/* * sound/dmabuf.c * * The DMA buffer manager for digitized voice applications * * Copyright by Hannu Savolainen 1993, 1994, 1995 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. 2. * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include #include #if defined(CONFIG_AUDIO) || defined(CONFIG_GUS) #ifdef ALLOW_POLL int DMAbuf_poll(int dev, struct fileinfo * file, int events, select_table * wait); #endif; static void reorganize_buffers(int dev, struct dma_buffparms * dmap); static int *in_sleeper[MAX_AUDIO_DEV] = {NULL}; static volatile struct snd_wait in_sleep_flag[MAX_AUDIO_DEV] = {{0}}; static int *out_sleeper[MAX_AUDIO_DEV] = {NULL}; static volatile struct snd_wait out_sleep_flag[MAX_AUDIO_DEV] = {{0}}; static int ndmaps = 0; #define MAX_DMAP (MAX_AUDIO_DEV*2) static struct dma_buffparms dmaps[MAX_DMAP] = {{0}}; /* * Primitive way to allocate such a large array. Needs dynamic run-time * alloction. */ static int space_in_queue(int dev); static void dma_reset_output(int dev); static void dma_reset_input(int dev); static void reorganize_buffers(int dev, struct dma_buffparms * dmap) { /* * This routine breaks the physical device buffers to logical ones. */ struct audio_operations *dsp_dev = audio_devs[dev]; u_int sr, nc; int bsz, sz, n, i; if (dmap->fragment_size == 0) { /* Compute the fragment size using the default algorithm */ sr = dsp_dev->ioctl(dev, SOUND_PCM_READ_RATE, 0, 1); nc = dsp_dev->ioctl(dev, SOUND_PCM_READ_CHANNELS, 0, 1); sz = dsp_dev->ioctl(dev, SOUND_PCM_READ_BITS, 0, 1); if (sz == 8) dmap->neutral_byte = 254; else dmap->neutral_byte = 0x00; if (sr < 1 || nc < 1 || sz < 1) { printf("Warning: Invalid PCM parameters[%d] sr=%d, nc=%d, sz=%d\n", dev, sr, nc, sz); sr = DSP_DEFAULT_SPEED; nc = 1; sz = 8; } sz = sr * nc * sz; sz /= 8; /* #bits -> #bytes */ /* * Compute a buffer size for time not exeeding 1 second. * Usually this algorithm gives a buffer size for 0.5 to 1.0 * seconds of sound (using the current speed, sample size and * #channels). */ bsz = dsp_dev->buffsize; while (bsz > sz) bsz /= 2; if (bsz == dsp_dev->buffsize) bsz /= 2; /* Needs at least 2 buffers */ if (dmap->subdivision == 0) /* Not already set */ dmap->subdivision = 1; /* Init to default value */ else bsz /= dmap->subdivision; if (bsz < 16) bsz = 16; /* Just a sanity check */ dmap->fragment_size = bsz; } else { /* * The process has specified the buffer sice with * SNDCTL_DSP_SETFRAGMENT or the buffer sice computation has * already been done. */ if (dmap->fragment_size > (audio_devs[dev]->buffsize / 2)) dmap->fragment_size = (audio_devs[dev]->buffsize / 2); bsz = dmap->fragment_size; } bsz &= ~0x03; /* Force size which is multiple of 4 bytes */ #ifdef OS_DMA_ALIGN_CHECK OS_DMA_ALIGN_CHECK(bsz); #endif n = dsp_dev->buffsize / bsz; if (n > MAX_SUB_BUFFERS) n = MAX_SUB_BUFFERS; if (n > dmap->max_fragments) n = dmap->max_fragments; dmap->nbufs = n; dmap->bytes_in_use = n * bsz; for (i = 0; i < dmap->nbufs; i++) { dmap->counts[i] = 0; } if (dmap->raw_buf) fillw (dmap->neutral_byte, dmap->raw_buf, dmap->bytes_in_use/2); dmap->flags |= DMA_ALLOC_DONE; } static void dma_init_buffers(int dev, struct dma_buffparms * dmap) { if (dmap == audio_devs[dev]->dmap_out) { out_sleep_flag[dev].aborting = 0; out_sleep_flag[dev].mode = WK_NONE; } else { in_sleep_flag[dev].aborting = 0; in_sleep_flag[dev].mode = WK_NONE; } dmap->flags = DMA_BUSY; /* Other flags off */ dmap->qlen = dmap->qhead = dmap->qtail = 0; dmap->nbufs = 1; dmap->bytes_in_use = audio_devs[dev]->buffsize; dmap->dma_mode = DMODE_NONE; dmap->mapping_flags = 0; dmap->neutral_byte = 0x00; } static int open_dmap(int dev, int mode, struct dma_buffparms * dmap, int chan) { if (dmap->flags & DMA_BUSY) return -(EBUSY); #ifdef RUNTIME_DMA_ALLOC { int err; if ((err = sound_alloc_dmap(dev, dmap, chan)) < 0) return err; } #endif if (dmap->raw_buf == NULL) return -(ENOSPC); /* Memory allocation failed during boot */ if (0) { printf("Unable to grab(2) DMA%d for the audio driver\n", chan); return -(EBUSY); } dmap->open_mode = mode; dmap->subdivision = dmap->underrun_count = 0; dmap->fragment_size = 0; dmap->max_fragments = 65536; /* Just a large value */ dmap->byte_counter = 0; isa_dma_acquire(chan); dmap->dma_chan = chan; dma_init_buffers(dev, dmap); return 0; } static void close_dmap(int dev, struct dma_buffparms * dmap, int chan) { if (dmap->flags & DMA_BUSY) dmap->dma_mode = DMODE_NONE; dmap->flags &= ~DMA_BUSY; isa_dma_release(dmap->dma_chan); #ifdef RUNTIME_DMA_ALLOC sound_free_dmap(dev, dmap); #endif } int DMAbuf_open(int dev, int mode) { int retval; struct dma_buffparms *dmap_in = NULL; struct dma_buffparms *dmap_out = NULL; if (dev >= num_audiodevs) { printf("PCM device %d not installed.