/* * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (C) 2001 Benno Rice * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $ */ #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* not lint */ #include "opt_ddb.h" #include "opt_compat.h" #include "opt_msgbuf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int physmem = 0; int cold = 1; char pcpu0[PAGE_SIZE]; char uarea0[UAREA_PAGES * PAGE_SIZE]; struct trapframe frame0; vm_offset_t kstack0; vm_offset_t kstack0_phys; char machine[] = "powerpc"; SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, ""); static char model[128]; SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD, model, 0, ""); char bootpath[256]; #ifdef DDB /* start and end of kernel symbol table */ void *ksym_start, *ksym_end; #endif /* DDB */ static void cpu_startup(void *); SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL) void powerpc_init(u_int, u_int, u_int, char *); int save_ofw_mapping(void); int restore_ofw_mapping(void); void install_extint(void (*)(void)); #ifdef COMPAT_43 void osendsig(sig_t, int, sigset_t *, u_long); #endif static int sysctl_hw_physmem(SYSCTL_HANDLER_ARGS) { int error = sysctl_handle_int(oidp, 0, ctob(physmem), req); return (error); } SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_hw_physmem, "IU", ""); int Maxmem = 0; static int chosen; struct pmap ofw_pmap; extern int ofmsr; struct bat battable[16]; static void identifycpu(void); struct kva_md_info kmi; static void powerpc_ofw_shutdown(void *junk, int howto) { if (howto & RB_HALT) { OF_exit(); } } static void cpu_startup(void *dummy) { /* * Good {morning,afternoon,evening,night}. */ identifycpu(); /* startrtclock(); */ #ifdef PERFMON perfmon_init(); #endif printf("real memory = %ld (%ldK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024); /* * Display any holes after the first chunk of extended memory. */ if (bootverbose) { int indx; printf("Physical memory chunk(s):\n"); for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) { int size1 = phys_avail[indx + 1] - phys_avail[indx]; printf("0x%08x - 0x%08x, %d bytes (%d pages)\n", phys_avail[indx], phys_avail[indx + 1] - 1, size1, size1 / PAGE_SIZE); } } vm_ksubmap_init(&kmi); printf("avail memory = %ld (%ldK bytes)\n", ptoa(cnt.v_free_count), ptoa(cnt.v_free_count) / 1024); /* * Set up buffers, so they can be used to read disk labels. */ bufinit(); vm_pager_bufferinit(); EVENTHANDLER_REGISTER(shutdown_final, powerpc_ofw_shutdown, 0, SHUTDOWN_PRI_LAST); #ifdef SMP /* * OK, enough kmem_alloc/malloc state should be up, lets get on with it! */ mp_start(); /* fire up the secondaries */ mp_announce(); #endif /* SMP */ } void identifycpu() { unsigned int pvr, version, revision; /* * Find cpu type (Do it by OpenFirmware?) */ __asm ("mfpvr %0" : "=r"(pvr)); version = pvr >> 16; revision = pvr & 0xffff; switch (version) { case 0x0000: sprintf(model, "Simulator (psim)"); break; case 0x0001: sprintf(model, "601"); break; case 0x0003: sprintf(model, "603 (Wart)"); break; case 0x0004: sprintf(model, "604 (Zephyr)"); break; case 0x0005: sprintf(model, "602 (Galahad)"); break; case 0x0006: sprintf(model, "603e (Stretch)"); break; case 0x0007: if ((revision && 0xf000) == 0x0000) sprintf(model, "603ev (Valiant)"); else sprintf(model, "603r (Goldeneye)"); break; case 0x0008: if ((revision && 