/* $FreeBSD$ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. All rights reserved. * Copyright (c) 1998 Lennart Augustsson. All rights reserved. * Copyright (c) 2008-2010 Hans Petter Selasky. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * USB spec: http://www.usb.org/developers/docs/usbspec.zip */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define USB_DEBUG_VAR uhub_debug #include #include #include #include #include #include #include #include #include #include #include #include #define UHUB_INTR_INTERVAL 250 /* ms */ #define UHUB_N_TRANSFER 1 #ifdef USB_DEBUG static int uhub_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, uhub, CTLFLAG_RW, 0, "USB HUB"); SYSCTL_INT(_hw_usb_uhub, OID_AUTO, debug, CTLFLAG_RW, &uhub_debug, 0, "Debug level"); TUNABLE_INT("hw.usb.uhub.debug", &uhub_debug); #endif #if USB_HAVE_POWERD static int usb_power_timeout = 30; /* seconds */ SYSCTL_INT(_hw_usb, OID_AUTO, power_timeout, CTLFLAG_RW, &usb_power_timeout, 0, "USB power timeout"); #endif struct uhub_current_state { uint16_t port_change; uint16_t port_status; }; struct uhub_softc { struct uhub_current_state sc_st;/* current state */ device_t sc_dev; /* base device */ struct mtx sc_mtx; /* our mutex */ struct usb_device *sc_udev; /* USB device */ struct usb_xfer *sc_xfer[UHUB_N_TRANSFER]; /* interrupt xfer */ uint8_t sc_flags; #define UHUB_FLAG_DID_EXPLORE 0x01 char sc_name[32]; }; #define UHUB_PROTO(sc) ((sc)->sc_udev->ddesc.bDeviceProtocol) #define UHUB_IS_HIGH_SPEED(sc) (UHUB_PROTO(sc) != UDPROTO_FSHUB) #define UHUB_IS_SINGLE_TT(sc) (UHUB_PROTO(sc) == UDPROTO_HSHUBSTT) #define UHUB_IS_SUPER_SPEED(sc) (UHUB_PROTO(sc) == UDPROTO_SSHUB) /* prototypes for type checking: */ static device_probe_t uhub_probe; static device_attach_t uhub_attach; static device_detach_t uhub_detach; static device_suspend_t uhub_suspend; static device_resume_t uhub_resume; static bus_driver_added_t uhub_driver_added; static bus_child_location_str_t uhub_child_location_string; static bus_child_pnpinfo_str_t uhub_child_pnpinfo_string; static usb_callback_t uhub_intr_callback; static void usb_dev_resume_peer(struct usb_device *udev); static void usb_dev_suspend_peer(struct usb_device *udev); static uint8_t usb_peer_should_wakeup(struct usb_device *udev); static const struct usb_config uhub_config[UHUB_N_TRANSFER] = { [0] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_ANY, .timeout = 0, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .bufsize = 0, /* use wMaxPacketSize */ .callback = &uhub_intr_callback, .interval = UHUB_INTR_INTERVAL, }, }; /* * driver instance for "hub" connected to "usb" * and "hub" connected to "hub" */ static devclass_t uhub_devclass; static device_method_t uhub_methods[] = { DEVMETHOD(device_probe, uhub_probe), DEVMETHOD(device_attach, uhub_attach), DEVMETHOD(device_detach, uhub_detach), DEVMETHOD(device_suspend, uhub_suspend), DEVMETHOD(device_resume, uhub_resume), DEVMETHOD(bus_child_location_str, uhub_child_location_string), DEVMETHOD(bus_child_pnpinfo_str, uhub_child_pnpinfo_string), DEVMETHOD(bus_driver_added, uhub_driver_added), {0, 0} }; static driver_t uhub_driver = { .name = "uhub", .methods = uhub_methods, .size = sizeof(struct uhub_softc) }; DRIVER_MODULE(uhub, usbus, uhub_driver, uhub_devclass, 0, 0); DRIVER_MODULE(uhub, uhub, uhub_driver, uhub_devclass, NULL, 0); MODULE_VERSION(uhub, 1); static void uhub_intr_callback(struct usb_xfer *xfer, usb_error_t error) { struct uhub_softc *sc = usbd_xfer_softc(xfer); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(2, "\n"); /* * This is an indication that some port * has changed status. Notify the bus * event handler thread that we need * to be explored again: */ usb_needs_explore(sc->sc_udev->bus, 0); case USB_ST_SETUP: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); break; default: /* Error */ if (xfer->error != USB_ERR_CANCELLED) { /* * Do a clear-stall. The "stall_pipe" flag * will get cleared before next callback by * the USB stack. */ usbd_xfer_set_stall(xfer); usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); } break; } } /*------------------------------------------------------------------------* * uhub_explore_sub - subroutine * * Return values: * 0: Success * Else: A control transaction failed *------------------------------------------------------------------------*/ static usb_error_t uhub_explore_sub(struct uhub_softc *sc, struct usb_port *up) { struct usb_bus *bus; struct usb_device *child; uint8_t refcount; usb_error_t err; bus = sc->sc_udev->bus; err = 0; /* get driver added refcount from USB bus */ refcount = bus->driver_added_refcount; /* get device assosiated with the given port */ child = usb_bus_port_get_device(bus, up); if (child == NULL) { /* nothing to do */ goto done; } /* check if device should be re-enumerated */ if (child->flags.usb_mode == USB_MODE_HOST) { usbd_enum_lock(child); if (child->re_enumerate_wait) { err = usbd_set_config_index(child, USB_UNCONFIG_INDEX); if (err != 0) { DPRINTF("Unconfigure failed: " "%s: Ignored.\n", usbd_errstr(err)); } err = usbd_req_re_enumerate(child, NULL); if (err == 0) err = usbd_set_config_index(child, 0); if (err == 0) { err = usb_probe_and_attach(child, USB_IFACE_INDEX_ANY); } child->re_enumerate_wait = 0; err = 0; } usbd_enum_unlock(child); } /* check if probe and attach should be done */ if (child->driver_added_refcount != refcount) { child->driver_added_refcount = refcount; err = usb_probe_and_attach(child, USB_IFACE_INDEX_ANY); if (err) { goto done; } } /* start control transfer, if device mode */ if (child->flags.usb_mode == USB_MODE_DEVICE) usbd_ctrl_transfer_setup(child); /* if a HUB becomes present, do a recursive HUB explore */ if (child->hub) err = (child->hub->explore) (child); done: return (err); } /*------------------------------------------------------------------------* * uhub_read_port_status - factored out code *------------------------------------------------------------------------*/ static usb_error_t uhub_read_port_status(struct uhub_softc *sc, uint8_t portno) { struct usb_port_status ps; usb_error_t err; err = usbd_req_get_port_status( sc->sc_udev, NULL, &ps, portno); /* update status regardless of error */ sc->sc_st.port_status = UGETW(ps.wPortStatus); sc->sc_st.port_change = UGETW(ps.wPortChange); /* debugging print */ DPRINTFN(4, "port %d, wPortStatus=0x%04x, " "wPortChange=0x%04x, err=%s\n", portno, sc->sc_st.port_status, sc->sc_st.port_change, usbd_errstr(err)); return (err); } /*------------------------------------------------------------------------* * uhub_reattach_port * * Returns: * 0: Success * Else: A control transaction failed *------------------------------------------------------------------------*/ static usb_error_t uhub_reattach_port(struct uhub_softc *sc, uint8_t portno) { struct usb_device *child; struct usb_device *udev; enum usb_dev_speed speed; enum usb_hc_mode mode; usb_error_t err; uint16_t power_mask; uint8_t timeout; DPRINTF("reattaching port %d\n", portno); err = 0; timeout = 0; udev = sc->sc_udev; child = usb_bus_port_get_device(udev->bus, udev->hub->ports + portno - 1); repeat: /* first clear the port connection change bit */ err = usbd_req_clear_port_feature(udev, NULL, portno, UHF_C_PORT_CONNECTION); if (err) { goto error; } /* check if there is a child */ if (child != NULL) { /* * Free USB device and all subdevices, if any. */ usb_free_device(child, 0); child = NULL; } /* get fresh status */ err = uhub_read_port_status(sc, portno); if (err) { goto error; } /* check if nothing is connected to the port */ if (!