/* * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 * $FreeBSD$ */ #include "opt_ipsec.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #ifdef INET6 #include #endif #include #include #ifdef IPSEC #include #endif /*IPSEC*/ #include /* * UDP protocol implementation. * Per RFC 768, August, 1980. */ #ifndef COMPAT_42 static int udpcksum = 1; #else static int udpcksum = 0; /* XXX */ #endif SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW, &udpcksum, 0, ""); int log_in_vain = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, &log_in_vain, 0, "Log all incoming UDP packets"); static int blackhole = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW, &blackhole, 0, "Do not send port unreachables for refused connects"); struct inpcbhead udb; /* from udp_var.h */ #define udb6 udb /* for KAME src sync over BSD*'s */ struct inpcbinfo udbinfo; #ifndef UDBHASHSIZE #define UDBHASHSIZE 16 #endif struct udpstat udpstat; /* from udp_var.h */ SYSCTL_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RW, &udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); static struct sockaddr_in udp_in = { sizeof(udp_in), AF_INET }; #ifdef INET6 struct udp_in6 { struct sockaddr_in6 uin6_sin; u_char uin6_init_done : 1; } udp_in6 = { { sizeof(udp_in6.uin6_sin), AF_INET6 }, 0 }; struct udp_ip6 { struct ip6_hdr uip6_ip6; u_char uip6_init_done : 1; } udp_ip6; #endif /* INET6 */ static void udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off); #ifdef INET6 static void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip); #endif static int udp_detach(struct socket *so); static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, struct mbuf *, struct thread *); void udp_init() { INP_INFO_LOCK_INIT(&udbinfo, "udp"); LIST_INIT(&udb); udbinfo.listhead = &udb; udbinfo.hashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.hashmask); udbinfo.porthashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.porthashmask); udbinfo.ipi_zone = uma_zcreate("udpcb", sizeof(struct inpcb), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uma_zone_set_max(udbinfo.ipi_zone, maxsockets); } void udp_input(m, off) register struct mbuf *m; int off; { int iphlen = off; register struct ip *ip; register struct udphdr *uh; register struct inpcb *inp; struct mbuf *opts = 0; int len; struct ip save_ip; struct sockaddr *append_sa; udpstat.udps_ipackets++; /* * Strip IP options, if any; should skip this, * make available to user, and use on returned packets, * but we don't yet have a way to check the checksum * with options still present. */ if (iphlen > sizeof (struct ip)) { ip_stripoptions(m, (struct mbuf *)0); iphlen = sizeof(struct ip); } /* * Get IP and UDP header together in first mbuf. */ ip = mtod(m, struct ip *); if (m->m_len < iphlen + sizeof(struct udphdr)) { if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) { udpstat.udps_hdrops++; return; } ip = mtod(m, struct ip *); } uh = (struct udphdr *)((caddr_t)ip + iphlen); /* destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto badunlocked; /* * Make mbuf data length reflect UDP length. * If not enough data to reflect UDP length, drop. */ len = ntohs((u_short)uh->uh_ulen); if (ip->ip_len != len) { if (len > ip->ip_len || len < sizeof(struct udphdr)) { udpstat.udps_badlen++; goto badunlocked; } m_adj(m, len - ip->ip_len); /* ip->ip_len = len; */ } /* * Save a copy of the IP header in case we want restore it * for sending an ICMP error message in response. */ if (!blackhole) save_ip = *ip; /* * Checksum extended UDP header and data. */ if (uh->uh_sum) { if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) uh->uh_sum = m->m_pkthdr.csum_data; else uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl((u_short)len + m->m_pkthdr.csum_data + IPPROTO_UDP)); uh->uh_sum ^= 0xffff; } else { char b[9]; bcopy(((struct ipovly *)ip)->ih_x1, b, 9); bzero(((struct ipovly *)ip)->ih_x1, 9); ((struct ipovly *)ip)->ih_len = uh->uh_ulen; uh->uh_sum = in_cksum(m, len + sizeof (struct ip)); bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); } if (uh->uh_sum) { udpstat.udps_badsum++; m_freem(m); return; } } else