/* * Inline routines shareable across OS platforms. * * Copyright (c) 1994-2001 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU Public License ("GPL"). * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: //depot/src/aic7xxx/aic7xxx_inline.h#19 $ * * $FreeBSD$ */ #ifndef _AIC7XXX_INLINE_H_ #define _AIC7XXX_INLINE_H_ /************************* Sequencer Execution Control ************************/ static __inline int ahc_is_paused(struct ahc_softc *ahc); static __inline void ahc_pause_bug_fix(struct ahc_softc *ahc); static __inline void ahc_pause(struct ahc_softc *ahc); static __inline void ahc_unpause(struct ahc_softc *ahc); /* * Work around any chip bugs related to halting sequencer execution. * On Ultra2 controllers, we must clear the CIOBUS stretch signal by * reading a register that will set this signal and deassert it. * Without this workaround, if the chip is paused, by an interrupt or * manual pause while accessing scb ram, accesses to certain registers * will hang the system (infinite pci retries). */ static __inline void ahc_pause_bug_fix(struct ahc_softc *ahc) { if ((ahc->features & AHC_ULTRA2) != 0) (void)ahc_inb(ahc, CCSCBCTL); } /* * Determine whether the sequencer has halted code execution. * Returns non-zero status if the sequencer is stopped. */ static __inline int ahc_is_paused(struct ahc_softc *ahc) { return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0); } /* * Request that the sequencer stop and wait, indefinitely, for it * to stop. The sequencer will only acknowledge that it is paused * once it has reached an instruction boundary and PAUSEDIS is * cleared in the SEQCTL register. The sequencer may use PAUSEDIS * for critical sections. */ static __inline void ahc_pause(struct ahc_softc *ahc) { ahc_outb(ahc, HCNTRL, ahc->pause); /* * Since the sequencer can disable pausing in a critical section, we * must loop until it actually stops. */ while (ahc_is_paused(ahc) == 0) ; ahc_pause_bug_fix(ahc); } /* * Allow the sequencer to continue program execution. * We check here to ensure that no additional interrupt * sources that would cause the sequencer to halt have been * asserted. If, for example, a SCSI bus reset is detected * while we are fielding a different, pausing, interrupt type, * we don't want to release the sequencer before going back * into our interrupt handler and dealing with this new * condition. */ static __inline void ahc_unpause(struct ahc_softc *ahc) { if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0) ahc_outb(ahc, HCNTRL, ahc->unpause); } /*********************** Untagged Transaction Routines ************************/ static __inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc); static __inline void ahc_release_untagged_queues(struct ahc_softc *ahc); /* * Block our completion routine from starting the next untagged * transaction for this target or target lun. */ static __inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc) { if ((ahc->flags & AHC_SCB_BTT) == 0) ahc->untagged_queue_lock++; } /* * Allow the next untagged transaction for this target or target lun * to be executed. We use a counting semaphore to allow the lock * to be acquired recursively. Once the count drops to zero, the * transaction queues will be run. */ static __inline void ahc_release_untagged_queues(struct ahc_softc *ahc) { if ((ahc->flags & AHC_SCB_BTT) == 0) { ahc->untagged_queue_lock--; if (ahc->untagged_queue_lock == 0) ahc_run_untagged_queues(ahc); } } /************************** Memory mapping routines ***************************/ static __inline struct ahc_dma_seg * ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr); static __inline uint32_t ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg); static __inline uint32_t ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index); static __inline struct ahc_dma_seg * ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr) { int sg_index; sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg); /* sg_list_phys points to entry 1, not 0 */ sg_index++; return (&scb->sg_list[sg_index]); } static __inline uint32_t ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg) { int sg_index; /* sg_list_phys points