\n", dev); return -(ENXIO); } if (!audio_devs[dev]) { printf("PCM device %d not initialized\n", dev); return -(ENXIO); } if (!(audio_devs[dev]->flags & DMA_DUPLEX)) { audio_devs[dev]->dmap_in = audio_devs[dev]->dmap_out; audio_devs[dev]->dmachan2 = audio_devs[dev]->dmachan1; } if ((retval = audio_devs[dev]->open(dev, mode)) < 0) return retval; dmap_out = audio_devs[dev]->dmap_out; dmap_in = audio_devs[dev]->dmap_in; if ((retval = open_dmap(dev, mode, dmap_out, audio_devs[dev]->dmachan1)) < 0) { audio_devs[dev]->close(dev); return retval; } audio_devs[dev]->enable_bits = mode; if (audio_devs[dev]->flags & DMA_DUPLEX && dmap_out != dmap_in) { if ((retval = open_dmap(dev, mode, dmap_in, audio_devs[dev]->dmachan2)) < 0) { audio_devs[dev]->close(dev); close_dmap(dev, dmap_out, audio_devs[dev]->dmachan1); return retval; } } audio_devs[dev]->open_mode = mode; audio_devs[dev]->go = 1; in_sleep_flag[dev].aborting = 0; in_sleep_flag[dev].mode = WK_NONE; out_sleep_flag[dev].aborting = 0; out_sleep_flag[dev].mode = WK_NONE; audio_devs[dev]->ioctl(dev, SOUND_PCM_WRITE_BITS, (ioctl_arg) 8, 1); audio_devs[dev]->ioctl(dev, SOUND_PCM_WRITE_CHANNELS, (ioctl_arg) 1, 1); audio_devs[dev]->ioctl(dev, SOUND_PCM_WRITE_RATE, (ioctl_arg) DSP_DEFAULT_SPEED, 1); return 0; } static void dma_reset(int dev) { u_long flags; flags = splhigh(); audio_devs[dev]->reset(dev); splx(flags); dma_reset_output(dev); if (audio_devs[dev]->flags & DMA_DUPLEX) dma_reset_input(dev); } static void dma_reset_output(int dev) { u_long flags; flags = splhigh(); if (!(audio_devs[dev]->flags & DMA_DUPLEX) || !audio_devs[dev]->halt_output) audio_devs[dev]->reset(dev); else audio_devs[dev]->halt_output(dev); splx(flags); dma_init_buffers(dev, audio_devs[dev]->dmap_out); reorganize_buffers(dev, audio_devs[dev]->dmap_out); } static void dma_reset_input(int dev) { u_long flags; flags = splhigh(); if (!(audio_devs[dev]->flags & DMA_DUPLEX) || !audio_devs[dev]->halt_input) audio_devs[dev]->reset(dev); else audio_devs[dev]->halt_input(dev); splx(flags); dma_init_buffers(dev, audio_devs[dev]->dmap_in); reorganize_buffers(dev, audio_devs[dev]->dmap_in); } static int dma_sync(int dev) { u_long flags; int i = 0; if (!audio_devs[dev]->go && (!audio_devs[dev]->enable_bits & PCM_ENABLE_OUTPUT)) return 0; if (audio_devs[dev]->dmap_out->dma_mode == DMODE_OUTPUT) { flags = splhigh(); out_sleep_flag[dev].aborting = 0; #ifdef ALLOW_BUFFER_MAPPING if(audio_devs[dev]->dmap_out->mapping_flags & DMA_MAP_MAPPED && audio_devs[dev]->dmap_out->qlen) { splx(flags); return audio_devs[dev]->dmap_out->qlen; } #endif while (!PROCESS_ABORTING (out_sleep_flag[dev]) && audio_devs[dev]->dmap_out->qlen){ int chn; out_sleeper[dev] = &chn; DO_SLEEP1(chn, out_sleep_flag[dev], 10 * hz); if (TIMED_OUT (out_sleep_flag[dev]) ) { splx(flags); return audio_devs[dev]->dmap_out->qlen; } } splx(flags); /* * Some devices such as GUS have huge amount of on board RAM * for the audio data. We have to wait until the device has * finished playing. */ flags = splhigh(); if (audio_devs[dev]->local_qlen) { /* Device has hidden buffers */ while (!(PROCESS_ABORTING (out_sleep_flag[dev])) && audio_devs[dev]->local_qlen(dev)) { int chn; out_sleeper[dev] = &chn; DO_SLEEP(chn, out_sleep_flag[dev], 10 * hz); } } splx(flags); } return audio_devs[dev]->dmap_out->qlen; } int DMAbuf_release(int dev, int mode) { u_long flags; if (!