//===-LTOBackend.cpp - LLVM Link Time Optimizer Backend -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the "backend" phase of LTO, i.e. it performs // optimization and code generation on a loaded module. It is generally used // internally by the LTO class but can also be used independently, for example // to implement a standalone ThinLTO backend. // //===----------------------------------------------------------------------===// #include "llvm/LTO/LTOBackend.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Verifier.h" #include "llvm/LTO/LTO.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Object/ModuleSymbolTable.h" #include "llvm/Passes/PassBuilder.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/ThreadPool.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Transforms/Utils/FunctionImportUtils.h" #include "llvm/Transforms/Utils/SplitModule.h" using namespace llvm; using namespace lto; LLVM_ATTRIBUTE_NORETURN static void reportOpenError(StringRef Path, Twine Msg) { errs() << "failed to open " << Path << ": " << Msg << '\n'; errs().flush(); exit(1); } Error Config::addSaveTemps(std::string OutputFileName, bool UseInputModulePath) { ShouldDiscardValueNames = false; std::error_code EC; ResolutionFile = llvm::make_unique( OutputFileName + "resolution.txt", EC, sys::fs::OpenFlags::F_Text); if (EC) return errorCodeToError(EC); auto setHook = [&](std::string PathSuffix, ModuleHookFn &Hook) { // Keep track of the hook provided by the linker, which also needs to run. ModuleHookFn LinkerHook = Hook; Hook = [=](unsigned Task, const Module &M) { // If the linker's hook returned false, we need to pass that result // through. if (LinkerHook && !LinkerHook(Task, M)) return false; std::string PathPrefix; // If this is the combined module (not a ThinLTO backend compile) or the // user hasn't requested using the input module's path, emit to a file // named from the provided OutputFileName with the Task ID appended. if (M.getModuleIdentifier() == "ld-temp.o" || !UseInputModulePath) { PathPrefix = OutputFileName + utostr(Task); } else PathPrefix = M.getModuleIdentifier(); std::string Path = PathPrefix + "." + PathSuffix + ".bc"; std::error_code EC; raw_fd_ostream OS(Path, EC, sys::fs::OpenFlags::F_None); // Because -save-temps is a debugging feature, we report the error // directly and exit. if (EC) reportOpenError(Path, EC.message()); WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false); return true; }; }; setHook("0.preopt", PreOptModuleHook); setHook("1.promote", PostPromoteModuleHook); setHook("2.internalize", PostInternalizeModuleHook); setHook("3.import", PostImportModuleHook); setHook("4.opt", PostOptModuleHook); setHook("5.precodegen", PreCodeGenModuleHook); CombinedIndexHook = [=](const ModuleSummaryIndex &Index) { std::string Path = OutputFileName + "index.bc"; std::error_code EC; raw_fd_ostream OS(Path, EC, sys::fs::OpenFlags::F_None); // Because -save-temps is a debugging feature, we report the error // directly and exit. if (EC) reportOpenError(Path, EC.message()); WriteIndexToFile(Index, OS); return true; }; return Error::success(); } namespace { std::unique_ptr createTargetMachine(Config &Conf, const Target *TheTarget, Module &M) { StringRef TheTriple = M.getTargetTriple(); SubtargetFeatures Features; Features.getDefaultSubtargetFeatures(Triple(TheTriple)); for (const std::string &A : Conf.MAttrs) Features.AddFeature(A); Reloc::Model RelocModel; if (Conf.RelocModel) RelocModel = *Conf.RelocModel; else RelocModel = M.getPICLevel() == PICLevel::NotPIC ? Reloc::Static : Reloc::PIC_; return std::unique_ptr(TheTarget->createTargetMachine( TheTriple, Conf.CPU, Features.getString(), Conf.Options, RelocModel, Conf.CodeModel, Conf.CGOptLevel)); } static void runNewPMPasses(Module &Mod, TargetMachine *TM, unsigned OptLevel, bool IsThinLTO) { PassBuilder PB(TM); AAManager AA; // Parse a custom AA pipeline if asked to. assert(PB.parseAAPipeline(AA, "default")); LoopAnalysisManager LAM; FunctionAnalysisManager FAM; CGSCCAnalysisManager CGAM; ModuleAnalysisManager MAM; // Register the AA manager first so that our version is the one used. FAM.registerPass([&] { return std::move(AA); }); // Register all the basic analyses with the managers. PB.registerModuleAnalyses(MAM); PB.registerCGSCCAnalyses(CGAM); PB.registerFunctionAnalyses(FAM); PB.registerLoopAnalyses(LAM); PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); ModulePassManager