/*- * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved. * * Eric Davis * David Christensen * Gary Zambrano * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Broadcom Corporation nor the name of its contributors * may be used to endorse or promote products derived from this software * without specific prior written consent. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef ECORE_INIT_H #define ECORE_INIT_H /* Init operation types and structures */ enum { OP_RD = 0x1, /* read a single register */ OP_WR, /* write a single register */ OP_SW, /* copy a string to the device */ OP_ZR, /* clear memory */ OP_ZP, /* unzip then copy with DMAE */ OP_WR_64, /* write 64 bit pattern */ OP_WB, /* copy a string using DMAE */ #ifndef FW_ZIP_SUPPORT OP_FW, /* copy an array from fw data (only used with unzipped FW) */ #endif OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */ OP_IF_MODE_OR, /* Skip the following ops if all init modes don't match */ OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */ OP_IF_PHASE, OP_RT, OP_DELAY, OP_VERIFY, OP_MAX }; enum { STAGE_START, STAGE_END, }; /* Returns the index of start or end of a specific block stage in ops array*/ #define BLOCK_OPS_IDX(block, stage, end) \ (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end)) /* structs for the various opcodes */ struct raw_op { uint32_t op:8; uint32_t offset:24; uint32_t raw_data; }; struct op_read { uint32_t op:8; uint32_t offset:24; uint32_t val; }; struct op_write { uint32_t op:8; uint32_t offset:24; uint32_t val; }; struct op_arr_write { uint32_t op:8; uint32_t offset:24; #ifdef __BIG_ENDIAN uint16_t data_len; uint16_t data_off; #else /* __LITTLE_ENDIAN */ uint16_t data_off; uint16_t data_len; #endif }; struct op_zero { uint32_t op:8; uint32_t offset:24; uint32_t len; }; struct op_if_mode { uint32_t op:8; uint32_t cmd_offset:24; uint32_t mode_bit_map; }; struct op_if_phase { uint32_t op:8; uint32_t cmd_offset:24; uint32_t phase_bit_map; }; struct op_delay { uint32_t op:8; uint32_t reserved:24; uint32_t delay; }; union init_op { struct op_read read; struct op_write write; struct op_arr_write arr_wr; struct op_zero zero; struct raw_op raw; struct op_if_mode if_mode; struct op_if_phase if_phase; struct op_delay delay; }; /* Init Phases */ enum { PHASE_COMMON, PHASE_PORT0, PHASE_PORT1, PHASE_PF0, PHASE_PF1, PHASE_PF2, PHASE_PF3, PHASE_PF4, PHASE_PF5, PHASE_PF6, PHASE_PF7, NUM_OF_INIT_PHASES }; /* Init Modes */ enum { MODE_ASIC = 0x00000001, MODE_FPGA = 0x00000002, MODE_EMUL = 0x00000004, MODE_E2 = 0x00000008, MODE_E3 = 0x00000010, MODE_PORT2 = 0x00000020, MODE_PORT4 = 0x00000040, MODE_SF = 0x00000080, MODE_MF = 0x00000100, MODE_MF_SD = 0x00000200, MODE_MF_SI = 0x00000400, MODE_MF_AFEX = 0x00000800, MODE_E3_A0 = 0x00001000, MODE_E3_B0 = 0x00002000, MODE_COS3 = 0x00004000, MODE_COS6 = 0x00008000, MODE_LITTLE_ENDIAN = 0x00010000, MODE_BIG_ENDIAN = 0x00020000, }; /* Init Blocks */ enum { BLOCK_ATC, BLOCK_BRB1, BLOCK_CCM, BLOCK_CDU, BLOCK_CFC, BLOCK_CSDM, BLOCK_CSEM, BLOCK_DBG, BLOCK_DMAE, BLOCK_DORQ, BLOCK_HC, BLOCK_IGU, BLOCK_MISC, BLOCK_NIG, BLOCK_PBF, BLOCK_PGLUE_B, BLOCK_PRS, BLOCK_PXP2, BLOCK_PXP, BLOCK_QM, BLOCK_SRC, BLOCK_TCM, BLOCK_TM, BLOCK_TSDM, BLOCK_TSEM, BLOCK_UCM, BLOCK_UPB, BLOCK_USDM, BLOCK_USEM, BLOCK_XCM, BLOCK_XPB, BLOCK_XSDM, BLOCK_XSEM, BLOCK_MISC_AEU, NUM_OF_INIT_BLOCKS }; /* Vnics per mode */ #define ECORE_PORT2_MODE_NUM_VNICS 4 /* QM queue numbers */ #define ECORE_ETH_Q 0 #define ECORE_TOE_Q 3 #define ECORE_TOE_ACK_Q 6 #define ECORE_ISCSI_Q 9 #define ECORE_ISCSI_ACK_Q 11 #define ECORE_FCOE_Q 10 /* Vnics per mode */ #define ECORE_PORT4_MODE_NUM_VNICS 2 /* COS offset for port1 in E3 B0 4port mode */ #define ECORE_E3B0_PORT1_COS_OFFSET 3 /* QM Register addresses */ #define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\ (QM_REG_QVOQIDX_0 + 4 * (pf_q_num)) #define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\ (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5))) #define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\ (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4)) /* extracts the QM queue number for the specified port and vnic */ #define ECORE_PF_Q_NUM(q_num, port, vnic)\ ((((port) << 1) | (vnic)) * 16 + (q_num)) /* Maps the specified queue to the specified COS */ static inline void ecore_map_q_cos(struct bxe_softc *sc, uint32_t q_num, uint32_t