/* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $Id: if_wi.c,v 1.54 1999/05/20 04:10:40 wpaul Exp $ */ /* * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for FreeBSD. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The WaveLAN/IEEE adapter is the second generation of the WaveLAN * from Lucent. Unlike the older cards, the new ones are programmed * entirely via a firmware-driven controller called the Hermes. * Unfortunately, Lucent will not release the Hermes programming manual * without an NDA (if at all). What they do release is an API library * called the HCF (Hardware Control Functions) which is supposed to * do the device-specific operations of a device driver for you. The * publically available version of the HCF library (the 'HCF Light') is * a) extremely gross, b) lacks certain features, particularly support * for 802.11 frames, and c) is contaminated by the GNU Public License. * * This driver does not use the HCF or HCF Light at all. Instead, it * programs the Hermes controller directly, using information gleaned * from the HCF Light code and corresponding documentation. * * This driver supports both the PCMCIA and ISA versions of the * WaveLAN/IEEE cards. Note however that the ISA card isn't really * anything of the sort: it's actually a PCMCIA bridge adapter * that fits into an ISA slot, into which a PCMCIA WaveLAN card is * inserted. Consequently, you need to use the pccard support for * both the ISA and PCMCIA adapters. */ #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ #include "bpfilter.h" #include "card.h" #include "wi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #if NCARD > 0 #include #include #include #endif #if !defined(lint) static const char rcsid[] = "$Id: if_wi.c,v 1.54 1999/05/20 04:10:40 wpaul Exp $"; #endif static struct wi_softc wi_softc[NWI]; #ifdef foo static u_int8_t wi_mcast_addr[6] = { 0x01, 0x60, 0x1D, 0x00, 0x01, 0x00 }; #endif static int wi_probe __P((struct isa_device *)); static int wi_attach __P((struct isa_device *)); #ifdef PCCARD_MODULE static ointhand2_t wi_intr; #endif static void wi_reset __P((struct wi_softc *)); static int wi_ioctl __P((struct ifnet *, u_long, caddr_t)); static void wi_init __P((void *)); static void wi_start __P((struct ifnet *)); static void wi_stop __P((struct wi_softc *)); static void wi_watchdog __P((struct ifnet *)); static void wi_shutdown __P((int, void *)); static void wi_rxeof __P((struct wi_softc *)); static void wi_txeof __P((struct wi_softc *, int)); static void wi_update_stats __P((struct wi_softc *)); static void wi_setmulti __P((struct wi_softc *)); static int wi_cmd __P((struct wi_softc *, int, int)); static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *)); static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *)); static int wi_read_data __P((struct wi_softc *, int, int, caddr_t, int)); static int wi_write_data __P((struct wi_softc *, int, int, caddr_t, int)); static int wi_seek __P((struct wi_softc *, int, int, int)); static int wi_alloc_nicmem __P((struct wi_softc *, int, int *)); static void wi_inquire __P((void *)); static void wi_setdef __P((struct wi_softc *, struct wi_req *)); static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int)); struct isa_driver widriver = { wi_probe, wi_attach, "wi", 1 }; #if NCARD > 0 static int wi_pccard_init __P((struct pccard_devinfo *)); static void wi_pccard_unload __P((struct pccard_devinfo *)); static int wi_pccard_intr __P((struct pccard_devinfo *)); #ifdef PCCARD_MODULE PCCARD_MODULE(wi, wi_pccard_init, wi_pccard_unload, wi_pccard_intr, 0, net_imask); #else static struct pccard_device wi_info = { "wi", wi_pccard_init, wi_pccard_unload, wi_pccard_intr, 0, /* Attributes - presently unused */ &net_imask /* Interrupt mask for device */ /* XXX - Should this also include net_imask? */ }; DATA_SET(pccarddrv_set, wi_info); #endif /* Initialize the PCCARD. */ static int wi_pccard_init(sc_p) struct pccard_devinfo *sc_p; { struct wi_softc *sc; int i; u_int32_t irq; if (sc_p->isahd.id_unit >= NWI) return(ENODEV); sc = &wi_softc[sc_p->isahd.id_unit]; sc->wi_gone = 0; sc->wi_unit = sc_p->isahd.id_unit; sc->wi_bhandle = sc_p->isahd.id_iobase; sc->wi_btag = I386_BUS_SPACE_IO; /* Make sure interrupts are disabled. */ CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Grr. IRQ is encoded as a bitmask. */ irq = sc_p->isahd.id_irq; for (i = 0; i < 32; i++) { if (irq & 0x1) break; irq >>= 1; } /* * Print a nice probe message to let the operator * know something interesting is happening. */ printf("wi%d: at 0x%x-0x%x irq %d on isa\n", sc_p->isahd.id_unit, sc_p->isahd.id_iobase, sc_p->isahd.id_iobase + WI_IOSIZ - 1, i); if (wi_attach(&sc_p->isahd)) return(ENXIO); return(0); } static void wi_pccard_unload(sc_p) struct pccard_devinfo *sc_p; { struct wi_softc *sc; struct ifnet *ifp; sc = &wi_softc[sc_p->isahd.id_unit]; ifp = &sc->arpcom.ac_if; if (sc->wi_gone) { printf("wi%d: already unloaded\n", sc_p->isahd.id_unit); return; } ifp->if_flags &= ~IFF_RUNNING; if_down(ifp); sc->wi_gone = 1; printf("wi%d: unloaded\n", sc_p->isahd.id_unit); return; } static int wi_pccard_intr(sc_p) struct pccard_devinfo *sc_p; { wi_intr(sc_p->isahd.id_unit); return(1); } #endif static int wi_probe(isa_dev) struct isa_device *isa_dev; { /* * The ISA WaveLAN/IEEE card is actually not an ISA card: * it's a PCMCIA card plugged into a PCMCIA bridge adapter * that fits into an ISA slot. Consequently, we will always * be using the pccard support to probe and attach these * devices, so we can never actually probe one from here. */ return(0); } static int wi_attach(isa_dev) struct isa_device *isa_dev; { struct wi_softc *sc; struct wi_ltv_macaddr mac; struct wi_ltv_gen gen; struct ifnet *ifp; char ifname[IFNAMSIZ]; #ifdef PCCARD_MODULE isa_dev->id_ointr = wi_intr; #endif sc = &wi_softc[isa_dev->id_unit]; ifp = &sc->arpcom.ac_if; /* Reset the NIC. */ wi_reset(sc); /* Read the station address. */ mac.wi_type = WI_RID_MAC_NODE; mac.wi_len = 4; wi_read_record(sc, (struct wi_ltv_gen *)&mac); bcopy((char *)&mac.wi_mac_addr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); printf("wi%d: Ethernet address: %6D\n", sc->wi_unit, sc->arpcom.ac_enaddr, ":"); ifp->if_softc = sc; ifp->if_unit = sc->wi_unit; ifp->if_name = "wi"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = wi_ioctl; ifp->if_output = ether_output; ifp->if_start = wi_start; ifp->if_watchdog = wi_watchdog; ifp->if_init = wi_init; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; bzero(sc->wi_node_name, sizeof(sc->wi_node_name)); bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name, sizeof(WI_DEFAULT_NODENAME) - 1); bzero(sc->wi_net_name, sizeof(sc->wi_net_name)); bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name, sizeof(WI_DEFAULT_NETNAME) - 1); bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name)); bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name, sizeof(WI_DEFAULT_IBSS) - 1); sc->wi_portnum = WI_DEFAULT_PORT; sc->wi_ptype = WI_PORTTYPE_ADHOC; sc->wi_ap_density = WI_DEFAULT_AP_DENSITY; sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH; sc->wi_tx_rate = WI_DEFAULT_TX_RATE; sc->wi_max_data_len = WI_DEFAULT_DATALEN; sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS; sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED; sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP; /* * Read the default channel from the NIC. This may vary * depending on the country where the NIC was purchased, so * we can't hard-code a default and expect it to work for * everyone. */ gen.wi_type = WI_RID_OWN_CHNL; gen.wi_len = 2; wi_read_record(sc, &gen); sc->wi_channel = gen.wi_val; bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats)); wi_init(sc); wi_stop(sc); /* * If this logical interface has already been attached, * don't attach it again or chaos will ensue. */ sprintf(ifname, "wi%d", sc->wi_unit); if (ifunit(ifname) == NULL) { callout_handle_init(&sc->wi_stat_ch); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); #if NBPFILTER > 0 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif at_shutdown(wi_shutdown, sc, SHUTDOWN_POST_SYNC); } return(0); } static void wi_rxeof(sc) struct wi_softc *sc; { struct ifnet *ifp; struct ether_header *eh; struct wi_frame rx_frame; struct mbuf *m; int id; ifp = &sc->arpcom.ac_if; id = CSR_READ_2(sc, WI_RX_FID); /* First read in the frame header */ if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } if (rx_frame.wi_status & WI_STAT_ERRSTAT) { ifp->if_ierrors++; return; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; if (rx_frame.wi_status == WI_STAT_1042 || rx_frame.wi_status == WI_STAT_TUNNEL || rx_frame.wi_status == WI_STAT_WMP_MSG) { m->m_pkthdr.len = m->m_len = rx_frame.wi_dat_len + WI_SNAPHDR_LEN; bcopy((char *)&rx_frame.wi_addr1, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame.wi_addr2, (char *)&eh->ether_shost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame.wi_type, (char *)&eh->ether_type, sizeof(u_int16_t)); if (wi_read_data(sc, id, WI_802_11_OFFSET, mtod(m, caddr_t) + sizeof(struct ether_header), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } else { m->m_pkthdr.len = m->m_len = rx_frame.wi_dat_len + sizeof(struct ether_header); if (wi_read_data(sc, id, WI_802_3_OFFSET, mtod(m, caddr_t), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } ifp->if_ipackets++; #if NBPFILTER > 0 /* Handle BPF listeners. */ if (ifp->if_bpf) { bpf_mtap(ifp, m); if (ifp->if_flags & IFF_PROMISC && (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN) && (eh->ether_dhost[0] & 1) == 0)) { m_freem(m); return; } } #endif /* Receive packet. */ m_adj(m, sizeof(struct ether_header)); ether_input(ifp, eh, m); return; } static void wi_txeof(sc, status) struct wi_softc *sc; int status; { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status & WI_EV_TX_EXC) ifp->if_oerrors++; else ifp->if_opackets++; return; } void wi_inquire(xsc) void *xsc; { struct wi_softc *sc; struct ifnet *ifp; sc = xsc; ifp = &sc->arpcom.ac_if; sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60); /* Don't do this while we're transmitting */ if (ifp->if_flags & IFF_OACTIVE) return; wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS); return; } void wi_update_stats(sc) struct wi_softc *sc; { struct wi_ltv_gen gen; u_int16_t id; struct ifnet *ifp; u_int32_t *ptr; int i; u_int16_t t; ifp = &sc->arpcom.ac_if; id = CSR_READ_2(sc, WI_INFO_FID); wi_read_data(sc, id, 0, (char *)&gen, 4); if (gen.wi_type != WI_INFO_COUNTERS || gen.wi_len > (sizeof(sc->wi_stats) / 4) + 1) return; ptr = (u_int32_t *)&sc->wi_stats; for (i = 0; i < gen.wi_len - 1; i++) { t = CSR_READ_2(sc, WI_DATA1); #ifdef WI_HERMES_STATS_WAR if (t > 0xF000) t = ~t & 0xFFFF; #endif ptr[i] += t; } ifp->if_collisions = sc->wi_stats.wi_tx_single_retries + sc->wi_stats.wi_tx_multi_retries + sc->wi_stats.wi_tx_retry_limit; return; } void wi_intr(unit) int unit; { struct wi_softc *sc; struct ifnet *ifp; u_int16_t status; sc = &wi_softc[unit]; ifp = &sc->arpcom.ac_if; if (!(ifp->if_flags & IFF_UP)) { CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); CSR_WRITE_2(sc, WI_INT_EN, 0); return; } /* Disable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, 0); status = CSR_READ_2(sc, WI_EVENT_STAT); CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS); if (status & WI_EV_RX) { wi_rxeof(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); } if (status & WI_EV_TX) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX); } if (status & WI_EV_ALLOC) { int id; id = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); if (id == sc->wi_tx_data_id) wi_txeof(sc, status); } if (status & WI_EV_INFO) { wi_update_stats(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); } if (status & WI_EV_TX_EXC) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); } if (status & WI_EV_INFO_DROP) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP); } /* Re-enable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); if (ifp->if_snd.ifq_head != NULL) wi_start(ifp); return; } static int wi_cmd(sc, cmd, val) struct wi_softc *sc; int cmd; int val; { int i, s = 0; CSR_WRITE_2(sc, WI_PARAM0, val); CSR_WRITE_2(sc, WI_COMMAND, cmd); for (i = 0; i < WI_TIMEOUT; i++) { /* * Wait for 'command complete' bit to be * set in the event status register. */ s = CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD; if (s) { /* Ack the event and read result code. */ s = CSR_READ_2(sc, WI_STATUS); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); #ifdef foo if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK)) return(EIO); #endif if (s & WI_STAT_CMD_RESULT) return(EIO); break; } } if (i == WI_TIMEOUT) return(ETIMEDOUT); return(0); } static void wi_reset(sc) struct wi_softc *sc; { if (wi_cmd(sc, WI_CMD_INI, 0)) printf("wi%d: init failed\n", sc->wi_unit); CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Calibrate timer. */ WI_SETVAL(WI_RID_TICK_TIME, 8); return; } /* * Read an LTV record from the NIC. */ static int wi_read_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int i, len, code; /* Tell the NIC to enter record read mode. */ if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type)) return(EIO); /* Select the record we want to read. */ CSR_WRITE_2(sc, WI_SEL1, ltv->wi_type); /* Specify offset -- we always read the whole record. */ CSR_WRITE_2(sc, WI_OFF1, 0); /* Wait for NIC to acknowledge */ for (i = 0; i < WI_TIMEOUT; i++) { if (!