/*- * Copyright (c) 1998 - 2008 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ata.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef ATA_CAM #include #include #include #include #include #include #endif #ifndef ATA_CAM /* device structure */ static d_ioctl_t ata_ioctl; static struct cdevsw ata_cdevsw = { .d_version = D_VERSION, .d_flags = D_NEEDGIANT, /* we need this as newbus isn't mpsafe */ .d_ioctl = ata_ioctl, .d_name = "ata", }; #endif /* prototypes */ #ifndef ATA_CAM static void ata_boot_attach(void); static device_t ata_add_child(device_t, struct ata_device *, int); #else static void ataaction(struct cam_sim *sim, union ccb *ccb); static void atapoll(struct cam_sim *sim); #endif static void ata_conn_event(void *, int); static void bswap(int8_t *, int); static void btrim(int8_t *, int); static void bpack(int8_t *, int8_t *, int); static void ata_interrupt_locked(void *data); /* global vars */ MALLOC_DEFINE(M_ATA, "ata_generic", "ATA driver generic layer"); int (*ata_raid_ioctl_func)(u_long cmd, caddr_t data) = NULL; struct intr_config_hook *ata_delayed_attach = NULL; devclass_t ata_devclass; uma_zone_t ata_request_zone; uma_zone_t ata_composite_zone; int ata_wc = 1; int ata_setmax = 0; int ata_dma_check_80pin = 1; /* local vars */ static int ata_dma = 1; static int atapi_dma = 1; /* sysctl vars */ SYSCTL_NODE(_hw, OID_AUTO, ata, CTLFLAG_RD, 0, "ATA driver parameters"); TUNABLE_INT("hw.ata.ata_dma", &ata_dma); SYSCTL_INT(_hw_ata, OID_AUTO, ata_dma, CTLFLAG_RDTUN, &ata_dma, 0, "ATA disk DMA mode control"); TUNABLE_INT("hw.ata.ata_dma_check_80pin", &ata_dma_check_80pin); SYSCTL_INT(_hw_ata, OID_AUTO, ata_dma_check_80pin, CTLFLAG_RDTUN, &ata_dma_check_80pin, 1, "Check for 80pin cable before setting ATA DMA mode"); TUNABLE_INT("hw.ata.atapi_dma", &atapi_dma); SYSCTL_INT(_hw_ata, OID_AUTO, atapi_dma, CTLFLAG_RDTUN, &atapi_dma, 0, "ATAPI device DMA mode control"); TUNABLE_INT("hw.ata.wc", &ata_wc); SYSCTL_INT(_hw_ata, OID_AUTO, wc, CTLFLAG_RDTUN, &ata_wc, 0, "ATA disk write caching"); TUNABLE_INT("hw.ata.setmax", &ata_setmax); SYSCTL_INT(_hw_ata, OID_AUTO, setmax, CTLFLAG_RDTUN, &ata_setmax, 0, "ATA disk set max native address"); /* * newbus device interface related functions */ int ata_probe(device_t dev) { return 0; } int ata_attach(device_t dev) { struct ata_channel *ch = device_get_softc(dev); int error, rid; #ifdef ATA_CAM struct cam_devq *devq; int i; #endif /* check that we have a virgin channel to attach */ if (ch->r_irq) return EEXIST; /* initialize the softc basics */ ch->dev = dev; ch->state = ATA_IDLE; bzero(&ch->state_mtx, sizeof(struct mtx)); mtx_init(&ch->state_mtx, "ATA state lock", NULL, MTX_DEF); bzero(&ch->queue_mtx, sizeof(struct mtx)); mtx_init(&ch->queue_mtx, "ATA queue lock", NULL, MTX_DEF); TAILQ_INIT(&ch->ata_queue); TASK_INIT(&ch->conntask, 0, ata_conn_event, dev); #ifdef ATA_CAM for (i = 0; i < 16; i++) { ch->user[i].mode = 0; if (ch->flags & ATA_SATA) ch->user[i].bytecount = 8192; else ch->user[i].bytecount = MAXPHYS; ch->curr[i] = ch->user[i]; } #endif /* reset the controller HW, the channel and device(s) */ while (ATA_LOCKING(dev, ATA_LF_LOCK) != ch->unit) pause("ataatch", 1); #ifndef ATA_CAM ATA_RESET(dev); #endif ATA_LOCKING(dev, ATA_LF_UNLOCK); /* allocate DMA resources if DMA HW present*/ if (ch->dma.alloc) ch->dma.alloc(dev); /* setup interrupt delivery */ rid = ATA_IRQ_RID; ch->r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (!ch->r_irq) { device_printf(dev, "unable