((out_sleep_flag[dev].aborting)) && (audio_devs[dev]->dmap_out->dma_mode == DMODE_OUTPUT)) { dma_sync(dev); } flags = splhigh(); audio_devs[dev]->close(dev); close_dmap(dev, audio_devs[dev]->dmap_out, audio_devs[dev]->dmachan1); if (audio_devs[dev]->flags & DMA_DUPLEX) close_dmap(dev, audio_devs[dev]->dmap_in, audio_devs[dev]->dmachan2); audio_devs[dev]->open_mode = 0; splx(flags); return 0; } static int activate_recording(int dev, struct dma_buffparms * dmap) { if (!(audio_devs[dev]->enable_bits & PCM_ENABLE_INPUT)) return 0; if (dmap->flags & DMA_RESTART) { dma_reset_input(dev); dmap->flags &= ~DMA_RESTART; } if (dmap->dma_mode == DMODE_OUTPUT) { /* Direction change */ dma_sync(dev); dma_reset(dev); dmap->dma_mode = DMODE_NONE; } if (!(dmap->flags & DMA_ALLOC_DONE)) reorganize_buffers(dev, dmap); if (!dmap->dma_mode) { int err; if ((err = audio_devs[dev]->prepare_for_input(dev, dmap->fragment_size, dmap->nbufs)) < 0) { return err; } dmap->dma_mode = DMODE_INPUT; } if (!(dmap->flags & DMA_ACTIVE)) { audio_devs[dev]->start_input(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->fragment_size, 0, !(audio_devs[dev]->flags & DMA_AUTOMODE) || !(dmap->flags & DMA_STARTED)); dmap->flags |= DMA_ACTIVE | DMA_STARTED; if (audio_devs[dev]->trigger) audio_devs[dev]->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } return 0; } int DMAbuf_getrdbuffer(int dev, char **buf, int *len, int dontblock) { u_long flags; int err = EIO; struct dma_buffparms *dmap = audio_devs[dev]->dmap_in; flags = splhigh(); #ifdef ALLOW_BUFFER_MAPPING if (audio_devs[dev]->dmap_in->mapping_flags & DMA_MAP_MAPPED) { printf("Sound: Can't read from mmapped device (1)\n"); return -(EINVAL); } else #endif if (!dmap->qlen) { int timeout; if ((err = activate_recording(dev, dmap)) < 0) { splx(flags); return err; } /* Wait for the next block */ if (dontblock) { splx(flags); return -(EAGAIN); } if (!(audio_devs[dev]->enable_bits & PCM_ENABLE_INPUT) & audio_devs[dev]->go) { splx(flags); return -(EAGAIN); } if (!audio_devs[dev]->go) timeout = 0; else timeout = 2 * hz; { int chn; in_sleeper[dev] = &chn; DO_SLEEP(chn, in_sleep_flag[dev], timeout); }; /* XXX note -- nobody seems to set the mode to WK_TIMEOUT - lr */ if ((in_sleep_flag[dev].mode & WK_TIMEOUT)) { /* XXX hey, we are in splhigh here ? lr 970705 */ printf("Sound: DMA (input) timed out - IRQ/DRQ config error?\n"); err = EIO; audio_devs[dev]->reset(dev); in_sleep_flag[dev].aborting = 1; } else err = EINTR; } splx(flags); if (!dmap->qlen) return -(err); *buf = &dmap->raw_buf[dmap->qhead * dmap->fragment_size + dmap->counts[dmap->qhead]]; *len = dmap->fragment_size - dmap->counts[dmap->qhead]; return dmap->qhead; } int DMAbuf_rmchars(int dev, int buff_no, int c) { struct dma_buffparms *dmap = audio_devs[dev]->dmap_in; int p = dmap->counts[dmap->qhead] + c; #ifdef ALLOW_BUFFER_MAPPING if (audio_devs[dev]->dmap_in->mapping_flags & DMA_MAP_MAPPED) { printf("Sound: Can't read from mmapped device (2)\n"); return -(EINVAL); } else #endif if (p >= dmap->fragment_size) { /* This buffer is completely empty */ dmap->counts[dmap->qhead] = 0; if (dmap->qlen <= 0 || dmap->qlen > dmap->nbufs) printf("\nSound: Audio queue1 corrupted for dev%d (%d/%d)\n", dev, dmap->qlen, dmap->nbufs); dmap->qlen--; dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; } else dmap->counts[dmap->qhead] = p; return 0; } static int dma_subdivide(int dev, struct dma_buffparms * dmap, ioctl_arg arg, int fact) { if (fact == 0) { fact = dmap->subdivision; if (fact == 0) fact = 1; return *(int *) arg = fact; } if (dmap->subdivision != 0 || dmap->fragment_size)/* Loo late to change */ return -(EINVAL); if (fact > MAX_REALTIME_FACTOR) return -(EINVAL); if (fact != 1 && fact != 2 && fact != 4 && fact != 8 && fact != 16) return -(EINVAL); dmap->subdivision = fact; return *(int *) arg = fact; } static int dma_set_fragment(int dev, struct dma_buffparms * dmap, ioctl_arg arg, int fact) { int bytes, count; if (fact == 0) return -(EIO); if (dmap->subdivision != 0 || dmap->fragment_size)/* Loo late to change */ return -(EINVAL); bytes = fact & 0xffff; count = (fact >> 16) & 0xffff; if (count == 0) count = MAX_SUB_BUFFERS; #if amancio if (bytes < 4 || bytes > 17) /* <16 || > 128k */ return -(EINVAL); #endif