new_cos) { /* find current COS mapping */ uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4); /* check if queue->COS mapping has changed */ if (curr_cos != new_cos) { uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS; uint32_t reg_addr, reg_bit_map, vnic; /* update parameters for 4port mode */ if (INIT_MODE_FLAGS(sc) & MODE_PORT4) { num_vnics = ECORE_PORT4_MODE_NUM_VNICS; if (PORT_ID(sc)) { curr_cos += ECORE_E3B0_PORT1_COS_OFFSET; new_cos += ECORE_E3B0_PORT1_COS_OFFSET; } } /* change queue mapping for each VNIC */ for (vnic = 0; vnic < num_vnics; vnic++) { uint32_t pf_q_num = ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic); uint32_t q_bit_map = 1 << (pf_q_num & 0x1f); /* overwrite queue->VOQ mapping */ REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos); /* clear queue bit from current COS bit map */ reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num); reg_bit_map = REG_RD(sc, reg_addr); REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map)); /* set queue bit in new COS bit map */ reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num); reg_bit_map = REG_RD(sc, reg_addr); REG_WR(sc, reg_addr, reg_bit_map | q_bit_map); /* set/clear queue bit in command-queue bit map (E2/E3A0 only, valid COS values are 0/1) */ if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) { reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num); reg_bit_map = REG_RD(sc, reg_addr); q_bit_map = 1 << (2 * (pf_q_num & 0xf)); reg_bit_map = new_cos ? (reg_bit_map | q_bit_map) : (reg_bit_map & (~q_bit_map)); REG_WR(sc, reg_addr, reg_bit_map); } } } } /* Configures the QM according to the specified per-traffic-type COSes */ static inline void ecore_dcb_config_qm(struct bxe_softc *sc, enum cos_mode mode, struct priority_cos *traffic_cos) { ecore_map_q_cos(sc, ECORE_FCOE_Q, traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos); ecore_map_q_cos(sc, ECORE_ISCSI_Q, traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos); ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q, traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos); if (mode != STATIC_COS) { /* required only in OVERRIDE_COS mode */ ecore_map_q_cos(sc, ECORE_ETH_Q, traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); ecore_map_q_cos(sc, ECORE_TOE_Q, traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); ecore_map_q_cos(sc, ECORE_TOE_ACK_Q, traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); } } /* * congestion managment port init api description * the api works as follows: * the driver should pass the cmng_init_input struct, the port_init function * will prepare the required internal ram structure which will be passed back * to the driver (cmng_init) that will write it into the internal ram. * * IMPORTANT REMARKS: * 1. the cmng_init struct does not represent the contiguous internal ram * structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET * offset in order to write the port sub struct and the * PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other * words - don't use memcpy!). * 2. although the cmng_init struct is filled for the maximal vnic number * possible, the driver should only write the valid vnics into the internal * ram according to the appropriate port mode. */ #define BITS_TO_BYTES(x) ((x)/8) /* CMNG constants, as derived from system spec calculations */ /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */ #define DEF_MIN_RATE 100 /* resolution of the rate shaping timer - 400 usec */ #define RS_PERIODIC_TIMEOUT_USEC 400 /* * number of bytes in single QM arbitration cycle - * coefficient for calculating the fairness timer */ #define QM_ARB_BYTES 160000 /* resolution of Min algorithm 1:100 */ #define MIN_RES 100 /* * how many bytes above threshold for * the minimal credit of Min algorithm */ #define MIN_ABOVE_THRESH 32768 /* * Fairness algorithm integration time coefficient - * for calculating the actual Tfair */ #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) /* Memory of fairness algorithm - 2 cycles */ #define FAIR_MEM 2 #define SAFC_TIMEOUT_USEC 52 #define SDM_TICKS 4 static inline void ecore_init_max(const struct cmng_init_input *input_data, uint32_t r_param, struct cmng_init *ram_data) { uint32_t vnic; struct cmng_vnic *vdata = &ram_data->vnic; struct cmng_struct_per_port *pdata = &ram_data->port; /* * rate shaping per-port variables * 100 micro seconds