MPM; // FIXME (davide): verify the input. PassBuilder::OptimizationLevel OL; switch (OptLevel) { default: llvm_unreachable("Invalid optimization level"); case 0: OL = PassBuilder::O0; break; case 1: OL = PassBuilder::O1; break; case 2: OL = PassBuilder::O2; break; case 3: OL = PassBuilder::O3; break; } if (IsThinLTO) MPM = PB.buildThinLTODefaultPipeline(OL, false /* DebugLogging */); else MPM = PB.buildLTODefaultPipeline(OL, false /* DebugLogging */); MPM.run(Mod, MAM); // FIXME (davide): verify the output. } static void runNewPMCustomPasses(Module &Mod, TargetMachine *TM, std::string PipelineDesc, std::string AAPipelineDesc, bool DisableVerify) { PassBuilder PB(TM); AAManager AA; // Parse a custom AA pipeline if asked to. if (!AAPipelineDesc.empty()) if (!PB.parseAAPipeline(AA, AAPipelineDesc)) report_fatal_error("unable to parse AA pipeline description: " + AAPipelineDesc); LoopAnalysisManager LAM; FunctionAnalysisManager FAM; CGSCCAnalysisManager CGAM; ModuleAnalysisManager MAM; // Register the AA manager first so that our version is the one used. FAM.registerPass([&] { return std::move(AA); }); // Register all the basic analyses with the managers. PB.registerModuleAnalyses(MAM); PB.registerCGSCCAnalyses(CGAM); PB.registerFunctionAnalyses(FAM); PB.registerLoopAnalyses(LAM); PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); ModulePassManager MPM; // Always verify the input. MPM.addPass(VerifierPass()); // Now, add all the passes we've been requested to. if (!PB.parsePassPipeline(MPM, PipelineDesc)) report_fatal_error("unable to parse pass pipeline description: " + PipelineDesc); if (!DisableVerify) MPM.addPass(VerifierPass()); MPM.run(Mod, MAM); } static void runOldPMPasses(Config &Conf, Module &Mod, TargetMachine *TM, bool IsThinLTO, ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary) { legacy::PassManager passes; passes.add(createTargetTransformInfoWrapperPass(TM->getTargetIRAnalysis())); PassManagerBuilder PMB; PMB.LibraryInfo = new TargetLibraryInfoImpl(Triple(TM->getTargetTriple())); PMB.Inliner = createFunctionInliningPass(); PMB.ExportSummary = ExportSummary; PMB.ImportSummary = ImportSummary; // Unconditionally verify input since it is not verified before this // point and has unknown origin. PMB.VerifyInput = true; PMB.VerifyOutput = !Conf.DisableVerify; PMB.LoopVectorize = true; PMB.SLPVectorize = true; PMB.OptLevel = Conf.OptLevel; PMB.PGOSampleUse = Conf.SampleProfile; if (IsThinLTO) PMB.populateThinLTOPassManager(passes); else PMB.populateLTOPassManager(passes); passes.run(Mod); } bool opt(Config &Conf, TargetMachine *TM, unsigned Task, Module &Mod, bool IsThinLTO, ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary) { // FIXME: Plumb the combined index into the new pass manager. if (!Conf.OptPipeline.empty()) runNewPMCustomPasses(Mod, TM, Conf.OptPipeline, Conf.AAPipeline, Conf.DisableVerify); else if (Conf.UseNewPM) runNewPMPasses(Mod, TM, Conf.OptLevel, IsThinLTO); else runOldPMPasses(Conf, Mod, TM, IsThinLTO, ExportSummary, ImportSummary); return !Conf.PostOptModuleHook || Conf.PostOptModuleHook(Task, Mod); } void codegen(Config &Conf, TargetMachine *TM, AddStreamFn AddStream, unsigned Task, Module &Mod) { if (Conf.PreCodeGenModuleHook && !Conf.PreCodeGenModuleHook(Task, Mod)) return; auto Stream = AddStream(Task); legacy::PassManager CodeGenPasses; if (TM->addPassesToEmitFile(CodeGenPasses, *Stream->OS, Conf.CGFileType)) report_fatal_error("Failed to setup codegen"); CodeGenPasses.run(Mod); } void splitCodeGen(Config &C, TargetMachine *TM, AddStreamFn AddStream, unsigned ParallelCodeGenParallelismLevel, std::unique_ptr Mod) { ThreadPool CodegenThreadPool(ParallelCodeGenParallelismLevel); unsigned ThreadCount = 0; const Target *T = &TM->getTarget(); SplitModule( std::move(Mod), ParallelCodeGenParallelismLevel, [&](std::unique_ptr MPart) { // We want to clone the module in a new context to multi-thread the // codegen. We do it by serializing partition modules to bitcode // (while still on the main thread, in order to avoid data races) and // spinning up new threads which deserialize the partitions into // separate contexts. // FIXME: Provide a more direct way to do this in LLVM. SmallString<0> BC; raw_svector_ostream