(CSR_READ_2(sc, WI_OFF1) & (WI_OFF_BUSY|WI_OFF_ERR))) break; } if (i == WI_TIMEOUT) return(ETIMEDOUT); /* * Read the length and record type and make sure they * match what we expect (this verifies that we have enough * room to hold all of the returned data). */ len = CSR_READ_2(sc, WI_DATA1); if (len > ltv->wi_len) return(ENOSPC); code = CSR_READ_2(sc, WI_DATA1); if (code != ltv->wi_type) return(EIO); ltv->wi_len = len; ltv->wi_type = code; /* Now read the data. */ ptr = <v->wi_val; for (i = 0; i < ltv->wi_len - 1; i++) ptr[i] = CSR_READ_2(sc, WI_DATA1); return(0); } /* * Same as read, except we inject data instead of reading it. */ static int wi_write_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int i; CSR_WRITE_2(sc, WI_SEL1, ltv->wi_type); CSR_WRITE_2(sc, WI_OFF1, 0); for (i = 0; i < WI_TIMEOUT; i++) { if (!(CSR_READ_2(sc, WI_OFF1) & (WI_OFF_BUSY|WI_OFF_ERR))) break; } if (i == WI_TIMEOUT) return(ETIMEDOUT); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type); ptr = <v->wi_val; for (i = 0; i < ltv->wi_len - 1; i++) CSR_WRITE_2(sc, WI_DATA1, ptr[i]); if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type)) return(EIO); return(0); } static int wi_seek(sc, id, off, chan) struct wi_softc *sc; int id, off, chan; { int i; int selreg, offreg; switch (chan) { case WI_BAP0: selreg = WI_SEL0; offreg = WI_OFF0; break; case WI_BAP1: selreg = WI_SEL1; offreg = WI_OFF1; break; default: printf("wi%d: invalid data path: %x\n", sc->wi_unit, chan); return(EIO); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = 0; i < WI_TIMEOUT; i++) { if (!(CSR_READ_2(sc, offreg) & (WI_OFF_BUSY|WI_OFF_ERR))) break; } if (i == WI_TIMEOUT) return(ETIMEDOUT); return(0); } static int wi_read_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; if (wi_seek(sc, id, off, WI_BAP1)) return(EIO); ptr = (u_int16_t *)buf; for (i = 0; i < len / 2; i++) ptr[i] = CSR_READ_2(sc, WI_DATA1); return(0); } /* * According to the comments in the HCF Light code, there is a bug in * the Hermes (or possibly in certain Hermes firmware revisions) where * the chip's internal autoincrement counter gets thrown off during * data writes: the autoincrement is missed, causing one data word to * be overwritten and subsequent words to be written to the wrong memory * locations. The end result is that we could end up transmitting bogus * frames without realizing it. The workaround for this is to write a * couple of extra guard words after the end of the transfer, then * attempt to read then back. If we fail to locate the guard words where * we expect them, we preform the transfer over again. */ static int wi_write_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; #ifdef WI_HERMES_AUTOINC_WAR again: #endif if (wi_seek(sc, id, off, WI_BAP0)) return(EIO); ptr = (u_int16_t *)buf; for (i = 0; i < (len / 2); i++) CSR_WRITE_2(sc, WI_DATA0, ptr[i]); #ifdef WI_HERMES_AUTOINC_WAR CSR_WRITE_2(sc, WI_DATA0, 0x1234); CSR_WRITE_2(sc, WI_DATA0, 0x5678); if (wi_seek(sc, id, off + len, WI_BAP0)) return(EIO); if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || CSR_READ_2(sc, WI_DATA0) != 0x5678) goto again; #endif return(0); } /* * Allocate a region of memory inside the NIC and zero * it out. */ static int wi_alloc_nicmem(sc, len, id) struct wi_softc *sc; int len; int *id; { int i; if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) { printf("wi%d: failed to allocate %d bytes on NIC\n", sc->wi_unit, len); return(ENOMEM); } for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) break; } if (i == WI_TIMEOUT) return(ETIMEDOUT); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); *id = CSR_READ_2(sc, WI_ALLOC_FID); wi_seek(sc, *id, 0, WI_BAP0); for (i = 0; i < len / 2; i++) CSR_WRITE_2(sc, WI_DATA0, 0); return(0); } static void wi_setmulti(sc) struct wi_softc *sc; { struct ifnet *ifp; int i = 0; struct ifmultiaddr *ifma; struct wi_ltv_mcast mcast; ifp = &sc->arpcom.ac_if; bzero((char *)&mcast, sizeof(mcast)); mcast.wi_type = WI_RID_MCAST; mcast.wi_len = (3 * 16) + 1; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (i < 16) { bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN); i++; } else { bzero((char *)&mcast, sizeof(mcast)); break; } } mcast.wi_len = (i * 3) + 1; wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } static void wi_setdef(sc, wreq) struct wi_softc *sc; struct wi_req *wreq; { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; switch(wreq->wi_type) { case WI_RID_MAC_NODE: ifa = ifnet_addrs[ifp->if_index - 1]; sdl = (struct sockaddr_dl *)ifa->ifa_addr; bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN); break; case WI_RID_PORTTYPE: sc->wi_ptype = wreq->wi_val[0]; break; case WI_RID_TX_RATE: sc->wi_tx_rate = wreq->wi_val[0]; break; case WI_RID_MAX_DATALEN: sc->wi_max_data_len = wreq->wi_val[0]; break; case WI_RID_RTS_THRESH: sc->wi_rts_thresh = wreq->wi_val[0]; break; case WI_RID_SYSTEM_SCALE: sc->wi_ap_density = wreq->wi_val[0]; break; case WI_RID_CREATE_IBSS: sc->wi_create_ibss = wreq->wi_val[0]; break; case WI_RID_OWN_CHNL: sc->wi_channel = wreq->wi_val[0]; break; case WI_RID_NODENAME: bzero(sc->wi_node_name, sizeof(sc->wi_node_name)); bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30); break; case WI_RID_DESIRED_SSID: bzero(sc->wi_net_name, sizeof(sc->wi_net_name)); bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30); break; case WI_RID_OWN_SSID: bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name)); bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30); break; case WI_RID_PM_ENABLED: sc->wi_pm_enabled = wreq->wi_val[0]; break; case WI_RID_MAX_SLEEP: sc->wi_max_sleep = wreq->wi_val[0]; break; default: break; } /* Reinitialize WaveLAN. */ wi_init(sc); return; } static int wi_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { int s, error = 0; struct wi_softc *sc; struct wi_req wreq; struct ifreq *ifr; s = splimp(); sc = ifp->if_softc; ifr = (struct ifreq *)data; if (sc->wi_gone) return(ENODEV); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->wi_if_flags & IFF_PROMISC)) { WI_SETVAL(WI_RID_PROMISC, 1); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->wi_if_flags & IFF_PROMISC) { WI_SETVAL(WI_RID_PROMISC, 0); } else wi_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { wi_stop(sc); } } sc->wi_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: wi_setmulti(sc); error = 0; break; case SIOCGWAVELAN: error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val, sizeof(sc->wi_stats)); wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1; } else { if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) { error = EINVAL; break; } } error = copyout(&wreq, ifr->ifr_data, sizeof(wreq)); break; case SIOCSWAVELAN: error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { error = EINVAL; break; } else if (wreq.wi_type == WI_RID_MGMT_XMIT) { error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val, wreq.wi_len); } else { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (!error) wi_setdef(sc, &wreq); } break; default: error = EINVAL; break; } splx(s); return(error); } static void wi_init(xsc) void *xsc; { struct wi_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int s; struct wi_ltv_macaddr mac; int id = 0; if (sc->wi_gone) return; s = splimp(); if (ifp->if_flags & IFF_RUNNING) wi_stop(sc); wi_reset(sc); /* Program max data length. */ WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len); /* Enable/disable IBSS creation. */ WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss); /* Set the port type. */ WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype); /* Program the RTS/CTS threshold. */ WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh); /* Program the TX rate */ WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate); /* Access point density */ WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density); /* Power Management Enabled */ WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled); /* Power Managment Max Sleep */ WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep); /* Specify the IBSS name */ WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name); /* Specify the network name */ WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name); /* Specify the frequency to use */ WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel); /* Program the nodename. */ WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name); /* Set our MAC address. */ mac.wi_len = 4; mac.wi_type = WI_RID_MAC_NODE; bcopy((char *)&sc->arpcom.ac_enaddr, (char *)&mac.wi_mac_addr, ETHER_ADDR_LEN); wi_write_record(sc, (struct wi_ltv_gen *)&mac); /* Initialize promisc mode. */ if (ifp->if_flags & IFF_PROMISC) { WI_SETVAL(WI_RID_PROMISC, 1); } else { WI_SETVAL(WI_RID_PROMISC, 0); } /* Set multicast filter. */ wi_setmulti(sc); /* Enable desired port */ wi_cmd(sc, WI_CMD_ENABLE|sc->wi_portnum, 0); if (wi_alloc_nicmem(sc, 1518 + sizeof(struct wi_frame) + 8, &id)) printf("wi%d: tx buffer allocation failed\n", sc->wi_unit); sc->wi_tx_data_id = id; if (wi_alloc_nicmem(sc, 1518 + sizeof(struct wi_frame) + 8, &id)) printf("wi%d: mgmt. buffer allocation failed\n", sc->wi_unit); sc->wi_tx_mgmt_id = id; /* enable interrupts */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); splx(s); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60); return; } static void wi_start(ifp) struct ifnet *ifp; { struct wi_softc *sc; struct mbuf *m0; struct wi_frame tx_frame; struct ether_header *eh; int id; sc = ifp->if_softc; if (sc->wi_gone) return; if (ifp->if_flags & IFF_OACTIVE) return; IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) return; bzero((char *)&tx_frame, sizeof(tx_frame)); id = sc->wi_tx_data_id; eh = mtod(m0, struct ether_header *); /* * Use RFC1042 encoding for IP and ARP datagrams, * 802.3 for anything else. */ if (ntohs(eh->ether_type) == ETHERTYPE_IP || ntohs(eh->ether_type) == ETHERTYPE_ARP || ntohs(eh->ether_type) == ETHERTYPE_REVARP) { bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN); tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN; tx_frame.wi_frame_ctl = WI_FTYPE_DATA; tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0); tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1); tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN); tx_frame.wi_type = eh->ether_type; m_copydata(m0, sizeof(struct ether_header), m0->m_pkthdr.len - sizeof(struct ether_header), (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2); } else { tx_frame.wi_dat_len = m0->m_pkthdr.len; m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2); } #if NBPFILTER > 0 /* * If there's a BPF listner, bounce a copy of * this frame to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m0); #endif m_freem(m0); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) printf("wi%d: xmit failed\n", sc->wi_unit); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static int wi_mgmt_xmit(sc, data, len) struct wi_softc *sc; caddr_t data; int len; { struct wi_frame tx_frame; int id; struct wi_80211_hdr *hdr; caddr_t dptr; if (sc->wi_gone) return(ENODEV); hdr = (struct wi_80211_hdr *)data; dptr = data + sizeof(struct wi_80211_hdr); bzero((char *)&tx_frame, sizeof(tx_frame)); id = sc->wi_tx_mgmt_id; bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl, sizeof(struct wi_80211_hdr)); tx_frame.wi_dat_len = len - WI_SNAPHDR_LEN; tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr, (len - sizeof(struct wi_80211_hdr)) + 2); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) { printf("wi%d: xmit failed\n", sc->wi_unit); return(EIO); } return(0); } static void wi_stop(sc) struct wi_softc *sc; { struct ifnet *ifp; if (sc->wi_gone) return; ifp = &sc->arpcom.ac_if; CSR_WRITE_2(sc, WI_INT_EN, 0); wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0); untimeout(wi_inquire, sc, sc->wi_stat_ch); ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); return; } static void wi_watchdog(ifp) struct ifnet *ifp; { struct wi_softc *sc; sc = ifp->if_softc; printf("wi%d: device timeout\n", sc->wi_unit); wi_init(sc); ifp->if_oerrors++; return; } static void wi_shutdown(howto, arg) int howto; void *arg; { struct wi_softc *sc; sc = arg; wi_stop(sc); return; }