in SDM ticks = 25 * since each tick is 4 microSeconds */ pdata->rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS; /* this is the threshold below which no timer arming will occur. * 1.25 coefficient is for the threshold to be a little bigger * then the real time to compensate for timer in-accuracy */ pdata->rs_vars.rs_threshold = (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4; /* rate shaping per-vnic variables */ for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) { /* global vnic counter */ vdata->vnic_max_rate[vnic].vn_counter.rate = input_data->vnic_max_rate[vnic]; /* * maximal Mbps for this vnic * the quota in each timer period - number of bytes * transmitted in this period */ vdata->vnic_max_rate[vnic].vn_counter.quota = RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8; } } static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate, struct rate_shaping_vars_per_vn *ram_data) { /* global vnic counter */ ram_data->vn_counter.rate = vnic_max_rate; /* * maximal Mbps for this vnic * the quota in each timer period - number of bytes * transmitted in this period */ ram_data->vn_counter.quota = RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8; } static inline void ecore_init_min(const struct cmng_init_input *input_data, uint32_t r_param, struct cmng_init *ram_data) { uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair; struct cmng_vnic *vdata = &ram_data->vnic; struct cmng_struct_per_port *pdata = &ram_data->port; /* this is the resolution of the fairness timer */ fair_periodic_timeout_usec = QM_ARB_BYTES / r_param; /* * fairness per-port variables * for 10G it is 1000usec. for 1G it is 10000usec. */ tFair = T_FAIR_COEF / input_data->port_rate; /* this is the threshold below which we won't arm the timer anymore */ pdata->fair_vars.fair_threshold = QM_ARB_BYTES; /* * we multiply by 1e3/8 to get bytes/msec. We don't want the credits * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution) */ pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM; /* since each tick is 4 microSeconds */ pdata->fair_vars.fairness_timeout = fair_periodic_timeout_usec / SDM_TICKS; /* calculate sum of weights */ vnicWeightSum = 0; for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) vnicWeightSum += input_data->vnic_min_rate[vnic]; /* global vnic counter */ if (vnicWeightSum > 0) { /* fairness per-vnic variables */ for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) { /* * this is the credit for each period of the fairness * algorithm - number of bytes in T_FAIR (this vnic * share of the port rate) */ vdata->vnic_min_rate[vnic].vn_credit_delta = ((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 * (T_FAIR_COEF / (8 * 100 * vnicWeightSum))); if (vdata->vnic_min_rate[vnic].vn_credit_delta < pdata->fair_vars.fair_threshold + MIN_ABOVE_THRESH) { vdata->vnic_min_rate[vnic].vn_credit_delta = pdata->fair_vars.fair_threshold + MIN_ABOVE_THRESH; } } } } static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data, uint32_t r_param, struct cmng_init *ram_data) { uint32_t vnic, cos; uint32_t cosWeightSum = 0; struct cmng_vnic *vdata = &ram_data->vnic; struct cmng_struct_per_port *pdata = &ram_data->port; for (cos = 0; cos < MAX_COS_NUMBER; cos++) cosWeightSum += input_data->cos_min_rate[cos]; if (cosWeightSum > 0) { for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) { /* * Since cos and vnic shouldn't work together the rate * to divide between the coses is the port rate. */ uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta; for (cos = 0; cos < MAX_COS_NUMBER; cos++) { /* * this is the credit for each period of * the fairness algorithm - number of bytes * in T_FAIR (this cos share of the vnic rate) */ ccd[cos] = ((uint32_t)input_data->cos_min_rate[cos] * 100 * (T_FAIR_COEF / (8 * 100 * cosWeightSum))); if (ccd[cos] < pdata->fair_vars.fair_threshold + MIN_ABOVE_THRESH) { ccd[cos] = pdata->fair_vars.fair_threshold + MIN_ABOVE_THRESH; } } } } } static inline void ecore_init_safc(const struct cmng_init_input *input_data, struct cmng_init *ram_data) { /* in microSeconds */ ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC; } /* Congestion management port init */ static inline void ecore_init_cmng(const struct cmng_init_input *input_data, struct cmng_init *ram_data) { uint32_t r_param; ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init)); ram_data->port.flags = input_data->flags; /* * number of bytes transmitted in a rate of 10Gbps * in one usec = 1.25KB. */ r_param = BITS_TO_BYTES(input_data->port_rate); ecore_init_max(input_data, r_param, ram_data); ecore_init_min(input_data, r_param, ram_data); ecore_init_fw_wrr(input_data, r_param, ram_data); ecore_init_safc(input_data, ram_data); } /* Returns the index of start or end of a specific block stage in ops array*/ #define BLOCK_OPS_IDX(block, stage, end) \ (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end)) #define INITOP_SET 0 /* set the HW directly */ #define INITOP_CLEAR 1 /* clear the HW directly */ #define INITOP_INIT 2 /* set the init-value array */ /**************************************************************************** * ILT management ****************************************************************************/ struct ilt_line { ecore_dma_addr_t page_mapping; void *page; uint32_t size; }; struct ilt_client_info { uint32_t page_size; uint16_t start; uint16_t end; uint16_t client_num; uint16_t flags; #define ILT_CLIENT_SKIP_INIT 0x1 #define ILT_CLIENT_SKIP_MEM 0x2 }; struct ecore_ilt { uint32_t start_line; struct ilt_line *lines; struct ilt_client_info clients[4]; #define ILT_CLIENT_CDU 0 #define ILT_CLIENT_QM 1 #define ILT_CLIENT_SRC 2 #define ILT_CLIENT_TM 3 }; /**************************************************************************** * SRC configuration ****************************************************************************/ struct src_ent { uint8_t opaque[56]; uint64_t next; }; /**************************************************************************** * Parity configuration ****************************************************************************/ #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \ { \ block##_REG_##block##_PRTY_MASK, \ block##_REG_##block##_PRTY_STS_CLR, \ en_mask, {m1, m1h, m2, m3}, #block \ } #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \ { \ block##_REG_##block##_PRTY_MASK_0, \ block##_REG_##block##_PRTY_STS_CLR_0, \ en_mask, {m1, m1h, m2, m3}, #block"_0" \ } #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \ { \ block##_REG_##block##_PRTY_MASK_1, \ block##_REG_##block##_PRTY_STS_CLR_1, \ en_mask, {m1, m1h, m2, m3}, #block"_1" \ } static const struct { uint32_t mask_addr; uint32_t sts_clr_addr; uint32_t en_mask; /* Mask to enable parity attentions */ struct { uint32_t e1; /* 57710 */ uint32_t e1h; /* 57711 */ uint32_t e2; /* 57712 */ uint32_t e3; /* 578xx */ } reg_mask; /* Register mask (all valid bits) */ char name[8]; /* Block's longest name is 7 characters long * (name + suffix) */ } ecore_blocks_parity_data[] = { /* bit 19 masked */ /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */ /* bit 5,18,20-31 */ /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */ /* bit 5 */ /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */ /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */ /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */ /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't * want to handle "system kill" flow at the moment. */ BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff, 0x7ffffff), BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff), BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff), BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0), BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0), BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff), BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff), BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff), BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1), BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff), BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f), BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3), BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3), {GRCBASE_UPB + PB_REG_PB_PRTY_MASK, GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf, {0xf, 0xf, 0xf, 0xf}, "UPB"}, {GRCBASE_XPB + PB_REG_PB_PRTY_MASK, GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0, {0xf, 0xf, 0xf, 