(sc->sc_st.port_status & UPS_CURRENT_CONNECT_STATUS)) { goto error; } /* check if there is no power on the port and print a warning */ switch (udev->speed) { case USB_SPEED_HIGH: case USB_SPEED_FULL: case USB_SPEED_LOW: power_mask = UPS_PORT_POWER; break; case USB_SPEED_SUPER: if (udev->parent_hub == NULL) power_mask = UPS_PORT_POWER; else power_mask = UPS_PORT_POWER_SS; break; default: power_mask = 0; break; } if (!(sc->sc_st.port_status & power_mask)) { DPRINTF("WARNING: strange, connected port %d " "has no power\n", portno); } /* check if the device is in Host Mode */ if (!(sc->sc_st.port_status & UPS_PORT_MODE_DEVICE)) { DPRINTF("Port %d is in Host Mode\n", portno); if (sc->sc_st.port_status & UPS_SUSPEND) { /* * NOTE: Should not get here in SuperSpeed * mode, because the HUB should report this * bit as zero. */ DPRINTF("Port %d was still " "suspended, clearing.\n", portno); err = usbd_req_clear_port_feature(udev, NULL, portno, UHF_PORT_SUSPEND); } /* USB Host Mode */ /* wait for maximum device power up time */ usb_pause_mtx(NULL, USB_MS_TO_TICKS(USB_PORT_POWERUP_DELAY)); /* reset port, which implies enabling it */ err = usbd_req_reset_port(udev, NULL, portno); if (err) { DPRINTFN(0, "port %d reset " "failed, error=%s\n", portno, usbd_errstr(err)); goto error; } /* get port status again, it might have changed during reset */ err = uhub_read_port_status(sc, portno); if (err) { goto error; } /* check if something changed during port reset */ if ((sc->sc_st.port_change & UPS_C_CONNECT_STATUS) || (!(sc->sc_st.port_status & UPS_CURRENT_CONNECT_STATUS))) { if (timeout) { DPRINTFN(0, "giving up port reset " "- device vanished\n"); goto error; } timeout = 1; goto repeat; } } else { DPRINTF("Port %d is in Device Mode\n", portno); } /* * Figure out the device speed */ switch (udev->speed) { case USB_SPEED_HIGH: if (sc->sc_st.port_status & UPS_HIGH_SPEED) speed = USB_SPEED_HIGH; else if (sc->sc_st.port_status & UPS_LOW_SPEED) speed = USB_SPEED_LOW; else speed = USB_SPEED_FULL; break; case USB_SPEED_FULL: if (sc->sc_st.port_status & UPS_LOW_SPEED) speed = USB_SPEED_LOW; else speed = USB_SPEED_FULL; break; case USB_SPEED_LOW: speed = USB_SPEED_LOW; break; case USB_SPEED_SUPER: if (udev->parent_hub == NULL) { /* Root HUB - special case */ switch (sc->sc_st.port_status & UPS_OTHER_SPEED) { case 0: speed = USB_SPEED_FULL; break; case UPS_LOW_SPEED: speed = USB_SPEED_LOW; break; case UPS_HIGH_SPEED: speed = USB_SPEED_HIGH; break; default: speed = USB_SPEED_SUPER; break; } } else { speed = USB_SPEED_SUPER; } break; default: /* same speed like parent */ speed = udev->speed; break; } if (speed == USB_SPEED_SUPER) { err = usbd_req_set_hub_u1_timeout(udev, NULL, portno, 128 - (2 * udev->depth)); if (err) { DPRINTFN(0, "port %d U1 timeout " "failed, error=%s\n", portno, usbd_errstr(err)); } err = usbd_req_set_hub_u2_timeout(udev, NULL, portno, 128 - (2 * udev->depth)); if (err) { DPRINTFN(0, "port %d U2 timeout " "failed, error=%s\n", portno, usbd_errstr(err)); } } /* * Figure out the device mode * * NOTE: This part is currently FreeBSD specific. */ if (sc->sc_st.port_status & UPS_PORT_MODE_DEVICE) mode = USB_MODE_DEVICE; else mode = USB_MODE_HOST; /* need to create a new child */ child = usb_alloc_device(sc->sc_dev, udev->bus, udev, udev->depth + 1, portno - 1, portno, speed, mode); if (child == NULL) { DPRINTFN(0, "could not allocate new device\n"); goto error; } return (0); /* success */ error: if (child != NULL) { /* * Free USB device and all subdevices, if any. */ usb_free_device(child, 0); child = NULL; } if (err == 0) { if (sc->sc_st.port_status & UPS_PORT_ENABLED) { err = usbd_req_clear_port_feature( sc->sc_udev, NULL, portno, UHF_PORT_ENABLE); } } if (err) { DPRINTFN(0, "device problem (%s), " "disabling port %d\n", usbd_errstr(err), portno); } return (err); } /*------------------------------------------------------------------------* * usb_device_20_compatible * * Returns: * 0: HUB does not support suspend and resume * Else: HUB supports suspend and resume *------------------------------------------------------------------------*/ static uint8_t usb_device_20_compatible(struct usb_device *udev) { if (udev == NULL) return (0); switch (udev->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: return (1); default: return (0); } } /*------------------------------------------------------------------------* * uhub_suspend_resume_port * * Returns: * 0: Success * Else: A control transaction failed *------------------------------------------------------------------------*/ static usb_error_t uhub_suspend_resume_port(struct uhub_softc *sc, uint8_t portno) { struct usb_device *child; struct usb_device *udev; uint8_t is_suspend; usb_error_t err; DPRINTF("port %d\n", portno); udev = sc->sc_udev; child = usb_bus_port_get_device(udev->bus, udev->hub->ports + portno - 1); /* first clear the port suspend change bit */ if (usb_device_20_compatible(udev)) { err = usbd_req_clear_port_feature(udev, NULL, portno, UHF_C_PORT_SUSPEND); } else { err = usbd_req_clear_port_feature(udev, NULL, portno, UHF_C_PORT_LINK_STATE); } if (err) { DPRINTF("clearing suspend failed.\n"); goto done; } /* get fresh status */ err = uhub_read_port_status(sc, portno); if (err) { DPRINTF("reading port status failed.\n"); goto done; } /* convert current state */ if (usb_device_20_compatible(udev)) { if (sc->sc_st.port_status & UPS_SUSPEND) { is_suspend = 1; } else { is_suspend = 0; } } else { switch (UPS_PORT_LINK_STATE_GET(sc->sc_st.port_status)) { case UPS_PORT_LS_U3: is_suspend = 1; break; case UPS_PORT_LS_SS_INA: usbd_req_warm_reset_port(udev, NULL, portno); is_suspend = 0; break; default: is_suspend = 0; break; } } DPRINTF("suspended=%u\n", is_suspend); /* do the suspend or resume */ if (child) { /* * This code handle two cases: 1) Host Mode - we can only * receive resume here 2) Device Mode - we can receive * suspend and resume here */ if (is_suspend == 0) usb_dev_resume_peer(child); else if (child->flags.usb_mode == USB_MODE_DEVICE) usb_dev_suspend_peer(child); } done: return (err); } /*------------------------------------------------------------------------* * uhub_root_interrupt * * This function is called when a Root HUB interrupt has * happened. "ptr" and "len" makes up the Root HUB interrupt * packet. This function is called having the "bus_mtx" locked. *------------------------------------------------------------------------*/ void uhub_root_intr(struct usb_bus *bus, const uint8_t *ptr, uint8_t len) { USB_BUS_LOCK_ASSERT(bus, MA_OWNED); usb_needs_explore(bus, 0); } static uint8_t uhub_is_too_deep(struct usb_device *udev) { switch (udev->speed) { case USB_SPEED_FULL: case USB_SPEED_LOW: case USB_SPEED_HIGH: if (udev->depth > USB_HUB_MAX_DEPTH) return (1); break; case USB_SPEED_SUPER: if (udev->depth > USB_SS_HUB_DEPTH_MAX) return (1); break; default: break; } return (0); } /*------------------------------------------------------------------------* * uhub_explore * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ static usb_error_t uhub_explore(struct usb_device *udev) { struct usb_hub *hub; struct uhub_softc *sc; struct usb_port *up; usb_error_t err; uint8_t portno; uint8_t x; hub = udev->hub; sc = hub->hubsoftc; DPRINTFN(11, "udev=%p addr=%d\n", udev, udev->address); /* ignore devices that are too deep */ if (uhub_is_too_deep(udev)) return (USB_ERR_TOO_DEEP); /* check if device is suspended */ if (udev->flags.self_suspended) { /* need to wait until the child signals resume */ DPRINTF("Device is suspended!