to entry 1, not 0 */ sg_index = sg - &scb->sg_list[1]; return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list))); } static __inline uint32_t ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index) { return (ahc->scb_data->hscb_busaddr + (sizeof(struct hardware_scb) * index)); } /******************************** Debugging ***********************************/ static __inline char *ahc_name(struct ahc_softc *ahc); static __inline char * ahc_name(struct ahc_softc *ahc) { return (ahc->name); } /*********************** Miscelaneous Support Functions ***********************/ static __inline int ahc_check_residual(struct scb *scb); static __inline struct ahc_initiator_tinfo * ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id, u_int remote_id, struct ahc_tmode_tstate **tstate); static __inline struct scb* ahc_get_scb(struct ahc_softc *ahc); static __inline void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb); static __inline void ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb); static __inline void ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb); static __inline struct scsi_sense_data * ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb); static __inline uint32_t ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb); /* * Determine whether the sequencer reported a residual * for this SCB/transaction. */ static __inline int ahc_check_residual(struct scb *scb) { struct status_pkt *sp; sp = &scb->hscb->shared_data.status; if ((scb->hscb->sgptr & SG_RESID_VALID) != 0) return (1); return (0); } /* * Return pointers to the transfer negotiation information * for the specified our_id/remote_id pair. */ static __inline struct ahc_initiator_tinfo * ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id, u_int remote_id, struct ahc_tmode_tstate **tstate) { /* * Transfer data structures are stored from the perspective * of the target role. Since the parameters for a connection * in the initiator role to a given target are the same as * when the roles are reversed, we pretend we are the target. */ if (channel == 'B') our_id += 8; *tstate = ahc->enabled_targets[our_id]; return (&(*tstate)->transinfo[remote_id]); } /* * Get a free scb. If there are none, see if we can allocate a new SCB. */ static __inline struct scb * ahc_get_scb(struct ahc_softc *ahc) { struct scb *scb; if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) { ahc_alloc_scbs(ahc); scb = SLIST_FIRST(&ahc->scb_data->free_scbs); if (scb == NULL) return (NULL); } SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle); return (scb); } /* * Return an SCB resource to the free list. */ static __inline void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb) { struct hardware_scb *hscb; hscb = scb->hscb; /* Clean up for the next user */ ahc->scb_data->scbindex[hscb->tag] = NULL; scb->flags = SCB_FREE; hscb->control = 0; SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle); /* Notify the OSM that a resource is now available. */ ahc_platform_scb_free(ahc, scb); } static __inline struct scb * ahc_lookup_scb(struct ahc_softc *ahc, u_int tag) { return (ahc->scb_data->scbindex[tag]); } static __inline void ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb) { struct hardware_scb *q_hscb; u_int saved_tag; /* * Our queuing method is a bit tricky. The card * knows in advance which HSCB to download, and we * can't disappoint it. To achieve this, the next * SCB to download is saved off in ahc->next_queued_scb. * When we are called to queue "an arbitrary scb", * we copy the contents of the incoming HSCB to the one * the sequencer knows about, swap HSCB pointers and * finally assign the SCB to the tag indexed location * in the scb_array. This makes sure that we can still * locate the correct SCB by SCB_TAG. */ q_hscb = ahc->next_queued_scb->hscb; saved_tag = q_hscb->tag; memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb)); if ((scb->flags & SCB_CDB32_PTR) != 0) { q_hscb->shared_data.cdb_ptr = ahc_hscb_busaddr(ahc, q_hscb->tag) + offsetof(struct hardware_scb, cdb32); } q_hscb->tag = saved_tag; q_hscb->next = scb->hscb->tag; /* Now swap HSCB pointers. */ ahc->next_queued_scb->hscb = scb->hscb; scb->hscb = q_hscb; /* Now define the mapping from tag to SCB in the scbindex */ ahc->scb_data->scbindex[scb->hscb->tag] = scb; } /* * Tell the sequencer about a new transaction to execute. */ static __inline void ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb) { ahc_swap_with_next_hscb(ahc, scb); if (scb->hscb->tag == SCB_LIST_NULL || scb->hscb->next == SCB_LIST_NULL) panic("Attempt to queue invalid SCB tag %x:%x\n", scb->hscb->tag, scb->hscb->next); /* * Keep a history of SCBs we've downloaded in the qinfifo. */ ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag; if ((ahc->features & AHC_QUEUE_REGS) != 0) { ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext); } else { if ((ahc->features & AHC_AUTOPAUSE) == 0) ahc_pause(ahc); ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext); if ((ahc->features & AHC_AUTOPAUSE) == 0) ahc_unpause(ahc); } } static __inline struct scsi_sense_data * ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb) { int offset; offset = scb - ahc->scb_data->scbarray; return (&ahc->scb_data->sense[offset]); } static __inline uint32_t ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb) { int offset; offset = scb - ahc->scb_data->scbarray; return (ahc->scb_data->sense_busaddr + (offset * sizeof(struct scsi_sense_data))); } /************************** Interrupt Processing ******************************/ static __inline u_int ahc_check_cmdcmpltqueues(struct ahc_softc *ahc); static __inline void ahc_intr(struct ahc_softc *ahc); /* * See if the firmware has posted any completed commands * into our in-core command complete fifos. */ #define AHC_RUN_QOUTFIFO 0x1 #define AHC_RUN_TQINFIFO 0x2 static __inline u_int ahc_check_cmdcmpltqueues(struct ahc_softc *ahc) { u_int retval; retval = 0; if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) retval |= AHC_RUN_QOUTFIFO; #ifdef AHC_TARGET_MODE if ((ahc->flags & AHC_TARGETROLE) != 0 && ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0) retval |= AHC_RUN_TQINFIFO; #endif return (retval); } /* * Catch an interrupt from the adapter */ static __inline void ahc_intr(struct ahc_softc *ahc) { u_int intstat; u_int queuestat; /* * Instead of directly reading the interrupt status register, * infer the cause of the interrupt by checking our in-core * completion queues. This avoids a costly PCI bus read in * most cases. */ if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0 && (queuestat = ahc_check_cmdcmpltqueues(ahc)) != 0) intstat = CMDCMPLT; else { intstat = ahc_inb(ahc, INTSTAT); /* * We can't generate queuestat once above * or we are exposed to a race when our * interrupt is shared with another device. * if instat showed a command complete interrupt, * but our first generation of queue stat * "just missed" the delivery of this transaction, * we would clear the command complete interrupt * below without ever servicing the completed * command. */ queuestat = ahc_check_cmdcmpltqueues(ahc); #if AHC_PCI_CONFIG > 0 if (ahc->unsolicited_ints > 500 && (ahc->chip & AHC_PCI) != 0 && (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0) ahc->bus_intr(ahc); #endif } if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) /* Hot eject */ return; if ((intstat & INT_PEND) == 0) { ahc->unsolicited_ints++; return; } ahc->unsolicited_ints = 0; if (intstat & CMDCMPLT) { ahc_outb(ahc, CLRINT, CLRCMDINT); /* * Ensure that the chip sees that we've cleared * this interrupt before we walk the output fifo. * Otherwise, we may, due to posted bus writes, * clear the interrupt after we finish the scan, * and after the sequencer has added new entries * and asserted the interrupt again. */ ahc_flush_device_writes(ahc); #ifdef AHC_TARGET_MODE if ((queuestat & AHC_RUN_QOUTFIFO) != 0) #endif ahc_run_qoutfifo(ahc); #ifdef AHC_TARGET_MODE if ((queuestat & AHC_RUN_TQINFIFO) != 0) ahc_run_tqinfifo(ahc, /*paused*/FALSE); #endif } if (intstat & BRKADRINT) { ahc_handle_brkadrint(ahc); /* Fatal error, no more interrupts to handle. */ return; } if ((intstat & (SEQINT|SCSIINT)) != 0) ahc_pause_bug_fix(ahc); if ((intstat & SEQINT) != 0) ahc_handle_seqint(ahc, intstat); if ((intstat & SCSIINT) != 0) ahc_handle_scsiint(ahc, intstat); } #endif /* _AIC7XXX_INLINE_H_ */