to allocate interrupt\n"); return ENXIO; } if ((error = bus_setup_intr(dev, ch->r_irq, ATA_INTR_FLAGS, NULL, ata_interrupt, ch, &ch->ih))) { device_printf(dev, "unable to setup interrupt\n"); return error; } #ifndef ATA_CAM /* probe and attach devices on this channel unless we are in early boot */ if (!ata_delayed_attach) ata_identify(dev); return (0); #else mtx_lock(&ch->state_mtx); /* Create the device queue for our SIM. */ devq = cam_simq_alloc(1); if (devq == NULL) { device_printf(dev, "Unable to allocate simq\n"); error = ENOMEM; goto err1; } /* Construct SIM entry */ ch->sim = cam_sim_alloc(ataaction, atapoll, "ata", ch, device_get_unit(dev), &ch->state_mtx, 1, 0, devq); if (ch->sim == NULL) { device_printf(dev, "unable to allocate sim\n"); error = ENOMEM; goto err2; } if (xpt_bus_register(ch->sim, dev, 0) != CAM_SUCCESS) { device_printf(dev, "unable to register xpt bus\n"); error = ENXIO; goto err2; } if (xpt_create_path(&ch->path, /*periph*/NULL, cam_sim_path(ch->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { device_printf(dev, "unable to create path\n"); error = ENXIO; goto err3; } mtx_unlock(&ch->state_mtx); return (0); err3: xpt_bus_deregister(cam_sim_path(ch->sim)); err2: cam_sim_free(ch->sim, /*free_devq*/TRUE); err1: bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq); mtx_unlock(&ch->state_mtx); return (error); #endif } int ata_detach(device_t dev) { struct ata_channel *ch = device_get_softc(dev); #ifndef ATA_CAM device_t *children; int nchildren, i; #endif /* check that we have a valid channel to detach */ if (!ch->r_irq) return ENXIO; /* grap the channel lock so no new requests gets launched */ mtx_lock(&ch->state_mtx); ch->state |= ATA_STALL_QUEUE; mtx_unlock(&ch->state_mtx); #ifndef ATA_CAM /* detach & delete all children */ if (!device_get_children(dev, &children, &nchildren)) { for (i = 0; i < nchildren; i++) if (children[i]) device_delete_child(dev, children[i]); free(children, M_TEMP); } #endif taskqueue_drain(taskqueue_thread, &ch->conntask); #ifdef ATA_CAM mtx_lock(&ch->state_mtx); xpt_async(AC_LOST_DEVICE, ch->path, NULL); xpt_free_path(ch->path); xpt_bus_deregister(cam_sim_path(ch->sim)); cam_sim_free(ch->sim, /*free_devq*/TRUE); mtx_unlock(&ch->state_mtx); #endif /* release resources */ bus_teardown_intr(dev, ch->r_irq, ch->ih); bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq); ch->r_irq = NULL; /* free DMA resources if DMA HW present*/ if (ch->dma.free) ch->dma.free(dev); mtx_destroy(&ch->state_mtx); mtx_destroy(&ch->queue_mtx); return 0; } static void ata_conn_event(void *context, int dummy) { device_t dev = (device_t)context; struct ata_channel *ch = device_get_softc(dev); mtx_lock(&ch->state_mtx); ata_reinit(dev); mtx_unlock(&ch->state_mtx); } int ata_reinit(device_t dev) { struct ata_channel *ch = device_get_softc(dev); struct ata_request *request; #ifndef ATA_CAM device_t *children; int nchildren, i; /* check that we have a valid channel to reinit */ if (!ch || !ch->r_irq) return ENXIO; if (bootverbose) device_printf(dev, "reiniting channel ..