if (count < 2) return -(EINVAL); #ifdef OS_DMA_MINBITS if (bytes < OS_DMA_MINBITS) bytes = OS_DMA_MINBITS; #endif dmap->fragment_size = (1 << bytes); dmap->max_fragments = count; if (dmap->fragment_size > audio_devs[dev]->buffsize) dmap->fragment_size = audio_devs[dev]->buffsize; if (dmap->fragment_size == audio_devs[dev]->buffsize && audio_devs[dev]->flags & DMA_AUTOMODE) dmap->fragment_size /= 2; /* Needs at least 2 buffers */ dmap->subdivision = 1; /* Disable SNDCTL_DSP_SUBDIVIDE */ return *(int *) arg = bytes | (count << 16); } static int get_buffer_pointer(int dev, int chan, struct dma_buffparms * dmap) { int pos; u_long flags; flags = splhigh(); if (!(dmap->flags & DMA_ACTIVE)) pos = 0; else { pos = isa_dmastatus(chan); } splx(flags); pos = dmap->bytes_in_use - pos ; if (audio_devs[dev]->flags & DMA_AUTOMODE) return pos; else { pos = dmap->fragment_size - pos; if (pos < 0) return 0; return pos; } } int DMAbuf_ioctl(int dev, u_int cmd, ioctl_arg arg, int local) { struct dma_buffparms *dmap_out = audio_devs[dev]->dmap_out; struct dma_buffparms *dmap_in = audio_devs[dev]->dmap_in; switch (cmd) { case SNDCTL_DSP_RESET: dma_reset(dev); return 0; break; case SNDCTL_DSP_SYNC: dma_sync(dev); dma_reset(dev); return 0; break; case SNDCTL_DSP_GETBLKSIZE: if (!(dmap_out->flags & DMA_ALLOC_DONE)) reorganize_buffers(dev, dmap_out); return *(int *) arg = dmap_out->fragment_size; break; case SNDCTL_DSP_SETBLKSIZE: { int size = (*(int *) arg); if (!(dmap_out->flags & DMA_ALLOC_DONE) && size) { if ((size >> 16) > 0 ) dmap_out->fragment_size = size >> 16; else { dmap_out->fragment_size = size; } dmap_out->max_fragments = 8888; size &= 0xffff; if (audio_devs[dev]->flags & DMA_DUPLEX) { dmap_in->fragment_size = size; dmap_in->max_fragments = 8888; } return 0; } else return -(EINVAL); /* Too late to change */ } break; case SNDCTL_DSP_SUBDIVIDE: { int fact = (*(int *) arg); int ret; ret = dma_subdivide(dev, dmap_out, arg, fact); if (ret < 0) return ret; if (audio_devs[dev]->flags & DMA_DUPLEX) ret = dma_subdivide(dev, dmap_in, arg, fact); return ret; } break; case SNDCTL_DSP_SETFRAGMENT: { int fact = (*(int *) arg); int ret; ret = dma_set_fragment(dev, dmap_out, arg, fact); if (ret < 0) return ret; if (audio_devs[dev]->flags & DMA_DUPLEX) ret = dma_set_fragment(dev, dmap_in, arg, fact); return ret; } break; case SNDCTL_DSP_GETISPACE: case SNDCTL_DSP_GETOSPACE: if (!local) return -(EINVAL); else { struct dma_buffparms *dmap = dmap_out; audio_buf_info *info = (audio_buf_info *) arg; if (cmd == SNDCTL_DSP_GETISPACE && audio_devs[dev]->flags & DMA_DUPLEX) dmap = dmap_in; #ifdef ALLOW_BUFFER_MAPPING if (dmap->mapping_flags & DMA_MAP_MAPPED) return -(EINVAL); #endif if (!(dmap->flags & DMA_ALLOC_DONE)) reorganize_buffers(dev, dmap); info->fragstotal = dmap->nbufs; if (cmd == SNDCTL_DSP_GETISPACE) info->fragments = dmap->qlen; else { if (!space_in_queue(dev)) info->fragments = 0; else { info->fragments = dmap->nbufs - dmap->qlen; if (audio_devs[dev]->local_qlen) { int tmp = audio_devs[dev]->local_qlen(dev); if (tmp & info->fragments) tmp--; /* This buffer has been counted twice */ info->fragments -= tmp; } } } if (info->fragments < 0) info->fragments = 0; else if (info->fragments > dmap->nbufs) info->fragments = dmap->nbufs; info->fragsize = dmap->fragment_size; info->bytes = info->fragments * dmap->fragment_size; if (cmd == SNDCTL_DSP_GETISPACE && dmap->qlen) info->bytes -= dmap->counts[dmap->qhead]; } return 0; case SNDCTL_DSP_SETTRIGGER: { u_long flags; int bits = (*(int *) arg) & audio_devs[dev]->open_mode; int changed; if (audio_devs[dev]->trigger == NULL) return -(EINVAL); if (!(audio_devs[dev]->flags & DMA_DUPLEX)) if ((bits & PCM_ENABLE_INPUT) && (bits & PCM_ENABLE_OUTPUT)) { printf("Sound: Device doesn't have full duplex capability\n"); return -(EINVAL); } flags = splhigh(); changed = audio_devs[dev]->enable_bits ^ bits; if ((changed & bits) & PCM_ENABLE_INPUT && audio_devs[dev]->go) { if (!(dmap_in->flags & DMA_ALLOC_DONE)) reorganize_buffers(dev, dmap_in); activate_recording(dev, dmap_in); } #ifdef ALLOW_BUFFER_MAPPING if ((changed & bits) & PCM_ENABLE_OUTPUT && dmap_out->mapping_flags & DMA_MAP_MAPPED && audio_devs[dev]->go) { if (!