0xf000) == 0x0000) sprintf(model, "G3 / 750 (Arthur)"); else sprintf(model, "G3 / 755 (Goldfinger)"); break; case 0x0009: if ((revision && 0xf000) == 0x0000) sprintf(model, "604e (Sirocco)"); else sprintf(model, "604r (Mach V)"); break; case 0x000a: sprintf(model, "604r (Mach V)"); break; case 0x000c: sprintf(model, "G4 / 7400 (Max)"); break; case 0x0014: sprintf(model, "620 (Red October)"); break; case 0x0081: sprintf(model, "8240 (Kahlua)"); break; case 0x8000: sprintf(model, "G4 / 7450 (V'ger)"); break; case 0x800c: sprintf(model, "G4 / 7410 (Nitro)"); break; case 0x8081: sprintf(model, "8245 (Kahlua II)"); break; default: sprintf(model, "Version %x", version); break; } sprintf(model + strlen(model), " (Revision %x)", revision); printf("CPU: PowerPC %s\n", model); } extern char kernel_text[], _end[]; extern void *trapcode, *trapsize; extern void *alitrap, *alisize; extern void *dsitrap, *dsisize; extern void *isitrap, *isisize; extern void *decrint, *decrsize; extern void *tlbimiss, *tlbimsize; extern void *tlbdlmiss, *tlbdlmsize; extern void *tlbdsmiss, *tlbdsmsize; extern void *extint, *extsize; #if 0 /* XXX: interrupt handler. We'll get to this later */ extern void ext_intr(void); #endif #ifdef DDB extern ddblow, ddbsize; #endif #ifdef IPKDB extern ipkdblow, ipkdbsize; #endif void powerpc_init(u_int startkernel, u_int endkernel, u_int basekernel, char *args) { struct pcpu *pc; vm_offset_t off; /* * Initialize the console before printing anything. */ cninit(); /* * XXX: Initialize the interrupt tables. */ bcopy(&trapcode, (void *)EXC_DECR, (size_t)&trapsize); bcopy(&dsitrap, (void *)EXC_DSI, (size_t)&dsisize); bcopy(&isitrap, (void *)EXC_ISI, (size_t)&isisize); bcopy(&trapcode, (void *)EXC_SC, (size_t)&trapsize); bcopy(&trapcode, (void *)EXC_FPU, (size_t)&trapsize); bcopy(&trapcode, (void *)EXC_EXI, (size_t)&trapsize); /* * Start initializing proc0 and thread0. */ proc_linkup(&proc0, &proc0.p_ksegrp, &proc0.p_kse, &thread0); proc0.p_uarea = (struct user *)uarea0; proc0.p_stats = &proc0.p_uarea->u_stats; thread0.td_frame = &frame0; /* * Set up per-cpu data. */ pc = (struct pcpu *)(pcpu0 + PAGE_SIZE) - 1; pcpu_init(pc, 0, sizeof(struct pcpu)); pc->pc_curthread = &thread0; pc->pc_curpcb = thread0.td_pcb; pc->pc_cpuid = 0; /* pc->pc_mid = mid; */ __asm __volatile("mtsprg 0, %0" :: "r"(pc)); mutex_init(); /* * Initialise virtual memory. */ pmap_bootstrap(startkernel, endkernel); /* * Initialize tunables. */ init_param1(); init_param2(physmem); /* * Finish setting up thread0. */ thread0.td_kstack = kstack0; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; /* * Map and initialise the message buffer. */ for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE) pmap_kenter((vm_offset_t)msgbufp + off, msgbuf_phys + off); msgbufinit(msgbufp, MSGBUF_SIZE); } #if 0 /* XXX: Old powerpc_init */ void powerpc_init(u_int startkernel, u_int endkernel, u_int basekernel, char *args) { unsigned int exc, scratch; struct mem_region *allmem, *availmem, *mp; struct pcpu *pcpup; /* * Set up BAT0 to only map the lowest 256 MB area */ battable[0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW); battable[0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs); /* * Map PCI memory space. */ battable[0x8].batl = BATL(0x80000000, BAT_I, BAT_PP_RW); battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs); battable[0x9].batl = BATL(0x90000000, BAT_I, BAT_PP_RW); battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs); battable[0xa].batl = BATL(0xa0000000, BAT_I, BAT_PP_RW); battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs); /* * Map obio devices. */ battable[0xf].batl = BATL(0xf0000000, BAT_I, BAT_PP_RW); battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs); /* * Now setup fixed bat registers * * Note that we still run in real mode, and the BAT * registers were cleared above. */ /* BAT0 used for initial 256 MB segment */ __asm __volatile ("mtibatl 0,%0; mtibatu 0,%1;" "mtdbatl 0,%0; mtdbatu 0,%1;" :: "r"(battable[0].batl), "r"(battable[0].batu)); /* * Set up battable to map all RAM regions. * This is here because mem_regions() call needs bat0 set up. */ mem_regions(&allmem, &availmem); /* Calculate the physical memory in the machine */ for (mp = allmem; mp->size; mp++) physmem += btoc(mp->size); for (mp = allmem; mp->size; mp++) { vm_offset_t pa = mp->start & 0xf0000000; vm_offset_t end = mp->start + mp->size; do { u_int n = pa >> 28; battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW); battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs); pa += 0x10000000; } while (pa < end); } chosen = OF_finddevice("/chosen"); save_ofw_mapping(); pmap_setavailmem(startkernel, endkernel); proc_linkup(&proc0, &proc0.p_ksegrp, &proc0.p_kse, &thread0); proc0uarea = (struct user *)pmap_steal_memory(UAREA_PAGES * PAGE_SIZE); proc0kstack = pmap_steal_memory(KSTACK_PAGES * PAGE_SIZE); proc0.p_uarea = proc0uarea; thread0.td_kstack = proc0kstack; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; pcpup = pmap_steal_memory(round_page(sizeof(struct pcpu))); /* * XXX: Pass 0 as CPU id. This is bad. We need to work out * XXX: which CPU we are somehow. */ pcpu_init(pcpup, 0, sizeof(struct pcpu)); __asm ("mtsprg 0, %0" :: "r"(pcpup)); /* Init basic tunables, hz etc */ init_param1(); init_param2(physmem); PCPU_SET(curthread, &thread0); /* XXX: NetBSDism I _think_. Not sure yet. */ #if 0 curpm = PCPU_GET(curpcb)->pcb_pmreal = PCPU_GET(curpcb)->pcb_pm = kernel_pmap; #endif mutex_init(); /* * Initialise console. */ cninit(); #ifdef __notyet__ /* Needs some rethinking regarding real/virtual OFW */ OF_set_callback(callback); #endif /* * Set up trap vectors */ for (exc = EXC_RSVD; exc <= EXC_LAST; exc += 0x100) { switch (exc) { default: bcopy(&trapcode, (void *)exc, (size_t)&trapsize); break; case EXC_DECR: bcopy(&decrint, (void *)EXC_DECR, (size_t)&decrsize); break; #if 0 /* XXX: Not enabling these traps yet. */ case EXC_EXI: /* * This one is (potentially) installed during autoconf */ break; case EXC_ALI: bcopy(&alitrap, (void *)EXC_ALI, (size_t)&alisize); break; case EXC_DSI: bcopy(&dsitrap, (void *)EXC_DSI, (size_t)&dsisize); break; case EXC_ISI: bcopy(&isitrap, (void *)EXC_ISI, (size_t)&isisize); break; case EXC_IMISS: bcopy(&tlbimiss, (void *)EXC_IMISS, (size_t)&tlbimsize); break; case EXC_DLMISS: bcopy(&tlbdlmiss, (void *)EXC_DLMISS, (size_t)&tlbdlmsize); break; case EXC_DSMISS: bcopy(&tlbdsmiss, (void *)EXC_DSMISS, (size_t)&tlbdsmsize); break; #if defined(DDB) || defined(IPKDB) case EXC_TRC: case EXC_PGM: case EXC_BPT: #if defined(DDB) bcopy(&ddblow, (void *)exc, (size_t)&ddbsize); #else bcopy(&ipkdblow, (void *)exc, (size_t)&ipkdbsize); #endif break; #endif /* DDB || IPKDB */ #endif } } #if 0 /* XXX: coming soon... */ /* * external interrupt handler install */ install_extint(ext_intr); #endif __syncicache((void *)EXC_RST, EXC_LAST - EXC_RST + 0x100); /* * Now enable translation (and machine checks/recoverable interrupts). */ __asm ("mfmsr %0" : "=r"(scratch)); scratch |= PSL_IR | PSL_DR | PSL_ME | PSL_RI; __asm ("mtmsr %0" :: "r"(scratch)); ofmsr &= ~PSL_IP; /* * Parse arg string. */ #ifdef DDB bcopy(args + strlen(args) + 1, &startsym, sizeof(startsym)); bcopy(args + strlen(args) + 5, &endsym, sizeof(endsym)); if (startsym == NULL || endsym == NULL) startsym = endsym = NULL; #endif strcpy(bootpath, args); args = bootpath; while (*++args && *args != ' '); if (*args) { *args++ = 0; while (*args) { switch (*args++) { case 'a': boothowto |= RB_ASKNAME; break; case 's': boothowto |= RB_SINGLE; break; case 'd': boothowto |= RB_KDB; break; case 'v': boothowto |= RB_VERBOSE; break; } } } #ifdef DDB ddb_init((int)((u_int)endsym - (u_int)startsym), startsym, endsym); #endif #ifdef IPKDB /* * Now trap to IPKDB */ ipkdb_init(); if (boothowto & RB_KDB) ipkdb_connect(0); #endif /* * Set the page size. */ #if 0 vm_set_page_size(); #endif /* * Initialize pmap module. */ pmap_bootstrap(); restore_ofw_mapping(); PCPU_GET(next_asn) = 1; /* 0 used for proc0 pmap */ /* setup proc 0's pcb */ thread0.td_pcb->pcb_flags = 0; /* XXXKSE */ thread0.td_frame = &proc0_tf; } #endif static int N_mapping; static struct { vm_offset_t va; int len; vm_offset_t pa; int mode; } ofw_mapping[256]; int save_ofw_mapping() { int mmui, mmu; OF_getprop(chosen, "mmu", &mmui, 4); mmu = OF_instance_to_package(mmui); bzero(ofw_mapping, sizeof(ofw_mapping)); N_mapping = OF_getprop(mmu, "translations", ofw_mapping, sizeof(ofw_mapping)); N_mapping /= sizeof(ofw_mapping[0]); return 0; } int restore_ofw_mapping() { int i; struct vm_page pg; pmap_pinit(&ofw_pmap); ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT; for (i = 0; i < N_mapping; i++) { vm_offset_t pa = ofw_mapping[i].pa; vm_offset_t va = ofw_mapping[i].va; int size = ofw_mapping[i].len; if (va < 0x80000000) /* XXX */ continue; while (size > 0) { pg.phys_addr = pa; pmap_enter(&ofw_pmap, va, &pg, VM_PROT_ALL, VM_PROT_ALL); pa += PAGE_SIZE; va += PAGE_SIZE; size -= PAGE_SIZE; } } return 0; } void bzero(void *buf, size_t len) { caddr_t p; p = buf; while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) { *p++ = 0; len--; } while (len >= sizeof(u_long) * 8) { *(u_long*) p = 0; *((u_long*) p + 1) = 0; *((u_long*) p + 2) = 0; *((u_long*) p + 3) = 0; len -= sizeof(u_long) * 8; *((u_long*) p + 4) = 0; *((u_long*) p + 5) = 0; *((u_long*) p + 6) = 0; *((u_long*) p + 7) = 0; p += sizeof(u_long) * 8; } while (len >= sizeof(u_long)) { *(u_long*) p = 0; len -= sizeof(u_long); p += sizeof(u_long); } while (len) { *p++ = 0; len--; } } #if 0 void delay(unsigned n) { u_long tb; do { __asm __volatile("mftb %0" : "=r" (tb)); } while (n > (int)(tb & 0xffffffff)); } #endif #ifdef COMPAT_43 void osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code) { /* XXX: To be done */ return; } #endif void sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code) { /* XXX: To be done */ return; } /* * Stub to satisfy the reference to osigreturn in the syscall table. This * is needed even