\n"); /* poll for locking the channel */ while (ATA_LOCKING(dev, ATA_LF_LOCK) != ch->unit) pause("atarini", 1); /* catch eventual request in ch->running */ mtx_lock(&ch->state_mtx); if (ch->state & ATA_STALL_QUEUE) { /* Recursive reinits and reinits during detach prohobited. */ mtx_unlock(&ch->state_mtx); return (ENXIO); } if ((request = ch->running)) callout_stop(&request->callout); ch->running = NULL; /* unconditionally grap the channel lock */ ch->state |= ATA_STALL_QUEUE; mtx_unlock(&ch->state_mtx); /* reset the controller HW, the channel and device(s) */ ATA_RESET(dev); /* reinit the children and delete any that fails */ if (!device_get_children(dev, &children, &nchildren)) { mtx_lock(&Giant); /* newbus suckage it needs Giant */ for (i = 0; i < nchildren; i++) { /* did any children go missing ? */ if (children[i] && device_is_attached(children[i]) && ATA_REINIT(children[i])) { /* * if we had a running request and its device matches * this child we need to inform the request that the * device is gone. */ if (request && request->dev == children[i]) { request->result = ENXIO; device_printf(request->dev, "FAILURE - device detached\n"); /* if not timeout finish request here */ if (!(request->flags & ATA_R_TIMEOUT)) ata_finish(request); request = NULL; } device_delete_child(dev, children[i]); } } free(children, M_TEMP); mtx_unlock(&Giant); /* newbus suckage dealt with, release Giant */ } /* if we still have a good request put it on the queue again */ if (request && !(request->flags & ATA_R_TIMEOUT)) { device_printf(request->dev, "WARNING - %s requeued due to channel reset", ata_cmd2str(request)); if (!(request->flags & (ATA_R_ATAPI | ATA_R_CONTROL))) printf(" LBA=%ju", request->u.ata.lba); printf("\n"); request->flags |= ATA_R_REQUEUE; ata_queue_request(request); } /* we're done release the channel for new work */ mtx_lock(&ch->state_mtx); ch->state = ATA_IDLE; mtx_unlock(&ch->state_mtx); ATA_LOCKING(dev, ATA_LF_UNLOCK); /* Add new children. */ /* ata_identify(dev); */ if (bootverbose) device_printf(dev, "reinit done ..\n"); /* kick off requests on the queue */ ata_start(dev); #else if ((request = ch->running)) { ch->running = NULL; if (ch->state == ATA_ACTIVE) ch->state = ATA_IDLE; callout_stop(&request->callout); if (ch->dma.unload) ch->dma.unload(request); request->result = ERESTART; ata_cam_end_transaction(dev, request); } /* reset the controller HW, the channel and device(s) */ ATA_RESET(dev); /* Tell the XPT about the event */ xpt_async(AC_BUS_RESET, ch->path, NULL); #endif return(0); } int ata_suspend(device_t dev) { struct ata_channel *ch; /* check for valid device */ if (!dev || !(ch = device_get_softc(dev))) return ENXIO; #ifndef ATA_CAM /* wait for the channel to be IDLE or detached before suspending */ while (ch->r_irq) { mtx_lock(&ch->state_mtx); if (ch->state == ATA_IDLE) { ch->state = ATA_ACTIVE; mtx_unlock(&ch->state_mtx); break; } mtx_unlock(&ch->state_mtx); tsleep(ch, PRIBIO, "atasusp", hz/10); } ATA_LOCKING(dev, ATA_LF_UNLOCK); #endif return(0); } int ata_resume(device_t dev) { int error; /* check for valid device */ if (!dev || !device_get_softc(dev)) return ENXIO; /* reinit the devices, we dont know what mode/state they are in */ error = ata_reinit(dev); #ifndef ATA_CAM /* kick off requests on the queue */ ata_start(dev); #endif return error; } void ata_interrupt(void *data) { #ifdef ATA_CAM struct ata_channel *ch = (struct ata_channel *)data; mtx_lock(&ch->state_mtx); #endif ata_interrupt_locked(data); #ifdef ATA_CAM mtx_unlock(&ch->state_mtx); #endif } static void ata_interrupt_locked(void *data) { struct ata_channel *ch = (struct ata_channel *)data; struct ata_request *request; #ifndef ATA_CAM mtx_lock(&ch->state_mtx); #endif do { /* ignore interrupt if its not for us */ if (ch->hw.status && !ch->hw.status(ch->dev)) break; /* do we have a running request */ if (!