\n"); return (0); } /* * Make sure we don't race against user-space applications * like LibUSB: */ usbd_enum_lock(udev); for (x = 0; x != hub->nports; x++) { up = hub->ports + x; portno = x + 1; err = uhub_read_port_status(sc, portno); if (err) { /* most likely the HUB is gone */ break; } if (sc->sc_st.port_change & UPS_C_OVERCURRENT_INDICATOR) { DPRINTF("Overcurrent on port %u.\n", portno); err = usbd_req_clear_port_feature( udev, NULL, portno, UHF_C_PORT_OVER_CURRENT); if (err) { /* most likely the HUB is gone */ break; } } if (!(sc->sc_flags & UHUB_FLAG_DID_EXPLORE)) { /* * Fake a connect status change so that the * status gets checked initially! */ sc->sc_st.port_change |= UPS_C_CONNECT_STATUS; } if (sc->sc_st.port_change & UPS_C_PORT_ENABLED) { err = usbd_req_clear_port_feature( udev, NULL, portno, UHF_C_PORT_ENABLE); if (err) { /* most likely the HUB is gone */ break; } if (sc->sc_st.port_change & UPS_C_CONNECT_STATUS) { /* * Ignore the port error if the device * has vanished ! */ } else if (sc->sc_st.port_status & UPS_PORT_ENABLED) { DPRINTFN(0, "illegal enable change, " "port %d\n", portno); } else { if (up->restartcnt == USB_RESTART_MAX) { /* XXX could try another speed ? */ DPRINTFN(0, "port error, giving up " "port %d\n", portno); } else { sc->sc_st.port_change |= UPS_C_CONNECT_STATUS; up->restartcnt++; } } } if (sc->sc_st.port_change & UPS_C_CONNECT_STATUS) { err = uhub_reattach_port(sc, portno); if (err) { /* most likely the HUB is gone */ break; } } if (sc->sc_st.port_change & (UPS_C_SUSPEND | UPS_C_PORT_LINK_STATE)) { err = uhub_suspend_resume_port(sc, portno); if (err) { /* most likely the HUB is gone */ break; } } err = uhub_explore_sub(sc, up); if (err) { /* no device(s) present */ continue; } /* explore succeeded - reset restart counter */ up->restartcnt = 0; } usbd_enum_unlock(udev); /* initial status checked */ sc->sc_flags |= UHUB_FLAG_DID_EXPLORE; /* return success */ return (USB_ERR_NORMAL_COMPLETION); } static int uhub_probe(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); /* * The subclass for USB HUBs is currently ignored because it * is 0 for some and 1 for others. */ if (uaa->info.bConfigIndex == 0 && uaa->info.bDeviceClass == UDCLASS_HUB) return (0); return (ENXIO); } /* NOTE: The information returned by this function can be wrong. */ usb_error_t uhub_query_info(struct usb_device *udev, uint8_t *pnports, uint8_t *ptt) { struct usb_hub_descriptor hubdesc20; struct usb_hub_ss_descriptor hubdesc30; usb_error_t err; uint8_t nports; uint8_t tt; if (udev->ddesc.bDeviceClass != UDCLASS_HUB) return (USB_ERR_INVAL); nports = 0; tt = 0; switch (udev->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: /* assuming that there is one port */ err = usbd_req_get_hub_descriptor(udev, NULL, &hubdesc20, 1); if (err) { DPRINTFN(0, "getting USB 2.0 HUB descriptor failed," "error=%s\n", usbd_errstr(err)); break; } nports = hubdesc20.bNbrPorts; if (nports > 127) nports = 127; if (udev->speed == USB_SPEED_HIGH) tt = (UGETW(hubdesc20.wHubCharacteristics) >> 5) & 3; break; case USB_SPEED_SUPER: err = usbd_req_get_ss_hub_descriptor(udev, NULL, &hubdesc30, 1); if (err) { DPRINTFN(0, "Getting USB 3.0 HUB descriptor failed," "error=%s\n", usbd_errstr(err)); break; } nports = hubdesc30.bNbrPorts; if (nports > 16) nports = 16; break; default: err = USB_ERR_INVAL; break; } if (pnports != NULL) *pnports = nports; if (ptt != NULL) *ptt = tt; return (err); } static int uhub_attach(device_t dev) { struct uhub_softc *sc = device_get_softc(dev); struct usb_attach_arg *uaa = device_get_ivars(dev); struct usb_device *udev = uaa->device; struct usb_device *parent_hub = udev->parent_hub; struct usb_hub *hub; struct usb_hub_descriptor hubdesc20; struct usb_hub_ss_descriptor hubdesc30; uint16_t pwrdly; uint8_t x; uint8_t nports; uint8_t portno; uint8_t removable; uint8_t iface_index; usb_error_t err; sc->sc_udev = udev; sc->sc_dev = dev; mtx_init(&sc->sc_mtx, "USB HUB mutex", NULL, MTX_DEF); snprintf(sc->sc_name, sizeof(sc->sc_name), "%s", device_get_nameunit(dev)); device_set_usb_desc(dev); DPRINTFN(2, "depth=%d selfpowered=%d, parent=%p, " "parent->selfpowered=%d\n", udev->depth, udev->flags.self_powered, parent_hub, parent_hub ? parent_hub->flags.self_powered : 0); if (uhub_is_too_deep(udev)) { DPRINTFN(0, "HUB at depth %d, " "exceeds maximum. HUB ignored\n", (int)udev->depth); goto error; } if (!udev->flags.self_powered && parent_hub && !parent_hub->flags.self_powered) { DPRINTFN(0, "Bus powered HUB connected to " "bus powered HUB. HUB ignored\n"); goto error; } /* get HUB descriptor */ DPRINTFN(2, "Getting HUB descriptor\n"); switch (udev->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: /* assuming that there is one port */ err = usbd_req_get_hub_descriptor(udev, NULL, &hubdesc20, 1); if (err) { DPRINTFN(0, "getting USB 2.0 HUB descriptor failed," "error=%s\n", usbd_errstr(err)); goto error; } /* get number of ports */ nports = hubdesc20.bNbrPorts; /* get power delay */ pwrdly = ((hubdesc20.bPwrOn2PwrGood * UHD_PWRON_FACTOR) + USB_EXTRA_POWER_UP_TIME); /* get complete HUB descriptor */ if (nports >= 8) { /* check number of ports */ if (nports > 127) { DPRINTFN(0, "Invalid number of USB 2.0 ports," "error=%s\n", usbd_errstr(err)); goto error; } /* get complete HUB descriptor */ err = usbd_req_get_hub_descriptor(udev, NULL, &hubdesc20, nports); if (err) { DPRINTFN(0, "Getting USB 2.0 HUB descriptor failed," "error=%s\n", usbd_errstr(err)); goto error; } if (hubdesc20.bNbrPorts != nports) { DPRINTFN(0, "Number of ports changed\n"); goto error; } } break; case USB_SPEED_SUPER: if (udev->parent_hub != NULL) { err = usbd_req_set_hub_depth(udev, NULL, udev->depth - 1); if (err) { DPRINTFN(0, "Setting USB 3.0 HUB depth failed," "error=%s\n", usbd_errstr(err)); goto error; } } err = usbd_req_get_ss_hub_descriptor(udev, NULL, &hubdesc30, 1); if (err) { DPRINTFN(0, "Getting USB 3.0 HUB descriptor failed," "error=%s\n", usbd_errstr(err)); goto error; } /* get number of ports */ nports = hubdesc30.bNbrPorts; /* get power delay */ pwrdly = ((hubdesc30.bPwrOn2PwrGood * UHD_PWRON_FACTOR) + USB_EXTRA_POWER_UP_TIME); /* get complete HUB descriptor */ if (nports >= 8) { /* check number of ports */ if (nports > ((udev->parent_hub != NULL) ? 