for newer arches that don't support old signals because * the syscall table is machine-independent. */ int osigreturn(struct thread *td, struct osigreturn_args *uap) { return (nosys(td, (struct nosys_args *)uap)); } int sigreturn(struct thread *td, struct sigreturn_args *uap) { /* XXX: To be done */ return(ENOSYS); } void cpu_boot(int howto) { } /* * Shutdown the CPU as much as possible. */ void cpu_halt(void) { OF_exit(); } /* * Set set up registers on exec. */ void setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings) { struct trapframe *tf; struct ps_strings arginfo; tf = trapframe(td); bzero(tf, sizeof *tf); tf->fixreg[1] = -roundup(-stack + 8, 16); /* * XXX Machine-independent code has already copied arguments and * XXX environment to userland. Get them back here. */ (void)copyin((char *)PS_STRINGS, &arginfo, sizeof(arginfo)); /* * Set up arguments for _start(): * _start(argc, argv, envp, obj, cleanup, ps_strings); * * Notes: * - obj and cleanup are the auxilliary and termination * vectors. They are fixed up by ld.elf_so. * - ps_strings is a NetBSD extention, and will be * ignored by executables which are strictly * compliant with the SVR4 ABI. * * XXX We have to set both regs and retval here due to different * XXX calling convention in trap.c and init_main.c. */ tf->fixreg[3] = arginfo.ps_nargvstr; tf->fixreg[4] = (register_t)arginfo.ps_argvstr; tf->fixreg[5] = (register_t)arginfo.ps_envstr; tf->fixreg[6] = 0; /* auxillary vector */ tf->fixreg[7] = 0; /* termination vector */ tf->fixreg[8] = (register_t)PS_STRINGS; /* NetBSD extension */ tf->srr0 = entry; tf->srr1 = PSL_MBO | PSL_USERSET | PSL_FE_DFLT; td->td_pcb->pcb_flags = 0; } #if !defined(DDB) void Debugger(const char *msg) { printf("Debugger(\"%s\") called.\n", msg); } #endif /* !defined(DDB) */ /* XXX: dummy {fill,set}_[fp]regs */ int fill_regs(struct thread *td, struct reg *regs) { return (ENOSYS); } int fill_dbregs(struct thread *td, struct dbreg *dbregs) { return (ENOSYS); } int fill_fpregs(struct thread *td, struct fpreg *fpregs) { return (ENOSYS); } int set_regs(struct thread *td, struct reg *regs) { return (ENOSYS); } int set_dbregs(struct thread *td, struct dbreg *dbregs) { return (ENOSYS); } int set_fpregs(struct thread *td, struct fpreg *fpregs) { return (ENOSYS); } int ptrace_set_pc(struct thread *td, unsigned long addr) { /* XXX: coming soon... */ return (ENOSYS); } int ptrace_single_step(struct thread *td) { /* XXX: coming soon... */ return (ENOSYS); } int ptrace_clear_single_step(struct thread *td) { /* XXX: coming soon... */ return (ENOSYS); } /* * Initialise a struct pcpu. */ void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t sz) { pcpu->pc_current_asngen = 1; } /* * kcopy(const void *src, void *dst, size_t len); * * Copy len bytes from src to dst, aborting if we encounter a fatal * page fault. * * kcopy() _must_ save and restore the old fault handler since it is * called by uiomove(), which may be in the path of servicing a non-fatal * page fault. */ int kcopy(const void *src, void *dst, size_t len) { struct thread *td; faultbuf env, *oldfault; int rv; td = PCPU_GET(curthread); oldfault = td->td_pcb->pcb_onfault; if ((rv = setfault(env)) != 0) { td->td_pcb->pcb_onfault = oldfault; return rv; } memcpy(dst, src, len); td->td_pcb->pcb_onfault = oldfault; return (0); }