(request = ch->running)) break; ATA_DEBUG_RQ(request, "interrupt"); /* safetycheck for the right state */ if (ch->state == ATA_IDLE) { device_printf(request->dev, "interrupt on idle channel ignored\n"); break; } /* * we have the HW locks, so end the transaction for this request * if it finishes immediately otherwise wait for next interrupt */ if (ch->hw.end_transaction(request) == ATA_OP_FINISHED) { ch->running = NULL; if (ch->state == ATA_ACTIVE) ch->state = ATA_IDLE; #ifdef ATA_CAM ata_cam_end_transaction(ch->dev, request); #else mtx_unlock(&ch->state_mtx); ATA_LOCKING(ch->dev, ATA_LF_UNLOCK); ata_finish(request); #endif return; } } while (0); #ifndef ATA_CAM mtx_unlock(&ch->state_mtx); #endif } void ata_print_cable(device_t dev, u_int8_t *who) { device_printf(dev, "DMA limited to UDMA33, %s found non-ATA66 cable\n", who); } int ata_check_80pin(device_t dev, int mode) { struct ata_device *atadev = device_get_softc(dev); if (!ata_dma_check_80pin) { if (bootverbose) device_printf(dev, "Skipping 80pin cable check\n"); return mode; } if (mode > ATA_UDMA2 && !(atadev->param.hwres & ATA_CABLE_ID)) { ata_print_cable(dev, "device"); mode = ATA_UDMA2; } return mode; } void ata_setmode(device_t dev) { struct ata_channel *ch = device_get_softc(device_get_parent(dev)); struct ata_device *atadev = device_get_softc(dev); int error, mode, pmode; mode = atadev->mode; do { pmode = mode = ata_limit_mode(dev, mode, ATA_DMA_MAX); mode = ATA_SETMODE(device_get_parent(dev), atadev->unit, mode); if ((ch->flags & (ATA_CHECKS_CABLE | ATA_SATA)) == 0) mode = ata_check_80pin(dev, mode); } while (pmode != mode); /* Interate till successfull negotiation. */ error = ata_controlcmd(dev, ATA_SETFEATURES, ATA_SF_SETXFER, 0, mode); if (bootverbose) device_printf(dev, "%ssetting %s\n", (error) ? "FAILURE " : "", ata_mode2str(mode)); atadev->mode = mode; } /* * device related interfaces */ #ifndef ATA_CAM static int ata_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int32_t flag, struct thread *td) { device_t device, *children; struct ata_ioc_devices *devices = (struct ata_ioc_devices *)data; int *value = (int *)data; int i, nchildren, error = ENOTTY; switch (cmd) { case IOCATAGMAXCHANNEL: /* In case we have channel 0..n this will return n+1. */ *value = devclass_get_maxunit(ata_devclass); error = 0; break; case IOCATAREINIT: if (*value >= devclass_get_maxunit(ata_devclass) || !(device = devclass_get_device(ata_devclass, *value)) || !device_is_attached(device)) return ENXIO; error = ata_reinit(device); break; case IOCATAATTACH: if (*value >= devclass_get_maxunit(ata_devclass) || !(device = devclass_get_device(ata_devclass, *value)) || !device_is_attached(device)) return ENXIO; error = DEVICE_ATTACH(device); break; case IOCATADETACH: if (*value >= devclass_get_maxunit(ata_devclass) || !(device = devclass_get_device(ata_devclass, *value)) || !device_is_attached(device)) return ENXIO; error = DEVICE_DETACH(device); break; case IOCATADEVICES: if (devices->channel >= devclass_get_maxunit(ata_devclass) || !