(dmap_out->flags & DMA_ALLOC_DONE)) reorganize_buffers(dev, dmap_out); audio_devs[dev]->prepare_for_output (dev, dmap_out->fragment_size, dmap_out->nbufs); dmap_out->counts[dmap_out->qhead] = dmap_out->fragment_size; DMAbuf_start_output(dev, 0, dmap_out->fragment_size); dmap_out->dma_mode = DMODE_OUTPUT; } #endif audio_devs[dev]->enable_bits = bits; if (changed && audio_devs[dev]->trigger) audio_devs[dev]->trigger(dev, bits * audio_devs[dev]->go); splx(flags); } case SNDCTL_DSP_GETTRIGGER: return *(int *) arg = audio_devs[dev]->enable_bits; break; case SNDCTL_DSP_SETSYNCRO: if (!audio_devs[dev]->trigger) return -(EINVAL); audio_devs[dev]->trigger(dev, 0); audio_devs[dev]->go = 0; return 0; break; case SNDCTL_DSP_GETIPTR: { count_info info; u_long flags; flags = splhigh(); info.bytes = audio_devs[dev]->dmap_in->byte_counter; info.ptr = get_buffer_pointer(dev, audio_devs[dev]->dmachan2, audio_devs[dev]->dmap_in); info.blocks = audio_devs[dev]->dmap_in->qlen; info.bytes += info.ptr; bcopy((char *) &info, &(((char *) arg)[0]), sizeof(info)); #ifdef ALLOW_BUFFER_MAPPING if (audio_devs[dev]->dmap_in->mapping_flags & DMA_MAP_MAPPED) audio_devs[dev]->dmap_in->qlen = 0; /* Ack interrupts */ #endif splx(flags); return 0; } break; case SNDCTL_DSP_GETOPTR: { count_info info; u_long flags; flags = splhigh(); info.bytes = audio_devs[dev]->dmap_out->byte_counter; info.ptr = get_buffer_pointer(dev, audio_devs[dev]->dmachan1, audio_devs[dev]->dmap_out); info.blocks = audio_devs[dev]->dmap_out->qlen; info.bytes += info.ptr; bcopy((char *) &info, &(((char *) arg)[0]), sizeof(info)); #ifdef ALLOW_BUFFER_MAPPING if (audio_devs[dev]->dmap_out->mapping_flags & DMA_MAP_MAPPED) audio_devs[dev]->dmap_out->qlen = 0; /* Ack interrupts */ #endif splx(flags); return 0; } break; default: return audio_devs[dev]->ioctl(dev, cmd, arg, local); } } /* * DMAbuf_start_devices() is called by the /dev/music driver to start one or * more audio devices at desired moment. */ void DMAbuf_start_devices(u_int devmask) { int dev; for (dev = 0; dev < num_audiodevs; dev++) if (devmask & (1 << dev)) if (audio_devs[dev]->open_mode != 0) if (!audio_devs[dev]->go) { /* OK to start the device */ audio_devs[dev]->go = 1; if (audio_devs[dev]->trigger) audio_devs[dev]->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } } static int space_in_queue(int dev) { int len, max, tmp; struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; if (dmap->qlen >= dmap->nbufs) /* No space at all */ return 0; /* * Verify that there are no more pending buffers than the limit * defined by the process. */ max = dmap->max_fragments; len = dmap->qlen; if (audio_devs[dev]->local_qlen) { tmp = audio_devs[dev]->local_qlen(dev); if (tmp & len) tmp--; /* This buffer has been counted twice */ len += tmp; } if (len >= max) return 0; return 1; } int DMAbuf_getwrbuffer(int dev, char **buf, int *size, int dontblock) { u_long flags; int abort, err = EIO; struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; #ifdef ALLOW_BUFFER_MAPPING if (audio_devs[dev]->dmap_out->mapping_flags & DMA_MAP_MAPPED) { printf("Sound: Can't write to mmapped device (3)\n"); return -(EINVAL); } #endif if (dmap->dma_mode == DMODE_INPUT) { /* Direction change */ dma_reset(dev); dmap->dma_mode = DMODE_NONE; } else if (dmap->flags & DMA_RESTART) { /* Restart buffering */ dma_sync(dev); dma_reset_output(dev); } dmap->flags &= ~DMA_RESTART; if (!(dmap->flags & DMA_ALLOC_DONE)) reorganize_buffers(dev, dmap); if (!dmap->dma_mode) { int err; dmap->dma_mode = DMODE_OUTPUT; if ((err = audio_devs[dev]->prepare_for_output(dev, dmap->fragment_size, dmap->nbufs)) < 0) return err; } flags = splhigh(); abort = 0; while (!space_in_queue(dev) && !abort) { int timeout; if (dontblock) { splx(flags); return -(EAGAIN); } if (!(audio_devs[dev]->enable_bits & PCM_ENABLE_OUTPUT) && audio_devs[dev]->go) { splx(flags); return -(EAGAIN); } /* * Wait for free space */ if (!audio_devs[dev]->go) timeout = 0; else timeout = 2 * hz; { int chn; out_sleep_flag[dev].mode = WK_SLEEP; out_sleeper[dev] = &chn; DO_SLEEP2(chn, out_sleep_flag[dev], timeout); if ((out_sleep_flag[dev].mode & WK_TIMEOUT)) { printf("Sound: DMA (output) timed out - IRQ/DRQ config error?