/*- * Copyright (c) 1989, 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software developed by the Computer Systems * Engineering group at Lawrence Berkeley Laboratory under DARPA contract * BG 91-66 and contributed to Berkeley. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #define _WANT_VNET #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kvm_private.h" /* * Routines private to libkvm. */ /* from src/lib/libc/gen/nlist.c */ int __fdnlist(int, struct nlist *); /* * Report an error using printf style arguments. "program" is kd->program * on hard errors, and 0 on soft errors, so that under sun error emulation, * only hard errors are printed out (otherwise, programs like gdb will * generate tons of error messages when trying to access bogus pointers). */ void _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) { va_list ap; va_start(ap, fmt); if (program != NULL) { (void)fprintf(stderr, "%s: ", program); (void)vfprintf(stderr, fmt, ap); (void)fputc('\n', stderr); } else (void)vsnprintf(kd->errbuf, sizeof(kd->errbuf), fmt, ap); va_end(ap); } void _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) { va_list ap; int n; va_start(ap, fmt); if (program != NULL) { (void)fprintf(stderr, "%s: ", program); (void)vfprintf(stderr, fmt, ap); (void)fprintf(stderr, ": %s\n", strerror(errno)); } else { char *cp = kd->errbuf; (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); n = strlen(cp); (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", strerror(errno)); } va_end(ap); } void * _kvm_malloc(kvm_t *kd, size_t n) { void *p; if ((p = calloc(n, sizeof(char))) == NULL) _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", n, strerror(errno)); return (p); } int _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) { return (kd->nlehdr.e_ident[EI_CLASS] == class && kd->nlehdr.e_type == ET_EXEC && kd->nlehdr.e_machine == machine); } int _kvm_is_minidump(kvm_t *kd) { char minihdr[8]; if (kd->rawdump) return (0); if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && memcmp(&minihdr, "minidump", 8) == 0) return (1); return (0); } /* * The powerpc backend has a hack to strip a leading kerneldump * header from the core before treating it as an ELF header. * * We can add that here if we can get a change to libelf to support * an initial offset into the file. Alternatively we could patch * savecore to extract cores from a regular file instead. */ int _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) { GElf_Ehdr ehdr; GElf_Phdr *phdr; Elf *elf; size_t i, phnum; elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); if (elf == NULL) { _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); return (-1); } if (elf_kind(elf) != ELF_K_ELF) { _kvm_err(kd, kd->program, "invalid core"); goto bad; } if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { _kvm_err(kd, kd->program, "invalid core"); goto bad; } if (gelf_getehdr(elf, &ehdr) == NULL) { _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); goto bad; } if (ehdr.e_type != ET_CORE) { _kvm_err(kd, kd->program, "invalid core"); goto bad; } if (ehdr.e_machine != kd->nlehdr.e_machine) { _kvm_err(kd, kd->program, "invalid core"); goto bad; } if (elf_getphdrnum(elf, &phnum) == -1) { _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); goto bad; } phdr = calloc(phnum, sizeof(*phdr)); if (phdr == NULL) { _kvm_err(kd, kd->program, "failed to allocate phdrs"); goto bad; } for (i = 0; i < phnum; i++) { if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); goto bad; } } elf_end(elf); *phnump = phnum; *phdrp = phdr; return (0); bad: elf_end(elf); return (-1); } static void _kvm_hpt_insert(struct hpt *hpt, uint64_t pa, off_t off) { struct hpte *hpte; uint32_t fnv = FNV1_32_INIT; fnv = fnv_32_buf(&pa, sizeof(pa), fnv); fnv &= (HPT_SIZE - 1); hpte = malloc(sizeof(*hpte)); hpte->pa = pa; hpte->off = off; hpte->next = hpt->hpt_head[fnv]; hpt->hpt_head[fnv] = hpte; } void _kvm_hpt_init(kvm_t *kd, struct hpt *hpt, void *base, size_t len, off_t off, int page_size, int word_size) { uint64_t bits, idx, pa; uint64_t *base64; uint32_t *base32; base64 = base; base32 = base; for (idx = 0; idx < len / word_size; idx++) { if (word_size == sizeof(uint64_t)) bits = _kvm64toh(kd, base64[idx]); else bits = _kvm32toh(kd, base32[idx]); pa = idx * word_size * NBBY * page_size; for (; bits != 0; bits >>= 1, pa += page_size) { if ((bits & 1) == 0) continue; _kvm_hpt_insert(hpt, pa, off); off += page_size; } } } off_t _kvm_hpt_find(struct hpt *hpt, uint64_t pa) { struct hpte *hpte; uint32_t fnv = FNV1_32_INIT; fnv = fnv_32_buf(&pa, sizeof(pa), fnv); fnv &= (HPT_SIZE - 1); for (hpte = hpt->hpt_head[fnv]; hpte != NULL; hpte = hpte->next) { if (pa == hpte->pa) return (hpte->off); } return (-1); } void _kvm_hpt_free(struct hpt *hpt) { struct hpte *hpte, *next; int i; for (i = 0; i < HPT_SIZE; i++) { for (hpte = hpt->hpt_head[i]; hpte != NULL; hpte = next) { next = hpte->next; free(hpte); } } } static int kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) { kvaddr_t addr; int error, nfail; if (kd->resolve_symbol == NULL) { struct nlist *nl; int count, i; for (count = 0; list[count].n_name != NULL && list[count].n_name[0] != '\0'; count++) ; nl = calloc(count + 1, sizeof(*nl)); for (i = 0; i < count; i++) nl[i].n_name = list[i].n_name; nfail = __fdnlist(kd->nlfd, nl); for (i = 0; i < count; i++) { list[i].n_type = nl[i].n_type; list[i].n_value = nl[i].n_value; } free(nl); return (nfail); } nfail = 0; while (list->n_name != NULL && list->n_name[0] != '\0') { error = kd->resolve_symbol(list->n_name, &addr); if (error != 0) { nfail++; list->n_value = 0; list->n_type = 0; } else { list->n_value = addr; list->n_type = N_DATA | N_EXT; } list++; } return (nfail); } /* * Walk the list of unresolved symbols, generate a new list and prefix the * symbol names, try again, and merge back what we could resolve. */ static int kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) { struct kvm_nlist *n, *np, *p; char *cp, *ce; const char *ccp; size_t len; int slen, unresolved; /* * Calculate the space we need to malloc for nlist and names. * We are going to store the name twice for later lookups: once * with the prefix and once the unmodified name delmited by \0. */ len = 0; unresolved = 0; for (p = nl; p->n_name && p->n_name[0]; ++p) { if (p->n_type != N_UNDF) continue; len += sizeof(struct kvm_nlist) + strlen(prefix) + 2 * (strlen(p->n_name) + 1); unresolved++; } if (unresolved == 0) return (unresolved); /* Add space for the terminating nlist entry. */ len += sizeof(struct kvm_nlist); unresolved++; /* Alloc one chunk for (nlist, [names]) and setup pointers. */ n = np = malloc(len); bzero(n, len); if (n == NULL) return (missing); cp = ce = (char *)np; cp += unresolved * sizeof(struct kvm_nlist); ce += len; /* Generate shortened nlist with special prefix. */ unresolved = 0; for (p = nl; p->n_name && p->n_name[0]; ++p) { if (p->n_type != N_UNDF) continue; *np = *p; /* Save the new\0orig. name so we can later match it again. */ slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, (prefix[0] != '\0' && p->n_name[0] == '_') ? (p->n_name + 1) : p->n_name, '\0', p->n_name); if (slen < 0 || slen >= ce - cp) continue; np->n_name = cp; cp += slen + 1; np++; unresolved++; } /* Do lookup on the reduced list. */ np = n; unresolved = kvm_fdnlist(kd, np); /* Check if we could resolve further symbols and update the list. */ if (unresolved >= 0 && unresolved < missing) { /* Find the first freshly resolved entry. */ for (; np->n_name && np->n_name[0]; np++) if (np->n_type != N_UNDF) break; /* * The lists are both in the same order, * so we can walk them in parallel. */ for (p = nl; np->n_name && np->n_name[0] && p->n_name && p->n_name[0]; ++p) { if (p->n_type != N_UNDF) continue; /* Skip expanded name and compare to orig. one. */ ccp = np->n_name + strlen(np->n_name) + 1; if (strcmp(ccp, p->n_name) != 0) continue; /* Update nlist with new, translated results. */ p->n_type = np->n_type; if (validate_fn) p->n_value = (*validate_fn)(kd, np->n_value); else p->n_value = np->n_value; missing--; /* Find next freshly resolved entry. */ for (np++; np->n_name && np->n_name[0]; np++) if (np->n_type != N_UNDF) break; } } /* We could assert missing = unresolved here. */ free(n); return (unresolved); } int _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) { struct kvm_nlist *p; int nvalid; struct kld_sym_lookup lookup; int error; const char *prefix = ""; char symname[1024]; /* XXX-BZ symbol name length limit? */ int tried_vnet, tried_dpcpu; /* * If we can't use the kld symbol lookup, revert to the * slow library call. */ if (!ISALIVE(kd)) { error = kvm_fdnlist(kd, nl); if (error <= 0) /* Hard error or success. */ return (error); if (_kvm_vnet_initialized(kd, initialize)) error = kvm_fdnlist_prefix(kd, nl, error, VNET_SYMPREFIX, _kvm_vnet_validaddr); if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) error = kvm_fdnlist_prefix(kd, nl, error, DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); return (error); } /* * We can use the kld lookup syscall. Go through each nlist entry * and look it up with a kldsym(2) syscall. */ nvalid = 0; tried_vnet = 0; tried_dpcpu = 0; again: for (p = nl; p->n_name && p->n_name[0]; ++p) { if (p->n_type != N_UNDF) continue; lookup.version = sizeof(lookup); lookup.symvalue = 0; lookup.symsize = 0; error = snprintf(symname, sizeof(symname), "%s%s", prefix, (prefix[0] != '\0' && p->n_name[0] == '_') ? (p->n_name + 1) : p->n_name); if (error < 0 || error >= (int)sizeof(symname)) continue; lookup.symname = symname; if (lookup.symname[0] == '_') lookup.symname++; if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { p->n_type = N_TEXT; if (_kvm_vnet_initialized(kd, initialize) && strcmp(prefix, VNET_SYMPREFIX) == 0) p->n_value = _kvm_vnet_validaddr(kd, lookup.symvalue); else if (_kvm_dpcpu_initialized(kd, initialize) && strcmp(prefix, DPCPU_SYMPREFIX) == 0) p->n_value = _kvm_dpcpu_validaddr(kd, lookup.symvalue); else p->n_value = lookup.symvalue; ++nvalid; /* lookup.symsize */ } } /* * Check the number of entries that weren't found. If they exist, * try again with a prefix for virtualized or DPCPU symbol names. */ error = ((p - nl) - nvalid); if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { tried_vnet = 1; prefix = VNET_SYMPREFIX; goto again; } if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { tried_dpcpu = 1; prefix = DPCPU_SYMPREFIX; goto again; } /* * Return the number of entries that weren't found. If they exist, * also fill internal error buffer. */ error = ((p - nl) - nvalid); if (error) _kvm_syserr(kd, kd->program, "kvm_nlist"); return (error); }