udpstat.udps_nosum++; INP_INFO_RLOCK(&udbinfo); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { struct inpcb *last; /* * Deliver a multicast or broadcast datagram to *all* sockets * for which the local and remote addresses and ports match * those of the incoming datagram. This allows more than * one process to receive multi/broadcasts on the same port. * (This really ought to be done for unicast datagrams as * well, but that would cause problems with existing * applications that open both address-specific sockets and * a wildcard socket listening to the same port -- they would * end up receiving duplicates of every unicast datagram. * Those applications open the multiple sockets to overcome an * inadequacy of the UDP socket interface, but for backwards * compatibility we avoid the problem here rather than * fixing the interface. Maybe 4.5BSD will remedy this?) */ /* * Construct sockaddr format source address. */ udp_in.sin_port = uh->uh_sport; udp_in.sin_addr = ip->ip_src; /* * Locate pcb(s) for datagram. * (Algorithm copied from raw_intr().) */ last = NULL; #ifdef INET6 udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0; #endif LIST_FOREACH(inp, &udb, inp_list) { INP_LOCK(inp); if (inp->inp_lport != uh->uh_dport) { docontinue: INP_UNLOCK(inp); continue; } #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) goto docontinue; #endif if (inp->inp_laddr.s_addr != INADDR_ANY) { if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr) goto docontinue; } if (inp->inp_faddr.s_addr != INADDR_ANY) { if (inp->inp_faddr.s_addr != ip->ip_src.s_addr || inp->inp_fport != uh->uh_sport) goto docontinue; } if (last != NULL) { struct mbuf *n; #ifdef IPSEC /* check AH/ESP integrity. */ if (ipsec4_in_reject_so(m, last->inp_socket)) ipsecstat.in_polvio++; /* do not inject data to pcb */ else #endif /*IPSEC*/ if ((n = m_copy(m, 0, M_COPYALL)) != NULL) udp_append(last, ip, n, iphlen + sizeof(struct udphdr)); INP_UNLOCK(last); } last = inp; /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids searching * through all pcbs in the common case of a non-shared * port. It * assumes that an application will never * clear these options after setting them. */ if ((last->inp_socket->so_options&(SO_REUSEPORT|SO_REUSEADDR)) == 0) break; } if (last == NULL) { /* * No matching pcb found; discard datagram. * (No need to send an ICMP Port Unreachable * for a broadcast or multicast datgram.) */ udpstat.udps_noportbcast++; goto badheadlocked; } #ifdef IPSEC /* check AH/ESP integrity. */ if (ipsec4_in_reject_so(m, last->inp_socket)) { ipsecstat.in_polvio++; goto badheadlocked; } #endif /*IPSEC*/ INP_UNLOCK(last); INP_INFO_RUNLOCK(&udbinfo); udp_append(last, ip, m, iphlen + sizeof(struct udphdr)); return; } /* * Locate pcb for datagram. */ inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport, ip->ip_dst, uh->uh_dport, 1, m->m_pkthdr.rcvif); if (inp == NULL) { if (log_in_vain) { char buf[4*sizeof "123"]; strcpy(buf, inet_ntoa(ip->ip_dst)); log(LOG_INFO, "Connection attempt to UDP %s:%d from %s:%d\n", buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src), ntohs(uh->uh_sport)); } udpstat.udps_noport++; if (m->m_flags & (M_BCAST | M_MCAST)) { udpstat.udps_noportbcast++; goto badheadlocked; } if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) goto badheadlocked; if (blackhole) goto badheadlocked; *ip = save_ip; ip->ip_len += iphlen; icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); INP_INFO_RUNLOCK(&udbinfo); return; } INP_LOCK(inp); INP_INFO_RUNLOCK(&udbinfo); #ifdef IPSEC if (ipsec4_in_reject_so(m, inp->inp_socket)) { ipsecstat.in_polvio++; goto bad; } #endif /*IPSEC*/ /* * Construct sockaddr format source address. * Stuff source address and datagram in user buffer. */ udp_in.sin_port = uh->uh_sport; udp_in.sin_addr = ip->ip_src; if (inp->inp_flags & INP_CONTROLOPTS || inp->inp_socket->so_options & SO_TIMESTAMP) { #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { int savedflags; ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip); savedflags = inp->inp_flags; inp->inp_flags &= ~INP_UNMAPPABLEOPTS; ip6_savecontrol(inp, &opts, &udp_ip6.uip6_ip6, m); inp->inp_flags = savedflags; } else #endif ip_savecontrol(inp, &opts, ip, m); } m_adj(m, iphlen + sizeof(struct udphdr)); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin); append_sa = (struct sockaddr *)&udp_in6; } else #endif append_sa = (struct sockaddr *)&udp_in; if (sbappendaddr(&inp->inp_socket->so_rcv, append_sa, m, opts) == 0) { udpstat.udps_fullsock++; goto bad; } sorwakeup(inp->inp_socket); INP_UNLOCK(inp); return; badheadlocked: INP_INFO_RUNLOCK(&udbinfo); bad: if (inp) INP_UNLOCK(inp); badunlocked: m_freem(m); if (opts) m_freem(opts); return; } #ifdef INET6 static void ip_2_ip6_hdr(ip6, ip) struct ip6_hdr *ip6; struct ip *ip; { bzero(ip6, sizeof(*ip6)); ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_plen = ip->ip_len; ip6->ip6_nxt = ip->ip_p; ip6->ip6_hlim = ip->ip_ttl; ip6->ip6_src.s6_addr32[2] = ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_SMP; ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr; ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr; } #endif /* * subroutine of udp_input(), mainly for source code readability. * caller must properly init udp_ip6 and udp_in6 beforehand. */ static void udp_append(last, ip, n, off) struct inpcb *last; struct ip *ip; struct mbuf *n; int off; { struct sockaddr *append_sa; struct mbuf *opts = 0; if (last->inp_flags & INP_CONTROLOPTS || last->inp_socket->so_options & SO_TIMESTAMP) { #ifdef INET6 if (last->inp_vflag & INP_IPV6) { int savedflags; if (udp_ip6.uip6_init_done == 0) { ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip); udp_ip6.uip6_init_done = 1; } savedflags = last->inp_flags; last->inp_flags &= ~INP_UNMAPPABLEOPTS; ip6_savecontrol(last, &opts, &udp_ip6.uip6_ip6, n); last->inp_flags = savedflags; } else #endif ip_savecontrol(last, &opts, ip, n); } #ifdef INET6 if (last->inp_vflag & INP_IPV6) { if (udp_in6.uin6_init_done == 0) { in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin); udp_in6.uin6_init_done = 1; } append_sa = (struct sockaddr *)&udp_in6.uin6_sin; } else #endif append_sa = (struct sockaddr *)&udp_in; m_adj(n, off); if (sbappendaddr(&last->inp_socket->so_rcv, append_sa, n, opts) == 0) { m_freem(n); if (opts) m_freem(opts); udpstat.udps_fullsock++; } else sorwakeup(last->inp_socket); } /* * Notify a udp user of an asynchronous error; * just wake up so that he can collect error status. */ struct inpcb * udp_notify(inp, errno) register struct inpcb *inp; int errno; { inp->inp_socket->so_error = errno; sorwakeup(inp->inp_socket); sowwakeup(inp->inp_socket); return inp; } void udp_ctlinput(cmd, sa, vip) int cmd; struct sockaddr *sa; void *vip; { struct ip *ip = vip; struct udphdr *uh; struct inpcb *(*notify)(struct inpcb *, int) = udp_notify; struct in_addr faddr; struct inpcb *inp; int s; faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; if (PRC_IS_REDIRECT(cmd)) { ip = 0; notify = in_rtchange; } else if (cmd == PRC_HOSTDEAD) ip = 0; else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) return; if (ip) { s = splnet(); uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); INP_INFO_RLOCK(&udbinfo); inp = in_pcblookup_hash(&udbinfo, faddr, uh->uh_dport, ip->ip_src, uh->uh_sport, 0, NULL); if (inp != NULL) { INP_LOCK(inp); if(inp->inp_socket != NULL) { (*notify)(inp, inetctlerrmap[cmd]); } INP_UNLOCK(inp); } INP_INFO_RUNLOCK(&udbinfo); splx(s); } else in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd], notify); } static int udp_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, n, s; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == 0) { n = udbinfo.ipi_count; req->oldidx = 2 * (sizeof xig) + (n + n/8) * sizeof(struct xinpcb); return 0; } if (req->newptr != 0) return EPERM; /* * OK, now we're committed to doing something. */ s = splnet(); gencnt = udbinfo.ipi_gencnt; n = udbinfo.ipi_count; splx(s); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return error; inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == 0) return ENOMEM; s = splnet(); INP_INFO_RLOCK(&udbinfo); for (inp = LIST_FIRST(udbinfo.listhead), i = 0; inp && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_LOCK(inp); if (inp->inp_gencnt <= gencnt && cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0) inp_list[i++] = inp; INP_UNLOCK(inp); } INP_INFO_RUNLOCK(&udbinfo); splx(s); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; INP_LOCK(inp); if (inp->inp_gencnt <= gencnt) { struct xinpcb xi; xi.xi_len = sizeof xi; /* XXX should avoid extra copy */ bcopy(inp, &xi.xi_inp, sizeof *inp); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi.xi_socket); error = SYSCTL_OUT(req, &xi, sizeof xi); } INP_UNLOCK(inp); } if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ s = splnet(); INP_INFO_RLOCK(&udbinfo); xig.xig_gen = udbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = udbinfo.ipi_count; INP_INFO_RUNLOCK(&udbinfo); splx(s); error = SYSCTL_OUT(req, &xig, sizeof xig); } free(inp_list, M_TEMP); return error; } SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, udp_pcblist, "S,xinpcb", "List of active UDP sockets"); static int udp_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in addrs[2]; struct inpcb *inp; int error, s; error = suser_cred(req->td->td_ucred, PRISON_ROOT); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); s = splnet(); INP_INFO_RLOCK(&udbinfo); inp = in_pcblookup_hash(&udbinfo, addrs[1].sin_addr, addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 1, NULL); if (inp == NULL || inp->inp_socket == NULL) { error = ENOENT; goto out; } error = cr_canseesocket(req->td->td_ucred, inp->inp_socket); if (error) goto out; cru2x(inp->inp_socket->so_cred, &xuc); out: INP_INFO_RUNLOCK(&udbinfo); splx(s); if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); static int udp_output(inp, m, addr, control, td) register struct inpcb *inp; struct mbuf *m; struct sockaddr *addr; struct mbuf *control; struct thread *td; { register struct udpiphdr *ui; register int len = m->m_pkthdr.len; struct in_addr laddr; struct sockaddr_in *sin; int s = 0, error = 0; if (control) m_freem(control); /* XXX */ if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { error = EMSGSIZE; goto release; } if (addr) { sin = (struct sockaddr_in *)addr; if (td && jailed(td->td_ucred)) prison_remote_ip(td->td_ucred, 0, &sin->sin_addr.s_addr); laddr = inp->inp_laddr; if (inp->inp_faddr.s_addr != INADDR_ANY) { error = EISCONN; goto release; } /* * Must block input while temporarily connected. */ s = splnet(); error = in_pcbconnect(inp, addr, td); if (error) { splx(s); goto release; } } else { if (inp->inp_faddr.s_addr == INADDR_ANY) { error = ENOTCONN; goto release; } } /* * Calculate data length and get a mbuf * for UDP and IP headers. */ M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT); if (m == 0) { error = ENOBUFS; if (addr) splx(s); goto release; } /* * Fill in mbuf with extended UDP header * and addresses and length put into network format. */ ui = mtod(m, struct udpiphdr *); bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ ui->ui_pr = IPPROTO_UDP; ui->ui_src = inp->inp_laddr; ui->ui_dst = inp->inp_faddr; ui->ui_sport = inp->inp_lport; ui->ui_dport = inp->inp_fport; ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); /* * Set up checksum and output datagram. */ if (udpcksum) { ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr, htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP)); m->m_pkthdr.csum_flags = CSUM_UDP; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); } else { ui->ui_sum = 0; } ((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len; ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */ udpstat.udps_opackets++; #ifdef IPSEC if (ipsec_setsocket(m, inp->inp_socket) != 0) { error = ENOBUFS; goto release; } #endif /*IPSEC*/ error = ip_output(m, inp->inp_options, &inp->inp_route, (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST)), inp->inp_moptions); if (addr) { in_pcbdisconnect(inp); inp->inp_laddr = laddr; /* XXX rehash? */ splx(s); } return (error); release: m_freem(m); return (error); } u_long udp_sendspace = 9216; /* really max datagram size */ /* 40 1K datagrams */ SYSCTL_INT(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); u_long udp_recvspace = 40 * (1024 + #ifdef INET6 sizeof(struct sockaddr_in6) #else sizeof(struct sockaddr_in) #endif ); SYSCTL_INT(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, &udp_recvspace, 0, "Maximum incoming UDP datagram size"); static int udp_abort(struct socket *so) { struct inpcb *inp; int s; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); return EINVAL; /* ??? possible? panic instead? */ } INP_LOCK(inp); soisdisconnected(so); s = splnet(); in_pcbdetach(inp); INP_INFO_WUNLOCK(&udbinfo); splx(s); return 0; } static int udp_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; int s, error; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp != 0) { INP_INFO_WUNLOCK(&udbinfo); return EINVAL; } error = soreserve(so, udp_sendspace, udp_recvspace); if (error) { INP_INFO_WUNLOCK(&udbinfo); return error; } s = splnet(); error = in_pcballoc(so, &udbinfo, td); splx(s); if (error) return error; inp = (struct inpcb *)so->so_pcb; INP_LOCK(inp); INP_INFO_WUNLOCK(&udbinfo); inp->inp_vflag |= INP_IPV4; inp->inp_ip_ttl = ip_defttl; INP_UNLOCK(inp); return 0; } static int udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; int s, error; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); return EINVAL; } INP_LOCK(inp); s = splnet(); error = in_pcbbind(inp, nam, td); splx(s); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&udbinfo); return error; } static int udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; int s, error; struct sockaddr_in *sin; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); return EINVAL; } INP_LOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_UNLOCK(inp); INP_INFO_WUNLOCK(&udbinfo); return EISCONN; } s = splnet(); sin = (struct sockaddr_in *)nam; if (td && jailed(td->td_ucred)) prison_remote_ip(td->td_ucred, 0, &sin->sin_addr.s_addr); error = in_pcbconnect(inp, nam, td); splx(s); if (error == 0) soisconnected(so); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&udbinfo); return error; } static int udp_detach(struct socket *so) { struct inpcb *inp; int s; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); return EINVAL; } INP_LOCK(inp); s = splnet(); in_pcbdetach(inp); INP_INFO_WUNLOCK(&udbinfo); splx(s); return 0; } static int udp_disconnect(struct socket *so) { struct inpcb *inp; int s; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); return EINVAL; } INP_LOCK(inp); if (inp->inp_faddr.s_addr == INADDR_ANY) { INP_INFO_WUNLOCK(&udbinfo); INP_UNLOCK(inp); return ENOTCONN; } s = splnet(); in_pcbdisconnect(inp); inp->inp_laddr.s_addr = INADDR_ANY; INP_UNLOCK(inp); INP_INFO_WUNLOCK(&udbinfo); splx(s); so->so_state &= ~SS_ISCONNECTED; /* XXX */ return 0; } static int udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { struct inpcb *inp; int ret; INP_INFO_WLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_WUNLOCK(&udbinfo); m_freem(m); return EINVAL; } INP_LOCK(inp); ret = udp_output(inp, m, addr, control, td); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&udbinfo); return ret; } int udp_shutdown(struct socket *so) { struct inpcb *inp; INP_INFO_RLOCK(&udbinfo); inp = sotoinpcb(so); if (inp == 0) { INP_INFO_RUNLOCK(&udbinfo); return EINVAL; } INP_LOCK(inp); INP_INFO_RUNLOCK(&udbinfo); socantsendmore(so); INP_UNLOCK(inp); return 0; } /* * This is the wrapper function for in_setsockaddr. We just pass down * the pcbinfo for in_setsockaddr to lock. We don't want to do the locking * here because in_setsockaddr will call malloc and might block. */ static int udp_sockaddr(struct socket *so, struct sockaddr **nam) { return (in_setsockaddr(so, nam, &udbinfo)); } /* * This is the wrapper function for in_setpeeraddr. We just pass down * the pcbinfo for in_setpeeraddr to lock. */ static int udp_peeraddr(struct socket *so, struct sockaddr **nam) { return (in_setpeeraddr(so, nam, &udbinfo)); } struct pr_usrreqs udp_usrreqs = { udp_abort, pru_accept_notsupp, udp_attach, udp_bind, udp_connect, pru_connect2_notsupp, in_control, udp_detach, udp_disconnect, pru_listen_notsupp, udp_peeraddr, pru_rcvd_notsupp, pru_rcvoob_notsupp, udp_send, pru_sense_null, udp_shutdown, udp_sockaddr, sosend, soreceive, sopoll };