check p's parent to see whether p qualifies its own process * group; if so, adjust count for p's process group. */ mysession = pgrp->pg_session; if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && hispgrp->pg_session == mysession) { PGRP_LOCK(pgrp); if (entering) pgrp->pg_jobc++; else { --pgrp->pg_jobc; if (pgrp->pg_jobc == 0) orphanpg(pgrp); } PGRP_UNLOCK(pgrp); } /* * Check this process' children to see whether they qualify * their process groups; if so, adjust counts for children's * process groups. */ LIST_FOREACH(p, &p->p_children, p_sibling) { if ((hispgrp = p->p_pgrp) != pgrp && hispgrp->pg_session == mysession && p->p_state != PRS_ZOMBIE) { PGRP_LOCK(hispgrp); if (entering) hispgrp->pg_jobc++; else { --hispgrp->pg_jobc; if (hispgrp->pg_jobc == 0) orphanpg(hispgrp); } PGRP_UNLOCK(hispgrp); } } } /* * A process group has become orphaned; * if there are any stopped processes in the group, * hang-up all process in that group. */ static void orphanpg(pg) struct pgrp *pg; { register struct proc *p; PGRP_LOCK_ASSERT(pg, MA_OWNED); mtx_lock_spin(&sched_lock); LIST_FOREACH(p, &pg->pg_members, p_pglist) { if (P_SHOULDSTOP(p)) { mtx_unlock_spin(&sched_lock); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); psignal(p, SIGHUP); psignal(p, SIGCONT); PROC_UNLOCK(p); } return; } } mtx_unlock_spin(&sched_lock); } #include "opt_ddb.h" #ifdef DDB #include DB_SHOW_COMMAND(pgrpdump, pgrpdump) { register struct pgrp *pgrp; register struct proc *p; register int i; for (i = 0; i <= pgrphash; i++) { if (!LIST_EMPTY(&pgrphashtbl[i])) { printf("\tindx %d\n", i); LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { printf( "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", (void *)pgrp, (long)pgrp->pg_id, (void *)pgrp->pg_session, pgrp->pg_session->s_count, (void *)LIST_FIRST(&pgrp->pg_members)); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { printf("\t\tpid %ld addr %p pgrp %p\n", (long)p->p_pid, (void *)p, (void *)p->p_pgrp); } } } } } #endif /* DDB */ /* * Fill in an kinfo_proc structure for the specified process. * Must be called with the target process locked. */ void fill_kinfo_proc(p, kp) struct proc *p; struct kinfo_proc *kp; { struct thread *td; struct tty *tp; struct session *sp; struct timeval tv; bzero(kp, sizeof(*kp)); kp->ki_structsize = sizeof(*kp); kp->ki_paddr = p; PROC_LOCK_ASSERT(p, MA_OWNED); kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ kp->ki_args = p->p_args; kp->ki_textvp = p->p_textvp; #ifdef KTRACE kp->ki_tracep = p->p_tracep; mtx_lock(&ktrace_mtx); kp->ki_traceflag = p->p_traceflag; mtx_unlock(&ktrace_mtx); #endif kp->ki_fd = p->p_fd; kp->ki_vmspace = p->p_vmspace; if (p->p_ucred) { kp->ki_uid = p->p_ucred->cr_uid; kp->ki_ruid = p->p_ucred->cr_ruid; kp->ki_svuid = p->p_ucred->cr_svuid; /* XXX bde doesn't like KI_NGROUPS */ kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS); bcopy(p->p_ucred->cr_groups, kp->ki_groups, kp->ki_ngroups * sizeof(gid_t)); kp->ki_rgid = p->p_ucred->cr_rgid; kp->ki_svgid = p->p_ucred->cr_svgid; } if (p->p_procsig) { kp->ki_sigignore = p->p_procsig->ps_sigignore; kp->ki_sigcatch = p->p_procsig->ps_sigcatch; } mtx_lock_spin(&sched_lock); if (p->p_state != PRS_NEW && p->p_state != PRS_ZOMBIE && p->p_vmspace != NULL) { struct vmspace *vm = p->p_vmspace; kp->ki_size = vm->vm_map.size; kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ if (p->p_sflag & PS_INMEM) kp->ki_rssize += UAREA_PAGES; FOREACH_THREAD_IN_PROC(p, td) /* XXXKSE: thread swapout check */ kp->ki_rssize += KSTACK_PAGES; kp->ki_swrss = vm->vm_swrss; kp->ki_tsize = vm->vm_tsize; kp->ki_dsize = vm->vm_dsize; kp->ki_ssize = vm->vm_ssize; } if ((p->p_sflag & PS_INMEM) && p->p_stats) { kp->ki_start = p->p_stats->p_start; kp->ki_rusage = p->p_stats->p_ru; kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec + p->p_stats->p_cru.ru_stime.tv_sec; kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec + p->p_stats->p_cru.ru_stime.tv_usec; } if (p->p_state != PRS_ZOMBIE) { td = FIRST_THREAD_IN_PROC(p); if (!