15 : 127)) { DPRINTFN(0, "Invalid number of USB 3.0 ports," "error=%s\n", usbd_errstr(err)); goto error; } /* get complete HUB descriptor */ err = usbd_req_get_ss_hub_descriptor(udev, NULL, &hubdesc30, nports); if (err) { DPRINTFN(0, "Getting USB 2.0 HUB descriptor failed," "error=%s\n", usbd_errstr(err)); goto error; } if (hubdesc30.bNbrPorts != nports) { DPRINTFN(0, "Number of ports changed\n"); goto error; } } break; default: DPRINTF("Assuming HUB has only one port\n"); /* default number of ports */ nports = 1; /* default power delay */ pwrdly = ((10 * UHD_PWRON_FACTOR) + USB_EXTRA_POWER_UP_TIME); break; } if (nports == 0) { DPRINTFN(0, "portless HUB\n"); goto error; } hub = malloc(sizeof(hub[0]) + (sizeof(hub->ports[0]) * nports), M_USBDEV, M_WAITOK | M_ZERO); if (hub == NULL) { goto error; } udev->hub = hub; #if USB_HAVE_TT_SUPPORT /* init FULL-speed ISOCHRONOUS schedule */ usbd_fs_isoc_schedule_init_all(hub->fs_isoc_schedule); #endif /* initialize HUB structure */ hub->hubsoftc = sc; hub->explore = &uhub_explore; hub->nports = nports; hub->hubudev = udev; /* if self powered hub, give ports maximum current */ if (udev->flags.self_powered) { hub->portpower = USB_MAX_POWER; } else { hub->portpower = USB_MIN_POWER; } /* set up interrupt pipe */ iface_index = 0; if (udev->parent_hub == NULL) { /* root HUB is special */ err = 0; } else { /* normal HUB */ err = usbd_transfer_setup(udev, &iface_index, sc->sc_xfer, uhub_config, UHUB_N_TRANSFER, sc, &sc->sc_mtx); } if (err) { DPRINTFN(0, "cannot setup interrupt transfer, " "errstr=%s\n", usbd_errstr(err)); goto error; } /* wait with power off for a while */ usb_pause_mtx(NULL, USB_MS_TO_TICKS(USB_POWER_DOWN_TIME)); /* * To have the best chance of success we do things in the exact same * order as Windoze98. This should not be necessary, but some * devices do not follow the USB specs to the letter. * * These are the events on the bus when a hub is attached: * Get device and config descriptors (see attach code) * Get hub descriptor (see above) * For all ports * turn on power * wait for power to become stable * (all below happens in explore code) * For all ports * clear C_PORT_CONNECTION * For all ports * get port status * if device connected * wait 100 ms * turn on reset * wait * clear C_PORT_RESET * get port status * proceed with device attachment */ /* XXX should check for none, individual, or ganged power? */ removable = 0; for (x = 0; x != nports; x++) { /* set up data structures */ struct usb_port *up = hub->ports + x; up->device_index = 0; up->restartcnt = 0; portno = x + 1; /* check if port is removable */ switch (udev->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: if (!UHD_NOT_REMOV(&hubdesc20, portno)) removable++; break; case USB_SPEED_SUPER: if (!UHD_NOT_REMOV(&hubdesc30, portno)) removable++; break; default: DPRINTF("Assuming removable port\n"); removable++; break; } if (!err) { /* turn the power on */ err = usbd_req_set_port_feature(udev, NULL, portno, UHF_PORT_POWER); } if (err) { DPRINTFN(0, "port %d power on failed, %s\n", portno, usbd_errstr(err)); } DPRINTF("turn on port %d power\n", portno); /* wait for stable power */ usb_pause_mtx(NULL, USB_MS_TO_TICKS(pwrdly)); } device_printf(dev, "%d port%s with %d " "removable, %s powered\n", nports, (nports != 1) ? "s" : "", removable, udev->flags.self_powered ? "self" : "bus"); /* Start the interrupt endpoint, if any */ if (sc->sc_xfer[0] != NULL) { mtx_lock(&sc->sc_mtx); usbd_transfer_start(sc->sc_xfer[0]); mtx_unlock(&sc->sc_mtx); } /* Enable automatic power save on all USB HUBs */ usbd_set_power_mode(udev, USB_POWER_MODE_SAVE); return (0); error: usbd_transfer_unsetup(sc->sc_xfer, UHUB_N_TRANSFER); if (udev->hub) { free(udev->hub, M_USBDEV); udev->hub = NULL; } mtx_destroy(&sc->sc_mtx); return (ENXIO); } /* * Called from process context when the hub is gone. * Detach all devices on active ports. */ static int uhub_detach(device_t dev) { struct uhub_softc *sc = device_get_softc(dev); struct usb_hub *hub = sc->sc_udev->hub; struct usb_device *child; uint8_t x; if (hub == NULL) /* must be partially working */ return (0); /* Make sure interrupt transfer is gone. */ usbd_transfer_unsetup(sc->sc_xfer, UHUB_N_TRANSFER); /* Detach all ports */ for (x = 0; x != hub->nports; x++) { child = usb_bus_port_get_device(sc->sc_udev->bus, hub->ports + x); if (child == NULL) { continue; } /* * Free USB device and all subdevices, if any. */ usb_free_device(child, 0); } free(hub, M_USBDEV); sc->sc_udev->hub = NULL; mtx_destroy(&sc->sc_mtx); return (0); } static int uhub_suspend(device_t dev) { DPRINTF("\n"); /* Sub-devices are not suspended here! */ return (0); } static int uhub_resume(device_t dev) { DPRINTF("\n"); /* Sub-devices are not resumed here! */ return (0); } static void uhub_driver_added(device_t dev, driver_t *driver) { usb_needs_explore_all(); } struct hub_result { struct usb_device *udev; uint8_t portno; uint8_t iface_index; }; static void uhub_find_iface_index(struct usb_hub *hub, device_t child, struct hub_result *res) { struct usb_interface *iface; struct usb_device *udev; uint8_t nports; uint8_t x; uint8_t i; nports = hub->nports; for (x = 0; x != nports; x++) { udev = usb_bus_port_get_device(hub->hubudev->bus, hub->ports + x); if (!udev) { continue; } for (i = 0; i != USB_IFACE_MAX; i++) { iface = usbd_get_iface(udev, i); if (iface && (iface->subdev == child)) { res->iface_index = i; res->udev = udev; res->portno = x + 1; return; } } } res->iface_index = 0; res->udev = NULL; res->portno = 0; } static int uhub_child_location_string(device_t parent, device_t child, char *buf, size_t buflen) { struct uhub_softc *sc; struct usb_hub *hub; struct hub_result res; if (!device_is_attached(parent)) { if (buflen) buf[0] = 0; return (0); } sc = device_get_softc(parent); hub = sc->sc_udev->hub; mtx_lock(&Giant); uhub_find_iface_index(hub, child, &res); if (!res.udev) { DPRINTF("device not on hub\n"); if (buflen) { buf[0] = '\0'; } goto done; } snprintf(buf, buflen, "bus=%u hubaddr=%u port=%u devaddr=%u interface=%u", (res.udev->parent_hub != NULL) ? res.udev->parent_hub->device_index : 0, res.portno, device_get_unit(res.udev->bus->bdev), res.udev->device_index, res.iface_index); done: mtx_unlock(&Giant); return (0); } static int uhub_child_pnpinfo_string(device_t parent, device_t child, char *buf, size_t buflen) { struct uhub_softc *sc; struct usb_hub *hub; struct usb_interface *iface; struct hub_result res; if (!device_is_attached(parent)) { if (buflen) buf[0] = 0; return (0); } sc = device_get_softc(parent); hub = sc->sc_udev->hub; mtx_lock(&Giant); uhub_find_iface_index(hub, child, &res); if (!res.udev) { DPRINTF("device not on hub\n"); if (buflen) { buf[0] = '\0'; } goto done; } iface = usbd_get_iface(res.udev, res.iface_index); if (iface && iface->idesc) { snprintf(buf, buflen, "vendor=0x%04x product=0x%04x " "devclass=0x%02x devsubclass=0x%02x " "sernum=\"%s\" " "release=0x%04x " "mode=%s " "intclass=0x%02x intsubclass=0x%02x " "intprotocol=0x%02x " "%s%s", UGETW(res.udev->ddesc.idVendor), UGETW(res.udev->ddesc.idProduct), res.udev->ddesc.bDeviceClass, res.udev->ddesc.bDeviceSubClass, usb_get_serial(res.udev), UGETW(res.udev->ddesc.bcdDevice), (res.udev->flags.usb_mode == USB_MODE_HOST) ? "host" : "device", iface->idesc->bInterfaceClass, iface->idesc->bInterfaceSubClass, iface->idesc->bInterfaceProtocol, iface->pnpinfo ? " " : "", iface->pnpinfo ? iface->pnpinfo : ""); } else { if (buflen) { buf[0] = '\0'; } goto done; } done: mtx_unlock(&Giant); return (0); } /* * The USB Transaction Translator: * =============================== * * When doing LOW- and FULL-speed USB transfers accross a HIGH-speed * USB HUB, bandwidth must be allocated for ISOCHRONOUS and INTERRUPT * USB transfers. To utilize bandwidth dynamically the "scatter and * gather" principle must be applied. This means that bandwidth must * be divided into equal parts of bandwidth. With regard to USB all * data is transferred in smaller packets with length * "wMaxPacketSize". The problem however is that "wMaxPacketSize" is * not a constant! * * The bandwidth scheduler which I have implemented will simply pack * the USB transfers back to back until there is no more space in the * schedule. Out of the 8 microframes which the USB 2.0 standard * provides, only 6 are available for non-HIGH-speed devices. I have * reserved the first 4 microframes for ISOCHRONOUS transfers. The * last 2 microframes I have reserved for INTERRUPT transfers. Without * this division, it is very difficult to allocate and free bandwidth * dynamically. * * NOTE about the Transaction Translator in USB HUBs: * * USB HUBs have a very simple Transaction Translator, that will * simply pipeline all the SPLIT transactions. That means that the * transactions will be executed in the order they are queued! * */ /*------------------------------------------------------------------------* * usb_intr_find_best_slot * * Return value: * The best Transaction Translation slot for an interrupt endpoint. *------------------------------------------------------------------------*/ static uint8_t usb_intr_find_best_slot(usb_size_t *ptr, uint8_t start, uint8_t end, uint8_t mask) { usb_size_t min = 0 - 1; usb_size_t sum; uint8_t x; uint8_t y; uint8_t z; y = 0; /* find the last slot with lesser used bandwidth */ for (x = start; x < end; x++) { sum = 0; /* compute sum of bandwidth */ for (z = x; z < end; z++) { if (mask & (1U << (z - x))) sum += ptr[z]; } /* check if the current multi-slot is more optimal */ if (min >= sum) { min = sum; y = x; } /* check if the mask is about to be shifted out */ if (mask & (1U << (end - 1 - x))) break; } return (y); } /*------------------------------------------------------------------------* * usb_hs_bandwidth_adjust * * This function will update the bandwith usage for the microframe * having index "slot" by "len" bytes. "len" can be negative. If the * "slot" argument is greater or equal to "USB_HS_MICRO_FRAMES_MAX" * the "slot" argument will be replaced by the slot having least used * bandwidth. The "mask" argument is used for multi-slot allocations. * * Returns: * The slot in which the bandwidth update was done: 0..7 *------------------------------------------------------------------------*/ static uint8_t usb_hs_bandwidth_adjust(struct usb_device *udev, int16_t len, uint8_t slot, uint8_t mask) { struct usb_bus *bus = udev->bus; struct usb_hub *hub; enum usb_dev_speed speed; uint8_t x; USB_BUS_LOCK_ASSERT(bus, MA_OWNED); speed = usbd_get_speed(udev); switch (speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: if (speed == USB_SPEED_LOW) { len *= 8; } /* * The Host Controller Driver should have * performed checks so that the lookup * below does not result in a NULL pointer * access. */ hub = udev->parent_hs_hub->hub; if (slot >= USB_HS_MICRO_FRAMES_MAX) { slot = usb_intr_find_best_slot(hub->uframe_usage, USB_FS_ISOC_UFRAME_MAX, 6, mask); } for (x = slot; x < 8; x++) { if (mask & (1U << (x - slot))) { hub->uframe_usage[x] += len; bus->uframe_usage[x] += len; } } break; default: if (slot >= USB_HS_MICRO_FRAMES_MAX) { slot = usb_intr_find_best_slot(bus->uframe_usage, 0, USB_HS_MICRO_FRAMES_MAX, mask); } for (x = slot; x < 8; x++) { if (mask & (1U << (x - slot))) { bus->uframe_usage[x] += len; } } break; } return (slot); } /*------------------------------------------------------------------------* * usb_hs_bandwidth_alloc * * This function is a wrapper function for "usb_hs_bandwidth_adjust()". *------------------------------------------------------------------------*/ void usb_hs_bandwidth_alloc(struct usb_xfer *xfer) { struct usb_device *udev; uint8_t slot; uint8_t mask; uint8_t speed; udev = xfer->xroot->udev; if (udev->flags.usb_mode != USB_MODE_HOST) return; /* not supported */ xfer->endpoint->refcount_bw++; if (xfer->endpoint->refcount_bw != 1) return; /* already allocated */ speed = usbd_get_speed(udev); switch (xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE) { case UE_INTERRUPT: /* allocate a microframe slot */ mask = 0x01; slot = usb_hs_bandwidth_adjust(udev, xfer->max_frame_size, USB_HS_MICRO_FRAMES_MAX, mask); xfer->endpoint->usb_uframe = slot; xfer->endpoint->usb_smask = mask << slot; if ((speed != USB_SPEED_FULL) && (speed != USB_SPEED_LOW)) { xfer->endpoint->usb_cmask = 0x00 ; } else { xfer->endpoint->usb_cmask = (-(0x04 << slot)) & 0xFE; } break; case UE_ISOCHRONOUS: switch (usbd_xfer_get_fps_shift(xfer)) { case 0: mask = 0xFF; break; case 1: mask = 0x55; break; case 2: mask = 0x11; break; default: mask = 0x01; break; } /* allocate a microframe multi-slot */ slot = usb_hs_bandwidth_adjust(udev, xfer->max_frame_size, USB_HS_MICRO_FRAMES_MAX, mask); xfer->endpoint->usb_uframe = slot; xfer->endpoint->usb_cmask = 0; xfer->endpoint->usb_smask = mask << slot; break; default: xfer->endpoint->usb_uframe = 0; xfer->endpoint->usb_cmask = 0; xfer->endpoint->usb_smask = 0; break; } DPRINTFN(11, "slot=%d, mask=0x%02x\n", xfer->endpoint->usb_uframe, xfer->endpoint->usb_smask >> xfer->endpoint->usb_uframe); } /*------------------------------------------------------------------------* * usb_hs_bandwidth_free * * This function is a wrapper function for "usb_hs_bandwidth_adjust()". *------------------------------------------------------------------------*/ void usb_hs_bandwidth_free(struct usb_xfer *xfer) { struct usb_device *udev; uint8_t slot; uint8_t mask; udev = xfer->xroot->udev; if (udev->flags.usb_mode != USB_MODE_HOST) return; /* not supported */ xfer->endpoint->refcount_bw--; if (xfer->endpoint->refcount_bw != 0) return; /* still allocated */ switch (xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE) { case UE_INTERRUPT: case UE_ISOCHRONOUS: slot = xfer->endpoint->usb_uframe; mask = xfer->endpoint->usb_smask; /* free microframe slot(s): */ usb_hs_bandwidth_adjust(udev, -xfer->max_frame_size, slot, mask >> slot); DPRINTFN(11, "slot=%d, mask=0x%02x\n", slot, mask >> slot); xfer->endpoint->usb_uframe = 0; xfer->endpoint->usb_cmask = 0; xfer->endpoint->usb_smask = 0; break; default: break; } } /*------------------------------------------------------------------------* * usbd_fs_isoc_schedule_init_sub * * This function initialises an USB FULL speed isochronous schedule * entry. *------------------------------------------------------------------------*/ #if USB_HAVE_TT_SUPPORT static void usbd_fs_isoc_schedule_init_sub(struct usb_fs_isoc_schedule *fss) { fss->total_bytes = (USB_FS_ISOC_UFRAME_MAX * USB_FS_BYTES_PER_HS_UFRAME); fss->frame_bytes = (USB_FS_BYTES_PER_HS_UFRAME); fss->frame_slot = 0; } #endif /*------------------------------------------------------------------------* * usbd_fs_isoc_schedule_init_all * * This function will reset the complete USB FULL speed isochronous * bandwidth schedule. *------------------------------------------------------------------------*/ #if USB_HAVE_TT_SUPPORT void usbd_fs_isoc_schedule_init_all(struct usb_fs_isoc_schedule *fss) { struct usb_fs_isoc_schedule *fss_end = fss + USB_ISOC_TIME_MAX; while (fss != fss_end) { usbd_fs_isoc_schedule_init_sub(fss); fss++; } } #endif /*------------------------------------------------------------------------* * usb_isoc_time_expand * * This function will expand the time counter from 7-bit to 16-bit. * * Returns: * 16-bit isochronous time counter. *------------------------------------------------------------------------*/ uint16_t usb_isoc_time_expand(struct usb_bus *bus, uint16_t isoc_time_curr) { uint16_t rem; USB_BUS_LOCK_ASSERT(bus, MA_OWNED); rem = bus->isoc_time_last & (USB_ISOC_TIME_MAX - 1); isoc_time_curr &= (USB_ISOC_TIME_MAX - 1); if (isoc_time_curr < rem) { /* the time counter wrapped around */ bus->isoc_time_last += USB_ISOC_TIME_MAX; } /* update the remainder */ bus->isoc_time_last &= ~(USB_ISOC_TIME_MAX - 1); bus->isoc_time_last |= isoc_time_curr; return (bus->isoc_time_last); } /*------------------------------------------------------------------------* * usbd_fs_isoc_schedule_isoc_time_expand * * This function does multiple things. First of all it will expand the * passed isochronous time, which is the return value. Then it will * store where the current FULL speed isochronous schedule is * positioned in time and where the end is. See "pp_start" and * "pp_end" arguments. * * Returns: * Expanded version of "isoc_time". * * NOTE: This function depends on being called regularly with * intervals less than "USB_ISOC_TIME_MAX". *------------------------------------------------------------------------*/ #if USB_HAVE_TT_SUPPORT uint16_t usbd_fs_isoc_schedule_isoc_time_expand(struct usb_device *udev, struct usb_fs_isoc_schedule **pp_start, struct usb_fs_isoc_schedule **pp_end, uint16_t isoc_time) { struct usb_fs_isoc_schedule *fss_end; struct usb_fs_isoc_schedule *fss_a; struct usb_fs_isoc_schedule *fss_b; struct usb_hub *hs_hub; isoc_time = usb_isoc_time_expand(udev->bus, isoc_time); hs_hub = udev->parent_hs_hub->hub; if (hs_hub != NULL) { fss_a = hs_hub->fs_isoc_schedule + (hs_hub->isoc_last_time % USB_ISOC_TIME_MAX); hs_hub->isoc_last_time = isoc_time; fss_b = hs_hub->fs_isoc_schedule + (isoc_time % USB_ISOC_TIME_MAX); fss_end = hs_hub->fs_isoc_schedule + USB_ISOC_TIME_MAX; *pp_start = hs_hub->fs_isoc_schedule; *pp_end = fss_end; while (fss_a != fss_b) { if (fss_a == fss_end) { fss_a = hs_hub->fs_isoc_schedule; continue; } usbd_fs_isoc_schedule_init_sub(fss_a); fss_a++; } } else { *pp_start = NULL; *pp_end = NULL; } return (isoc_time); } #endif /*------------------------------------------------------------------------* * usbd_fs_isoc_schedule_alloc * * This function will allocate bandwidth for an isochronous FULL speed * transaction in the FULL speed schedule. The microframe slot where * the transaction should be started is stored in the byte pointed to * by "pstart". The "len" argument specifies the length of the * transaction in bytes. * * Returns: * 0: Success * Else: Error *------------------------------------------------------------------------*/ #if USB_HAVE_TT_SUPPORT uint8_t usbd_fs_isoc_schedule_alloc(struct usb_fs_isoc_schedule *fss, uint8_t *pstart, uint16_t len) { uint8_t slot = fss->frame_slot; /* Compute overhead and bit-stuffing */ len += 8; len *= 7; len /= 6; if (len > fss->total_bytes) { *pstart = 0; /* set some dummy value */ return (1); /* error */ } if (len > 0) { fss->total_bytes -= len; while (len >= fss->frame_bytes) { len -= fss->frame_bytes; fss->frame_bytes = USB_FS_BYTES_PER_HS_UFRAME; fss->frame_slot++; } fss->frame_bytes -= len; } *pstart = slot; return (0); /* success */ } #endif /*------------------------------------------------------------------------* * usb_bus_port_get_device * * This function is NULL safe. *------------------------------------------------------------------------*/ struct usb_device * usb_bus_port_get_device(struct usb_bus *bus, struct usb_port *up) { if ((bus == NULL) || (up == NULL)) { /* be NULL safe */ return (NULL); } if (up->device_index == 0) { /* nothing to do */ return (NULL); } return (bus->devices[up->device_index]); } /*------------------------------------------------------------------------* * usb_bus_port_set_device * * This function is NULL safe. *------------------------------------------------------------------------*/ void usb_bus_port_set_device(struct usb_bus *bus, struct usb_port *up, struct usb_device *udev, uint8_t device_index) { if (bus == NULL) { /* be NULL safe */ return; } /* * There is only one case where we don't * have an USB port, and that is the Root Hub! */ if (up) { if (udev) { up->device_index = device_index; } else { device_index = up->device_index; up->device_index = 0; } } /* * Make relationships to our new device */ if (device_index != 0) { #if USB_HAVE_UGEN mtx_lock(&usb_ref_lock); #endif bus->devices[device_index] = udev; #if USB_HAVE_UGEN mtx_unlock(&usb_ref_lock); #endif } /* * Debug print */ DPRINTFN(2, "bus %p devices[%u] = %p\n", bus, device_index, udev); } /*------------------------------------------------------------------------* * usb_needs_explore * * This functions is called when the USB event thread needs to run. *------------------------------------------------------------------------*/ void usb_needs_explore(struct usb_bus *bus, uint8_t do_probe) { uint8_t do_unlock; DPRINTF("\n"); if (bus == NULL) { DPRINTF("No bus pointer!