0xf}, "XPB"}, BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7), BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f), BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f), BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1), BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf), BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf), BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff), BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff), BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f), BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff), BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff), BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff), BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff), BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff), BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff), BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f), BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff), BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f), BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff), BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f), BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff), BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f), }; /* [28] MCP Latched rom_parity * [29] MCP Latched ump_rx_parity * [30] MCP Latched ump_tx_parity * [31] MCP Latched scpad_parity */ #define MISC_AEU_ENABLE_MCP_PRTY_BITS \ (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) /* Below registers control the MCP parity attention output. When * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are * enabled, when cleared - disabled. */ static const uint32_t mcp_attn_ctl_regs[] = { MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0, MISC_REG_AEU_ENABLE4_NIG_0, MISC_REG_AEU_ENABLE4_PXP_0, MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0, MISC_REG_AEU_ENABLE4_NIG_1, MISC_REG_AEU_ENABLE4_PXP_1 }; static inline void ecore_set_mcp_parity(struct bxe_softc *sc, uint8_t enable) { int i; uint32_t reg_val; for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) { reg_val = REG_RD(sc, mcp_attn_ctl_regs[i]); if (enable) reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS; else reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS; REG_WR(sc, mcp_attn_ctl_regs[i], reg_val); } } static inline uint32_t ecore_parity_reg_mask(struct bxe_softc *sc, int idx) { if (CHIP_IS_E1(sc)) return ecore_blocks_parity_data[idx].reg_mask.e1; else if (CHIP_IS_E1H(sc)) return ecore_blocks_parity_data[idx].reg_mask.e1h; else if (CHIP_IS_E2(sc)) return ecore_blocks_parity_data[idx].reg_mask.e2; else /* CHIP_IS_E3 */ return ecore_blocks_parity_data[idx].reg_mask.e3; } static inline void ecore_disable_blocks_parity(struct bxe_softc *sc) { int i; for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) { uint32_t dis_mask = ecore_parity_reg_mask(sc, i); if (dis_mask) { REG_WR(sc, ecore_blocks_parity_data[i].mask_addr, dis_mask); ECORE_MSG(sc, "Setting parity mask " "for %s to\t\t0x%x\n", ecore_blocks_parity_data[i].name, dis_mask); } } /* Disable MCP parity attentions */ ecore_set_mcp_parity(sc, FALSE); } /** * Clear the parity error status registers. */ static inline void ecore_clear_blocks_parity(struct bxe_softc *sc) { int i; uint32_t reg_val, mcp_aeu_bits = AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY | AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY; /* Clear SEM_FAST parities */ REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) { uint32_t reg_mask = ecore_parity_reg_mask(sc, i); if (reg_mask) { reg_val = REG_RD(sc, ecore_blocks_parity_data[i]. sts_clr_addr); if (reg_val & reg_mask) ECORE_MSG(sc, "Parity errors in %s: 0x%x\n", ecore_blocks_parity_data[i].name, reg_val & reg_mask); } } /* Check if there were parity attentions in MCP */ reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP); if (reg_val & mcp_aeu_bits) ECORE_MSG(sc, "Parity error in MCP: 0x%x\n", reg_val & mcp_aeu_bits); /* Clear parity attentions in MCP: * [7] clears Latched rom_parity * [8] clears Latched ump_rx_parity * [9] clears Latched ump_tx_parity * [10] clears Latched scpad_parity (both ports) */ REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780); } static inline void ecore_enable_blocks_parity(struct bxe_softc *sc) { int i; for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) { uint32_t reg_mask = ecore_parity_reg_mask(sc, i); if (reg_mask) REG_WR(sc, ecore_blocks_parity_data[i].mask_addr, ecore_blocks_parity_data[i].en_mask & reg_mask); } /* Enable MCP parity attentions */ ecore_set_mcp_parity(sc, TRUE); } #endif /* ECORE_INIT_H */