BCOS(BC); WriteBitcodeToFile(MPart.get(), BCOS); // Enqueue the task CodegenThreadPool.async( [&](const SmallString<0> &BC, unsigned ThreadId) { LTOLLVMContext Ctx(C); Expected> MOrErr = parseBitcodeFile( MemoryBufferRef(StringRef(BC.data(), BC.size()), "ld-temp.o"), Ctx); if (!MOrErr) report_fatal_error("Failed to read bitcode"); std::unique_ptr MPartInCtx = std::move(MOrErr.get()); std::unique_ptr TM = createTargetMachine(C, T, *MPartInCtx); codegen(C, TM.get(), AddStream, ThreadId, *MPartInCtx); }, // Pass BC using std::move to ensure that it get moved rather than // copied into the thread's context. std::move(BC), ThreadCount++); }, false); // Because the inner lambda (which runs in a worker thread) captures our local // variables, we need to wait for the worker threads to terminate before we // can leave the function scope. CodegenThreadPool.wait(); } Expected initAndLookupTarget(Config &C, Module &Mod) { if (!C.OverrideTriple.empty()) Mod.setTargetTriple(C.OverrideTriple); else if (Mod.getTargetTriple().empty()) Mod.setTargetTriple(C.DefaultTriple); std::string Msg; const Target *T = TargetRegistry::lookupTarget(Mod.getTargetTriple(), Msg); if (!T) return make_error(Msg, inconvertibleErrorCode()); return T; } } static void finalizeOptimizationRemarks(std::unique_ptr DiagOutputFile) { // Make sure we flush the diagnostic remarks file in case the linker doesn't // call the global destructors before exiting. if (!DiagOutputFile) return; DiagOutputFile->keep(); DiagOutputFile->os().flush(); } Error lto::backend(Config &C, AddStreamFn AddStream, unsigned ParallelCodeGenParallelismLevel, std::unique_ptr Mod, ModuleSummaryIndex &CombinedIndex) { Expected TOrErr = initAndLookupTarget(C, *Mod); if (!TOrErr) return TOrErr.takeError(); std::unique_ptr TM = createTargetMachine(C, *TOrErr, *Mod); // Setup optimization remarks. auto DiagFileOrErr = lto::setupOptimizationRemarks( Mod->getContext(), C.RemarksFilename, C.RemarksWithHotness); if (!DiagFileOrErr) return DiagFileOrErr.takeError(); auto DiagnosticOutputFile = std::move(*DiagFileOrErr); if (!C.CodeGenOnly) { if (!opt(C, TM.get(), 0, *Mod, /*IsThinLTO=*/false, /*ExportSummary=*/&CombinedIndex, /*ImportSummary=*/nullptr)) { finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); return Error::success(); } } if (ParallelCodeGenParallelismLevel == 1) { codegen(C, TM.get(), AddStream, 0, *Mod); } else { splitCodeGen(C, TM.get(), AddStream, ParallelCodeGenParallelismLevel, std::move(Mod)); } finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); return Error::success(); } Error lto::thinBackend(Config &Conf, unsigned Task, AddStreamFn AddStream, Module &Mod, const ModuleSummaryIndex &CombinedIndex, const FunctionImporter::ImportMapTy &ImportList, const GVSummaryMapTy &DefinedGlobals, MapVector &ModuleMap) { Expected TOrErr = initAndLookupTarget(Conf, Mod); if (!TOrErr) return TOrErr.takeError(); std::unique_ptr TM = createTargetMachine(Conf, *TOrErr, Mod); if (Conf.CodeGenOnly) { codegen(Conf, TM.get(), AddStream, Task, Mod); return Error::success(); } if (Conf.PreOptModuleHook && !Conf.PreOptModuleHook(Task, Mod)) return Error::success(); renameModuleForThinLTO(Mod, CombinedIndex); thinLTOResolveWeakForLinkerModule(Mod, DefinedGlobals); if (Conf.PostPromoteModuleHook && !Conf.PostPromoteModuleHook(Task, Mod)) return Error::success(); if (!DefinedGlobals.empty()) thinLTOInternalizeModule(Mod, DefinedGlobals); if (Conf.PostInternalizeModuleHook && !Conf.PostInternalizeModuleHook(Task, Mod)) return Error::success(); auto ModuleLoader = [&](StringRef Identifier) { assert(Mod.getContext().isODRUniquingDebugTypes() && "ODR Type uniquing should be enabled on the context"); auto I = ModuleMap.find(Identifier); assert(I != ModuleMap.end()); return I->second.getLazyModule(Mod.getContext(), /*ShouldLazyLoadMetadata=*/true, /*IsImporting*/ true); }; FunctionImporter Importer(CombinedIndex, ModuleLoader); if (Error Err = Importer.importFunctions(Mod, ImportList).takeError()) return Err; if (Conf.PostImportModuleHook && !Conf.PostImportModuleHook(Task, Mod)) return Error::success(); if (!opt(Conf, TM.get(), Task, Mod, /*IsThinLTO=*/true, /*ExportSummary=*/nullptr, /*ImportSummary=*/&CombinedIndex)) return Error::success(); codegen(Conf, TM.get(), AddStream, Task, Mod); return Error::success(); }