\n"); return; } if ((bus->devices == NULL) || (bus->devices[USB_ROOT_HUB_ADDR] == NULL)) { DPRINTF("No root HUB\n"); return; } if (mtx_owned(&bus->bus_mtx)) { do_unlock = 0; } else { USB_BUS_LOCK(bus); do_unlock = 1; } if (do_probe) { bus->do_probe = 1; } if (usb_proc_msignal(&bus->explore_proc, &bus->explore_msg[0], &bus->explore_msg[1])) { /* ignore */ } if (do_unlock) { USB_BUS_UNLOCK(bus); } } /*------------------------------------------------------------------------* * usb_needs_explore_all * * This function is called whenever a new driver is loaded and will * cause that all USB busses are re-explored. *------------------------------------------------------------------------*/ void usb_needs_explore_all(void) { struct usb_bus *bus; devclass_t dc; device_t dev; int max; DPRINTFN(3, "\n"); dc = usb_devclass_ptr; if (dc == NULL) { DPRINTFN(0, "no devclass\n"); return; } /* * Explore all USB busses in parallell. */ max = devclass_get_maxunit(dc); while (max >= 0) { dev = devclass_get_device(dc, max); if (dev) { bus = device_get_softc(dev); if (bus) { usb_needs_explore(bus, 1); } } max--; } } /*------------------------------------------------------------------------* * usb_bus_power_update * * This function will ensure that all USB devices on the given bus are * properly suspended or resumed according to the device transfer * state. *------------------------------------------------------------------------*/ #if USB_HAVE_POWERD void usb_bus_power_update(struct usb_bus *bus) { usb_needs_explore(bus, 0 /* no probe */ ); } #endif /*------------------------------------------------------------------------* * usbd_transfer_power_ref * * This function will modify the power save reference counts and * wakeup the USB device associated with the given USB transfer, if * needed. *------------------------------------------------------------------------*/ #if USB_HAVE_POWERD void usbd_transfer_power_ref(struct usb_xfer *xfer, int val) { static const usb_power_mask_t power_mask[4] = { [UE_CONTROL] = USB_HW_POWER_CONTROL, [UE_BULK] = USB_HW_POWER_BULK, [UE_INTERRUPT] = USB_HW_POWER_INTERRUPT, [UE_ISOCHRONOUS] = USB_HW_POWER_ISOC, }; struct usb_device *udev; uint8_t needs_explore; uint8_t needs_hw_power; uint8_t xfer_type; udev = xfer->xroot->udev; if (udev->device_index == USB_ROOT_HUB_ADDR) { /* no power save for root HUB */ return; } USB_BUS_LOCK(udev->bus); xfer_type = xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE; udev->pwr_save.last_xfer_time = ticks; udev->pwr_save.type_refs[xfer_type] += val; if (xfer->flags_int.control_xfr) { udev->pwr_save.read_refs += val; if (xfer->flags_int.usb_mode == USB_MODE_HOST) { /* * It is not allowed to suspend during a * control transfer: */ udev->pwr_save.write_refs += val; } } else if (USB_GET_DATA_ISREAD(xfer)) { udev->pwr_save.read_refs += val; } else { udev->pwr_save.write_refs += val; } if (val > 0) { if (udev->flags.self_suspended) needs_explore = usb_peer_should_wakeup(udev); else needs_explore = 0; if (!(udev->bus->hw_power_state & power_mask[xfer_type])) { DPRINTF("Adding type %u to power state\n", xfer_type); udev->bus->hw_power_state |= power_mask[xfer_type]; needs_hw_power = 1; } else { needs_hw_power = 0; } } else { needs_explore = 0; needs_hw_power = 0; } USB_BUS_UNLOCK(udev->bus); if (needs_explore) { DPRINTF("update\n"); usb_bus_power_update(udev->bus); } else if (needs_hw_power) { DPRINTF("needs power\n"); if (udev->bus->methods->set_hw_power != NULL) { (udev->bus->methods->set_hw_power) (udev->bus); } } } #endif /*------------------------------------------------------------------------* * usb_peer_should_wakeup * * This function returns non-zero if the current device should wake up. *------------------------------------------------------------------------*/ static uint8_t usb_peer_should_wakeup(struct usb_device *udev) { return ((udev->power_mode == USB_POWER_MODE_ON) || (udev->driver_added_refcount != udev->bus->driver_added_refcount) || (udev->re_enumerate_wait != 0) || (udev->pwr_save.type_refs[UE_ISOCHRONOUS] != 0) || (udev->pwr_save.write_refs != 0) || ((udev->pwr_save.read_refs != 0) && (udev->flags.usb_mode == USB_MODE_HOST) && (usb_peer_can_wakeup(udev) == 0))); } /*------------------------------------------------------------------------* * usb_bus_powerd * * This function implements the USB power daemon and is called * regularly from the USB explore thread. *------------------------------------------------------------------------*/ #if USB_HAVE_POWERD void usb_bus_powerd(struct usb_bus *bus) { struct usb_device *udev; usb_ticks_t temp; usb_ticks_t limit; usb_ticks_t mintime; usb_size_t type_refs[5]; uint8_t x; limit = usb_power_timeout; if (limit == 0) limit = hz; else if (limit > 255) limit = 255 * hz; else limit = limit * hz; DPRINTF("bus=%p\n", bus); USB_BUS_LOCK(bus); /* * The root HUB device is never suspended * and we simply skip it. */ for (x = USB_ROOT_HUB_ADDR + 1; x != bus->devices_max; x++) { udev = bus->devices[x]; if (udev == NULL) continue; temp = ticks - udev->pwr_save.last_xfer_time; if (usb_peer_should_wakeup(udev)) { /* check if we are suspended */ if (udev->flags.self_suspended != 0) { USB_BUS_UNLOCK(bus); usb_dev_resume_peer(udev); USB_BUS_LOCK(bus); } } else if ((temp >= limit) && (udev->flags.usb_mode == USB_MODE_HOST) && (udev->flags.self_suspended == 0)) { /* try to do suspend */ USB_BUS_UNLOCK(bus); usb_dev_suspend_peer(udev); USB_BUS_LOCK(bus); } } /* reset counters */ mintime = 0 - 1; type_refs[0] = 0; type_refs[1] = 0; type_refs[2] = 0; type_refs[3] = 0; type_refs[4] = 0; /* Re-loop all the devices to get the actual state */ for (x = USB_ROOT_HUB_ADDR + 1; x != bus->devices_max; x++) { udev = bus->devices[x]; if (udev == NULL) continue; /* we found a non-Root-Hub USB device */ type_refs[4] += 1; /* "last_xfer_time" can be updated by a resume */ temp = ticks - udev->pwr_save.last_xfer_time; /* * Compute minimum time since last transfer for the complete * bus: */ if (temp < mintime) mintime = temp; if (udev->flags.self_suspended == 0) { type_refs[0] += udev->pwr_save.type_refs[0]; type_refs[1] += udev->pwr_save.type_refs[1]; type_refs[2] += udev->pwr_save.type_refs[2]; type_refs[3] += udev->pwr_save.type_refs[3]; } } if (mintime >= (1 * hz)) { /* recompute power masks */ DPRINTF("Recomputing power masks\n"); bus->hw_power_state = 0; if (type_refs[UE_CONTROL] != 0) bus->hw_power_state |= USB_HW_POWER_CONTROL; if (type_refs[UE_BULK] != 0) bus->hw_power_state |= USB_HW_POWER_BULK; if (type_refs[UE_INTERRUPT] != 0) bus->hw_power_state |= USB_HW_POWER_INTERRUPT; if (type_refs[UE_ISOCHRONOUS] != 0) bus->hw_power_state |= USB_HW_POWER_ISOC; if (type_refs[4] != 0) bus->hw_power_state |= USB_HW_POWER_NON_ROOT_HUB; } USB_BUS_UNLOCK(bus); if (bus->methods->set_hw_power != NULL) { /* always update hardware power! */ (bus->methods->set_hw_power) (bus); } return; } #endif /*------------------------------------------------------------------------* * usb_dev_resume_peer * * This function will resume an USB peer and do the required USB * signalling to get an USB device out of the suspended state. *------------------------------------------------------------------------*/ static void usb_dev_resume_peer(struct usb_device *udev) { struct usb_bus *bus; int err; /* be NULL safe */ if (udev == NULL) return; /* check if already resumed */ if (udev->flags.self_suspended == 0) return; /* we need a parent HUB to do resume */ if (udev->parent_hub == NULL) return; DPRINTF("udev=%p\n", udev); if ((udev->flags.usb_mode == USB_MODE_DEVICE) && (udev->flags.remote_wakeup == 0)) { /* * If the host did not set the remote wakeup feature, we can * not wake it up either! */ DPRINTF("remote wakeup is not set!