(p->p_flag & P_KSES)) { if (td->td_wmesg != NULL) { strncpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg) - 1); } if (td->td_state == TDS_MTX) { kp->ki_kiflag |= KI_MTXBLOCK; strncpy(kp->ki_mtxname, td->td_mtxname, sizeof(kp->ki_mtxname) - 1); } } if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ if ((td->td_state == TDS_RUNQ) || (td->td_state == TDS_RUNNING)) { kp->ki_stat = SRUN; } else if (td->td_state == TDS_SLP) { kp->ki_stat = SSLEEP; } else if (P_SHOULDSTOP(p)) { kp->ki_stat = SSTOP; } else if (td->td_state == TDS_MTX) { kp->ki_stat = SMTX; } else { kp->ki_stat = SWAIT; } } else { kp->ki_stat = SIDL; } kp->ki_sflag = p->p_sflag; kp->ki_swtime = p->p_swtime; kp->ki_pid = p->p_pid; /* vvv XXXKSE */ if (!(p->p_flag & P_KSES)) { bintime2timeval(&p->p_runtime, &tv); kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; kp->ki_pctcpu = p->p_kse.ke_pctcpu; kp->ki_estcpu = p->p_ksegrp.kg_estcpu; kp->ki_slptime = p->p_ksegrp.kg_slptime; kp->ki_wchan = td->td_wchan; kp->ki_pri.pri_level = td->td_priority; kp->ki_pri.pri_user = p->p_ksegrp.kg_user_pri; kp->ki_pri.pri_class = p->p_ksegrp.kg_pri_class; kp->ki_pri.pri_native = td->td_base_pri; kp->ki_nice = p->p_ksegrp.kg_nice; kp->ki_rqindex = p->p_kse.ke_rqindex; kp->ki_oncpu = p->p_kse.ke_oncpu; kp->ki_lastcpu = td->td_lastcpu; kp->ki_tdflags = td->td_flags; kp->ki_pcb = td->td_pcb; kp->ki_kstack = (void *)td->td_kstack; } else { kp->ki_oncpu = -1; kp->ki_lastcpu = -1; kp->ki_tdflags = -1; /* All the reast are 0 */ } } else { kp->ki_stat = SZOMB; } /* ^^^ XXXKSE */ mtx_unlock_spin(&sched_lock); sp = NULL; tp = NULL; if (p->p_pgrp) { kp->ki_pgid = p->p_pgrp->pg_id; kp->ki_jobc = p->p_pgrp->pg_jobc; sp = p->p_pgrp->pg_session; if (sp != NULL) { kp->ki_sid = sp->s_sid; SESS_LOCK(sp); strncpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login) - 1); if (sp->s_ttyvp) kp->ki_kiflag |= KI_CTTY; if (SESS_LEADER(p)) kp->ki_kiflag |= KI_SLEADER; tp = sp->s_ttyp; SESS_UNLOCK(sp); } } if ((p->p_flag & P_CONTROLT) && tp != NULL) { kp->ki_tdev = dev2udev(tp->t_dev); kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; if (tp->t_session) kp->ki_tsid = tp->t_session->s_sid; } else kp->ki_tdev = NOUDEV; if (p->p_comm[0] != '\0') { strncpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm) - 1); strncpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm) - 1); } kp->ki_siglist = p->p_siglist; kp->ki_sigmask = p->p_sigmask; kp->ki_xstat = p->p_xstat; kp->ki_acflag = p->p_acflag; kp->ki_flag = p->p_flag; /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */ if (jailed(p->p_ucred)) kp->ki_flag |= P_JAILED; kp->ki_lock = p->p_lock; if (p->p_pptr) kp->ki_ppid = p->p_pptr->p_pid; } /* * Locate a zombie process by number */ struct proc * zpfind(pid_t pid) { struct proc *p; sx_slock(&allproc_lock); LIST_FOREACH(p, &zombproc, p_list) if (p->p_pid == pid) { PROC_LOCK(p); break; } sx_sunlock(&allproc_lock); return (p); } /* * Must be called with the process locked and will return with it unlocked. */ static int sysctl_out_proc(struct proc *p, struct sysctl_req *req, int doingzomb) { struct kinfo_proc kinfo_proc; int error; struct proc *np; pid_t pid = p->p_pid; PROC_LOCK_ASSERT(p, MA_OWNED); fill_kinfo_proc(p, &kinfo_proc); PROC_UNLOCK(p); error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc)); if (error) return (error); if (doingzomb) np = zpfind(pid); else { if (pid == 0) return (0); np = pfind(pid); } if (np == NULL) return EAGAIN; if (np != p) { PROC_UNLOCK(np); return EAGAIN; } PROC_UNLOCK(np); return (0); } static int sysctl_kern_proc(SYSCTL_HANDLER_ARGS) { int *name = (int*) arg1; u_int namelen = arg2; struct proc *p; int doingzomb; int error = 0; if (oidp->oid_number == KERN_PROC_PID) { if (namelen != 1) return (EINVAL); p = pfind((pid_t)name[0]); if (!p) return (0); if (p_cansee(curthread, p)) { PROC_UNLOCK(p); return (0); } error = sysctl_out_proc(p, req, 0); return (error); } if (oidp->oid_number == KERN_PROC_ALL && !namelen) ; else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) ; else return (EINVAL); if (!req->oldptr) { /* overestimate by 5 procs */ error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); if (error) return (error); } sysctl_wire_old_buffer(req, 0); sx_slock(&allproc_lock); for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { if (!doingzomb) p = LIST_FIRST(&allproc); else p = LIST_FIRST(&zombproc); for (; p != 0; p = LIST_NEXT(p, p_list)) { PROC_LOCK(p); /* * Show a user only appropriate processes. */ if (p_cansee(curthread, p)) { PROC_UNLOCK(p); continue; } /* * Skip embryonic processes. */ if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } /* * TODO - make more efficient (see notes below). * do by session. */ switch (oidp->oid_number) { case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp == NULL || p->p_pgrp->pg_id != (pid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_TTY: if ((p->p_flag & P_CONTROLT) == 0 || p->p_session == NULL) { PROC_UNLOCK(p); continue; } SESS_LOCK(p->p_session); if (p->p_session->s_ttyp == NULL || dev2udev(p->p_session->s_ttyp->t_dev) != (udev_t)name[0]) { SESS_UNLOCK(p->p_session); PROC_UNLOCK(p); continue; } SESS_UNLOCK(p->p_session); break; case KERN_PROC_UID: if (p->p_ucred == NULL || p->p_ucred->cr_uid != (uid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_RUID: if (p->p_ucred == NULL || p->p_ucred->cr_ruid != (uid_t)name[0]) { PROC_UNLOCK(p); continue; } break; } error = sysctl_out_proc(p, req, doingzomb); if (error) { sx_sunlock(&allproc_lock); return (error); } } } sx_sunlock(&allproc_lock); return (0); } struct pargs * pargs_alloc(int len) { struct pargs *pa; MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, M_WAITOK); pa->ar_ref = 1; pa->ar_length = len; return (pa); } void pargs_free(struct pargs *pa) { FREE(pa, M_PARGS); } void pargs_hold(struct pargs *pa) { if (pa == NULL) return; PARGS_LOCK(pa); pa->ar_ref++; PARGS_UNLOCK(pa); } void pargs_drop(struct pargs *pa) { if (pa == NULL) return; PARGS_LOCK(pa); if (--pa->ar_ref == 0) { PARGS_UNLOCK(pa); pargs_free(pa); } else PARGS_UNLOCK(pa); } /* * This sysctl allows a process to retrieve the argument list or process * title for another process without groping around in the address space * of the other process. It also allow a process to set its own "process * title to a string of its own choice. */ static int sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) { int *name = (int*) arg1; u_int namelen = arg2; struct proc *p; struct pargs *pa; int error = 0; if (namelen != 1) return (EINVAL); p = pfind((pid_t)name[0]); if (!p) return (0); if ((!ps_argsopen) && p_cansee(curthread, p)) { PROC_UNLOCK(p); return (0); } PROC_UNLOCK(p); if (req->newptr && curproc != p) return (EPERM); PROC_LOCK(p); pa = p->p_args; pargs_hold(pa); PROC_UNLOCK(p); if (req->oldptr && pa != NULL) { error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); } pargs_drop(pa); if (req->newptr == NULL) return (error); PROC_LOCK(p); pa = p->p_args; p->p_args = NULL; PROC_UNLOCK(p); pargs_drop(pa); if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) return (error); pa = pargs_alloc(req->newlen); error = SYSCTL_IN(req, pa->ar_args, req->newlen); if (!error) { PROC_LOCK(p); p->p_args = pa; PROC_UNLOCK(p); } else pargs_free(pa); return (error); } SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, sysctl_kern_proc_args, "Process argument list"); SYSCTL_INT(_kern_proc, OID_AUTO, active, CTLFLAG_RD, &active_procs, 0, "Number of active procs in system."); SYSCTL_INT(_kern_proc, OID_AUTO, cached, CTLFLAG_RD, &cached_procs, 0, "Number of procs in proc cache."); SYSCTL_INT(_kern_proc, OID_AUTO, allocated, CTLFLAG_RD, &allocated_procs, 0, "Number of procs in zone.");