\n"); err = EIO; abort = 1; out_sleep_flag[dev].aborting = 1; audio_devs[dev]->reset(dev); } else if ((out_sleep_flag[dev].aborting) || CURSIG(curproc)) { err = EINTR; abort = 1; } } } splx(flags); if (!space_in_queue(dev)) { return -(err); /* Caught a signal ? */ } *buf = dmap->raw_buf + dmap->qtail * dmap->fragment_size; *size = dmap->fragment_size; dmap->counts[dmap->qtail] = 0; return dmap->qtail; } int DMAbuf_start_output(int dev, int buff_no, int l) { struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; /* * Bypass buffering if using mmaped access */ #ifdef ALLOW_BUFFER_MAPPING if (audio_devs[dev]->dmap_out->mapping_flags & DMA_MAP_MAPPED) { l = dmap->fragment_size; dmap->counts[dmap->qtail] = l; dmap->flags &= ~DMA_RESTART; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; } else #else if (dmap != NULL) #endif { if (buff_no != dmap->qtail) printf("Sound warning: DMA buffers out of sync %d != %d\n", buff_no, dmap->qtail); dmap->qlen++; if (dmap->qlen <= 0 || dmap->qlen > dmap->nbufs) printf("\nSound: Audio queue2 corrupted for dev%d (%d/%d)\n", dev, dmap->qlen, dmap->nbufs); dmap->counts[dmap->qtail] = l; if ((l != dmap->fragment_size) && ((audio_devs[dev]->flags & DMA_AUTOMODE) && audio_devs[dev]->flags & NEEDS_RESTART)) dmap->flags |= DMA_RESTART; else dmap->flags &= ~DMA_RESTART; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; } if (!(dmap->flags & DMA_ACTIVE)) { dmap->flags |= DMA_ACTIVE; audio_devs[dev]->output_block(dev, dmap->raw_buf_phys + dmap->qhead * dmap->fragment_size, dmap->counts[dmap->qhead], 0, !(audio_devs[dev]->flags & DMA_AUTOMODE) || !(dmap->flags & DMA_STARTED)); dmap->flags |= DMA_STARTED; if (audio_devs[dev]->trigger) audio_devs[dev]->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } return 0; } int DMAbuf_start_dma(int dev, u_long physaddr, int count, int dma_mode) { int chan; struct dma_buffparms *dmap; if (dma_mode == 1) { chan = audio_devs[dev]->dmachan1; dmap = audio_devs[dev]->dmap_out; } else { chan = audio_devs[dev]->dmachan2; dmap = audio_devs[dev]->dmap_in; } /* * The count must be one less than the actual size. This is handled * by set_dma_addr() */ #ifndef PSEUDO_DMA_AUTOINIT if (audio_devs[dev]->flags & DMA_AUTOMODE) { /* Auto restart mode. Transfer the whole buffer */ isa_dmastart(B_RAW | ((dma_mode == 0) ? B_READ : B_WRITE), (caddr_t) (void *) (uintptr_t) dmap->raw_buf_phys, dmap->bytes_in_use, chan); } else #endif { isa_dmastart((dma_mode == 0) ? B_READ : B_WRITE, (caddr_t) (void *) (uintptr_t) physaddr, count, chan); } return count; } void DMAbuf_init() { int dev; /* * NOTE! This routine could be called several times. * XXX is it ok to make it run only the first time ? -- lr970710 */ for (dev = 0; dev < num_audiodevs; dev++) if (audio_devs[dev]->dmap_out == NULL) { audio_devs[dev]->dmap_out = audio_devs[dev]->dmap_in = &dmaps[ndmaps++]; if (audio_devs[dev]->flags & DMA_DUPLEX) audio_devs[dev]->dmap_in = &dmaps[ndmaps++]; } } void DMAbuf_outputintr(int dev, int event_type) { /* * Event types: 0 = DMA transfer done. Device still has more data in * the local buffer. 1 = DMA transfer done. Device doesn't have local * buffer or it's empty now. 2 = No DMA transfer but the device has * now more space in its local buffer. */ u_long flags; struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; dmap->byte_counter += dmap->counts[dmap->qhead]; #ifdef OS_DMA_INTR sound_dma_intr(dev, audio_devs[dev]->dmap_out, audio_devs[dev]->dmachan1); #endif #ifdef ALLOW_BUFFER_MAPPING if (dmap->mapping_flags & DMA_MAP_MAPPED) { /* mmapped access */ int p = dmap->fragment_size * dmap->qhead; dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; dmap->qlen++; /* Yes increment it (don't decrement) */ dmap->flags &= ~DMA_ACTIVE; dmap->counts[dmap->qhead] = dmap->fragment_size; if (!(audio_devs[dev]->flags & DMA_AUTOMODE)) { audio_devs[dev]->output_block(dev, dmap->raw_buf_phys + dmap->qhead * dmap->fragment_size, dmap->counts[dmap->qhead], 1, !