\n"); return; } /* get bus pointer */ bus = udev->bus; /* resume parent hub first */ usb_dev_resume_peer(udev->parent_hub); /* reduce chance of instant resume failure by waiting a little bit */ usb_pause_mtx(NULL, USB_MS_TO_TICKS(20)); if (usb_device_20_compatible(udev)) { /* resume current port (Valid in Host and Device Mode) */ err = usbd_req_clear_port_feature(udev->parent_hub, NULL, udev->port_no, UHF_PORT_SUSPEND); if (err) { DPRINTFN(0, "Resuming port failed\n"); return; } } else { /* resume current port (Valid in Host and Device Mode) */ err = usbd_req_set_port_link_state(udev->parent_hub, NULL, udev->port_no, UPS_PORT_LS_U0); if (err) { DPRINTFN(0, "Resuming port failed\n"); return; } } /* resume settle time */ usb_pause_mtx(NULL, USB_MS_TO_TICKS(USB_PORT_RESUME_DELAY)); if (bus->methods->device_resume != NULL) { /* resume USB device on the USB controller */ (bus->methods->device_resume) (udev); } USB_BUS_LOCK(bus); /* set that this device is now resumed */ udev->flags.self_suspended = 0; #if USB_HAVE_POWERD /* make sure that we don't go into suspend right away */ udev->pwr_save.last_xfer_time = ticks; /* make sure the needed power masks are on */ if (udev->pwr_save.type_refs[UE_CONTROL] != 0) bus->hw_power_state |= USB_HW_POWER_CONTROL; if (udev->pwr_save.type_refs[UE_BULK] != 0) bus->hw_power_state |= USB_HW_POWER_BULK; if (udev->pwr_save.type_refs[UE_INTERRUPT] != 0) bus->hw_power_state |= USB_HW_POWER_INTERRUPT; if (udev->pwr_save.type_refs[UE_ISOCHRONOUS] != 0) bus->hw_power_state |= USB_HW_POWER_ISOC; #endif USB_BUS_UNLOCK(bus); if (bus->methods->set_hw_power != NULL) { /* always update hardware power! */ (bus->methods->set_hw_power) (bus); } usbd_sr_lock(udev); /* notify all sub-devices about resume */ err = usb_suspend_resume(udev, 0); usbd_sr_unlock(udev); /* check if peer has wakeup capability */ if (usb_peer_can_wakeup(udev)) { /* clear remote wakeup */ err = usbd_req_clear_device_feature(udev, NULL, UF_DEVICE_REMOTE_WAKEUP); if (err) { DPRINTFN(0, "Clearing device " "remote wakeup failed: %s\n", usbd_errstr(err)); } } } /*------------------------------------------------------------------------* * usb_dev_suspend_peer * * This function will suspend an USB peer and do the required USB * signalling to get an USB device into the suspended state. *------------------------------------------------------------------------*/ static void usb_dev_suspend_peer(struct usb_device *udev) { struct usb_device *child; int err; uint8_t x; uint8_t nports; repeat: /* be NULL safe */ if (udev == NULL) return; /* check if already suspended */ if (udev->flags.self_suspended) return; /* we need a parent HUB to do suspend */ if (udev->parent_hub == NULL) return; DPRINTF("udev=%p\n", udev); /* check if the current device is a HUB */ if (udev->hub != NULL) { nports = udev->hub->nports; /* check if all devices on the HUB are suspended */ for (x = 0; x != nports; x++) { child = usb_bus_port_get_device(udev->bus, udev->hub->ports + x); if (child == NULL) continue; if (child->flags.self_suspended) continue; DPRINTFN(1, "Port %u is busy on the HUB!\n", x + 1); return; } } if (usb_peer_can_wakeup(udev)) { /* * This request needs to be done before we set * "udev->flags.self_suspended": */ /* allow device to do remote wakeup */ err = usbd_req_set_device_feature(udev, NULL, UF_DEVICE_REMOTE_WAKEUP); if (err) { DPRINTFN(0, "Setting device " "remote wakeup failed\n"); } } USB_BUS_LOCK(udev->bus); /* * Checking for suspend condition and setting suspended bit * must be atomic! */ err = usb_peer_should_wakeup(udev); if (err == 0) { /* * Set that this device is suspended. This variable * must be set before calling USB controller suspend * callbacks. */ udev->flags.self_suspended = 1; } USB_BUS_UNLOCK(udev->bus); if (err != 0) { if (usb_peer_can_wakeup(udev)) { /* allow device to do remote wakeup */ err = usbd_req_clear_device_feature(udev, NULL, UF_DEVICE_REMOTE_WAKEUP); if (err) { DPRINTFN(0, "Setting device " "remote wakeup failed\n"); } } if (udev->flags.usb_mode == USB_MODE_DEVICE) { /* resume parent HUB first */ usb_dev_resume_peer(udev->parent_hub); /* reduce chance of instant resume failure by waiting a little bit */ usb_pause_mtx(NULL, USB_MS_TO_TICKS(20)); /* resume current port (Valid in Host and Device Mode) */ err = usbd_req_clear_port_feature(udev->parent_hub, NULL, udev->port_no, UHF_PORT_SUSPEND); /* resume settle time */ usb_pause_mtx(NULL, USB_MS_TO_TICKS(USB_PORT_RESUME_DELAY)); } DPRINTF("Suspend was cancelled!\n"); return; } usbd_sr_lock(udev); /* notify all sub-devices about suspend */ err = usb_suspend_resume(udev, 1); usbd_sr_unlock(udev); if (udev->bus->methods->device_suspend != NULL) { usb_timeout_t temp; /* suspend device on the USB controller */ (udev->bus->methods->device_suspend) (udev); /* do DMA delay */ temp = usbd_get_dma_delay(udev); if (temp != 0) usb_pause_mtx(NULL, USB_MS_TO_TICKS(temp)); } if (usb_device_20_compatible(udev)) { /* suspend current port */ err = usbd_req_set_port_feature(udev->parent_hub, NULL, udev->port_no, UHF_PORT_SUSPEND); if (err) { DPRINTFN(0, "Suspending port failed\n"); return; } } else { /* suspend current port */ err = usbd_req_set_port_link_state(udev->parent_hub, NULL, udev->port_no, UPS_PORT_LS_U3); if (err) { DPRINTFN(0, "Suspending port failed\n"); return; } } udev = udev->parent_hub; goto repeat; } /*------------------------------------------------------------------------* * usbd_set_power_mode * * This function will set the power mode, see USB_POWER_MODE_XXX for a * USB device. *------------------------------------------------------------------------*/ void usbd_set_power_mode(struct usb_device *udev, uint8_t power_mode) { /* filter input argument */ if ((power_mode != USB_POWER_MODE_ON) && (power_mode != USB_POWER_MODE_OFF)) power_mode = USB_POWER_MODE_SAVE; power_mode = usbd_filter_power_mode(udev, power_mode); udev->power_mode = power_mode; /* update copy of power mode */ #if USB_HAVE_POWERD usb_bus_power_update(udev->bus); #endif } /*------------------------------------------------------------------------* * usbd_filter_power_mode * * This function filters the power mode based on hardware requirements. *------------------------------------------------------------------------*/ uint8_t usbd_filter_power_mode(struct usb_device *udev, uint8_t power_mode) { struct usb_bus_methods *mtod; int8_t temp; mtod = udev->bus->methods; temp = -1; if (mtod->get_power_mode != NULL) (mtod->get_power_mode) (udev, &temp); /* check if we should not filter */ if (temp < 0) return (power_mode); /* use fixed power mode given by hardware driver */ return (temp); } /*------------------------------------------------------------------------* * usbd_start_re_enumerate * * This function starts re-enumeration of the given USB device. This * function does not need to be called BUS-locked. This function does * not wait until the re-enumeration is completed. *------------------------------------------------------------------------*/ void usbd_start_re_enumerate(struct usb_device *udev) { if (udev->re_enumerate_wait == 0) { udev->re_enumerate_wait = 1; usb_needs_explore(udev->bus, 0); } }