(audio_devs[dev]->flags & DMA_AUTOMODE)); if (audio_devs[dev]->trigger) audio_devs[dev]->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } #ifdef PSEUDO_DMA_AUTOINIT else { DMAbuf_start_dma(dev, dmap->raw_buf_phys + dmap->qhead * dmap->fragment_size, dmap->counts[dmap->qhead], 1); } #endif dmap->flags |= DMA_ACTIVE; } else #endif if (event_type != 2) { if (dmap->qlen <= 0 || dmap->qlen > dmap->nbufs) { printf("\nSound: Audio queue3 corrupted for dev%d (%d/%d)\n", dev, dmap->qlen, dmap->nbufs); return; } isa_dmadone(0, 0, 0, audio_devs[dev]->dmachan1); dmap->qlen--; dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; dmap->flags &= ~DMA_ACTIVE; if (dmap->qlen) { /* if (!(audio_devs[dev]->flags & NEEDS_RESTART)) */ { audio_devs[dev]->output_block(dev, dmap->raw_buf_phys + dmap->qhead * dmap->fragment_size, dmap->counts[dmap->qhead], 1, !(audio_devs[dev]->flags & DMA_AUTOMODE)); if (audio_devs[dev]->trigger) audio_devs[dev]->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } #ifdef PSEUDO_DMA_AUTOINIT /* else */ { DMAbuf_start_dma(dev, dmap->raw_buf_phys + dmap->qhead * dmap->fragment_size, dmap->counts[dmap->qhead], 1); } #endif dmap->flags |= DMA_ACTIVE; } else if (event_type == 1) { dmap->underrun_count++; if ((audio_devs[dev]->flags & DMA_DUPLEX) && audio_devs[dev]->halt_output) audio_devs[dev]->halt_output(dev); else audio_devs[dev]->halt_xfer(dev); if ((audio_devs[dev]->flags & DMA_AUTOMODE) && audio_devs[dev]->flags & NEEDS_RESTART) dmap->flags |= DMA_RESTART; else dmap->flags &= ~DMA_RESTART; } } /* event_type != 2 */ flags = splhigh(); if ((out_sleep_flag[dev].mode & WK_SLEEP)) { out_sleep_flag[dev].mode = WK_WAKEUP; wakeup(out_sleeper[dev]); } if(selinfo[dev].si_pid) { selwakeup(&selinfo[dev]); } splx(flags); } void DMAbuf_inputintr(int dev) { u_long flags; struct dma_buffparms *dmap = audio_devs[dev]->dmap_in; dmap->byte_counter += dmap->fragment_size; #ifdef OS_DMA_INTR sound_dma_intr(dev, audio_devs[dev]->dmap_in, audio_devs[dev]->dmachan2); #endif isa_dmadone(0, 0, 0, audio_devs[dev]->dmachan2); #ifdef ALLOW_BUFFER_MAPPING if (dmap->mapping_flags & DMA_MAP_MAPPED) { dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; dmap->qlen++; if (!(audio_devs[dev]->flags & NEEDS_RESTART)) { audio_devs[dev]->start_input(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->fragment_size, 1, !(audio_devs[dev]->flags & DMA_AUTOMODE)); if (audio_devs[dev]->trigger) audio_devs[dev]->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } #ifdef PSEUDO_DMA_AUTOINIT else { DMAbuf_start_dma(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->counts[dmap->qtail], 0); } #endif dmap->flags |= DMA_ACTIVE; } else #endif if (dmap->qlen == (dmap->nbufs - 1)) { /* printf ("Sound: Recording overrun\n"); */ dmap->underrun_count++; if ((audio_devs[dev]->flags & DMA_DUPLEX) && audio_devs[dev]->halt_input) audio_devs[dev]->halt_input(dev); else audio_devs[dev]->halt_xfer(dev); dmap->flags &= ~DMA_ACTIVE; if (audio_devs[dev]->flags & DMA_AUTOMODE) dmap->flags |= DMA_RESTART; else dmap->flags &= ~DMA_RESTART; } else { dmap->qlen++; if (dmap->qlen <= 0 || dmap->qlen > dmap->nbufs) printf("\nSound: Audio queue4 corrupted for dev%d (%d/%d)\n", dev, dmap->qlen, dmap->nbufs); dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; /* if (!(audio_devs[dev]->flags & DMA_AUTOMODE)) */ { audio_devs[dev]->start_input(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->fragment_size, 1, !(audio_devs[dev]->flags & DMA_AUTOMODE)); if (audio_devs[dev]->trigger) audio_devs[dev]->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } #ifdef PSEUDO_DMA_AUTOINIT /* else */ { DMAbuf_start_dma(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->counts[dmap->qtail], 0); } #endif dmap->flags |= DMA_ACTIVE; } flags = splhigh(); if ((in_sleep_flag[dev].mode & WK_SLEEP)) { in_sleep_flag[dev].mode = WK_WAKEUP; wakeup(in_sleeper[dev]); } if (selinfo[dev].si_pid) selwakeup(&selinfo[dev]); splx(flags); } int DMAbuf_open_dma(int dev) { int err; u_long flags; flags = splhigh(); if ((err = open_dmap(dev, OPEN_READWRITE, audio_devs[dev]->dmap_out, audio_devs[dev]->dmachan1)) < 0) { splx(flags); return -(EBUSY); } dma_init_buffers(dev, audio_devs[dev]->dmap_out); /* audio_devs[dev]->dmap_out->flags |= DMA_ALLOC_DONE; */ audio_devs[dev]->dmap_out->fragment_size = audio_devs[dev]->buffsize; /* reorganize_buffers (dev, audio_devs[dev]->dmap_out); */ if (audio_devs[dev]->flags & DMA_DUPLEX) { if ((err = open_dmap(dev, OPEN_READWRITE, audio_devs[dev]->dmap_in, audio_devs[dev]->dmachan2)) < 0) { printf("Unable to grab DMA%d for the audio driver\n", audio_devs[dev]->dmachan2); close_dmap(dev, audio_devs[dev]->dmap_out, audio_devs[dev]->dmachan1); splx(flags); return -(EBUSY); } dma_init_buffers(dev, audio_devs[dev]->dmap_in); /* audio_devs[dev]->dmap_in->flags |= DMA_ALLOC_DONE; */ audio_devs[dev]->dmap_in->fragment_size = audio_devs[dev]->buffsize; /* reorganize_buffers (dev, audio_devs[dev]->dmap_in); */ } else { audio_devs[dev]->dmap_in = audio_devs[dev]->dmap_out; audio_devs[dev]->dmachan2 = audio_devs[dev]->dmachan1; } splx(flags); return 0; } void DMAbuf_close_dma(int dev) { DMAbuf_reset_dma(dev); close_dmap(dev, audio_devs[dev]->dmap_out, audio_devs[dev]->dmachan1); if (audio_devs[dev]->flags & DMA_DUPLEX) close_dmap(dev, audio_devs[dev]->dmap_in, audio_devs[dev]->dmachan2); } void DMAbuf_reset_dma(int dev) { } #ifdef ALLOW_POLL int DMAbuf_poll(int dev, struct fileinfo * file, int events, select_table * wait) { struct dma_buffparms *dmap; u_long flags; int revents = 0; dmap = audio_devs[dev]->dmap_in; if (events & (POLLIN | POLLRDNORM)) { if (dmap->dma_mode != DMODE_INPUT) { if ((audio_devs[dev]->flags & DMA_DUPLEX) && !dmap->qlen && audio_devs[dev]->enable_bits & PCM_ENABLE_INPUT && audio_devs[dev]->go) { u_long flags; flags = splhigh(); activate_recording(dev, dmap); splx(flags); } return 0; } if (!dmap->qlen) { flags = splhigh(); selrecord(wait, &selinfo[dev]); splx(flags); return 0; } else revents |= events & (POLLIN | POLLRDNORM); } if (events & (POLLOUT | POLLWRNORM)) { dmap = audio_devs[dev]->dmap_out; if (dmap->dma_mode == DMODE_INPUT) return 0; if (dmap->dma_mode == DMODE_NONE) return ( events & (POLLOUT | POLLWRNORM)); if (dmap->mapping_flags & DMA_MAP_MAPPED) { if(dmap->qlen) return 1; flags = splhigh(); selrecord(wait, &selinfo[dev]); splx(flags); return 0; } if (!space_in_queue(dev)) { flags = splhigh(); selrecord(wait, &selinfo[dev]); splx(flags); } else revents |= events & (POLLOUT | POLLWRNORM); } return (revents); } #ifdef amancio int DMAbuf_select(int dev, struct fileinfo * file, int sel_type, select_table * wait) { struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; struct dma_buffparms *dmapin = audio_devs[dev]->dmap_in; u_long flags; switch (sel_type) { case FREAD: if (dmapin->dma_mode != DMODE_INPUT) return 0; if (!dmap->qlen) { flags = splhigh(); selrecord(wait, &selinfo[dev]); splx(flags); return 0; } return 1; break; case FWRITE: if (dmap->dma_mode == DMODE_INPUT) return 0; if (dmap->dma_mode == DMODE_NONE) return 1; if (!space_in_queue(dev)) { flags = splhigh(); selrecord(wait, &selinfo[dev]); splx(flags); return 0; } return 1; break; } return 0; } #endif /* ALLOW_POLL */ #endif #else /* CONFIG_AUDIO */ /* * Stub versions if audio services not included */ int DMAbuf_open(int dev, int mode) { return -(ENXIO); } int DMAbuf_release(int dev, int mode) { return 0; } int DMAbuf_getwrbuffer(int dev, char **buf, int *size, int dontblock) { return -(EIO); } int DMAbuf_getrdbuffer(int dev, char **buf, int *len, int dontblock) { return -(EIO); } int DMAbuf_rmchars(int dev, int buff_no, int c) { return -(EIO); } int DMAbuf_start_output(int dev, int buff_no, int l) { return -(EIO); } int DMAbuf_ioctl(int dev, u_int cmd, ioctl_arg arg, int local) { return -(EIO); } void DMAbuf_init() { } int DMAbuf_start_dma(int dev, u_long physaddr, int count, int dma_mode) { return -(EIO); } int DMAbuf_open_dma(int dev) { return -(ENXIO); } void DMAbuf_close_dma(int dev) { return; } void DMAbuf_reset_dma(int dev) { return; } void DMAbuf_inputintr(int dev) { return; } void DMAbuf_outputintr(int dev, int underrun_flag) { return; } #endif /* CONFIG_AUDIO */