(device = devclass_get_device(ata_devclass, devices->channel)) || !device_is_attached(device)) return ENXIO; bzero(devices->name[0], 32); bzero(&devices->params[0], sizeof(struct ata_params)); bzero(devices->name[1], 32); bzero(&devices->params[1], sizeof(struct ata_params)); if (!device_get_children(device, &children, &nchildren)) { for (i = 0; i < nchildren; i++) { if (children[i] && device_is_attached(children[i])) { struct ata_device *atadev = device_get_softc(children[i]); if (atadev->unit == ATA_MASTER) { /* XXX SOS PM */ strncpy(devices->name[0], device_get_nameunit(children[i]), 32); bcopy(&atadev->param, &devices->params[0], sizeof(struct ata_params)); } if (atadev->unit == ATA_SLAVE) { /* XXX SOS PM */ strncpy(devices->name[1], device_get_nameunit(children[i]), 32); bcopy(&atadev->param, &devices->params[1], sizeof(struct ata_params)); } } } free(children, M_TEMP); error = 0; } else error = ENODEV; break; default: if (ata_raid_ioctl_func) error = ata_raid_ioctl_func(cmd, data); } return error; } #endif int ata_device_ioctl(device_t dev, u_long cmd, caddr_t data) { struct ata_device *atadev = device_get_softc(dev); struct ata_channel *ch = device_get_softc(device_get_parent(dev)); struct ata_ioc_request *ioc_request = (struct ata_ioc_request *)data; struct ata_params *params = (struct ata_params *)data; int *mode = (int *)data; struct ata_request *request; caddr_t buf; int error; switch (cmd) { case IOCATAREQUEST: if (ioc_request->count > (ch->dma.max_iosize ? ch->dma.max_iosize : DFLTPHYS)) { return (EFBIG); } if (!(buf = malloc(ioc_request->count, M_ATA, M_NOWAIT))) { return ENOMEM; } if (!(request = ata_alloc_request())) { free(buf, M_ATA); return ENOMEM; } request->dev = atadev->dev; if (ioc_request->flags & ATA_CMD_WRITE) { error = copyin(ioc_request->data, buf, ioc_request->count); if (error) { free(buf, M_ATA); ata_free_request(request); return error; } } if (ioc_request->flags & ATA_CMD_ATAPI) { request->flags = ATA_R_ATAPI; bcopy(ioc_request->u.atapi.ccb, request->u.atapi.ccb, 16); } else { request->u.ata.command = ioc_request->u.ata.command; request->u.ata.feature = ioc_request->u.ata.feature; request->u.ata.lba = ioc_request->u.ata.lba; request->u.ata.count = ioc_request->u.ata.count; } request->timeout = ioc_request->timeout; request->data = buf; request->bytecount = ioc_request->count; request->transfersize = request->bytecount; if (ioc_request->flags & ATA_CMD_CONTROL) request->flags |= ATA_R_CONTROL; if (ioc_request->flags & ATA_CMD_READ) request->flags |= ATA_R_READ; if (ioc_request->flags & ATA_CMD_WRITE) request->flags |= ATA_R_WRITE; ata_queue_request(request); if (request->flags & ATA_R_ATAPI) { bcopy(&request->u.atapi.sense, &ioc_request->u.atapi.sense, sizeof(struct atapi_sense)); } else { ioc_request->u.ata.command = request->u.ata.command; ioc_request->u.ata.feature = request->u.ata.feature; ioc_request->u.ata.lba = request->u.ata.lba; ioc_request->u.ata.count = request->u.ata.count; } ioc_request->error = request->result; if (ioc_request->flags & ATA_CMD_READ) error = copyout(buf, ioc_request->data, ioc_request->count); else error = 0; free(buf, M_ATA); ata_free_request(request); return error; case IOCATAGPARM: ata_getparam(atadev, 0); bcopy(&atadev->param, params, sizeof(struct ata_params)); return 0; case IOCATASMODE: atadev->mode = *mode; ata_setmode(dev); return 0; case IOCATAGMODE: *mode = atadev->mode | (ATA_GETREV(device_get_parent(dev), atadev->unit) << 8); return 0; case IOCATASSPINDOWN: atadev->spindown = *mode; return 0; case IOCATAGSPINDOWN: *mode = atadev->spindown; return 0; default: return ENOTTY; } } #ifndef ATA_CAM static void ata_boot_attach(void) { struct ata_channel *ch; int ctlr; mtx_lock(&Giant); /* newbus suckage it needs Giant */ /* kick of probe and attach on all channels */ for (ctlr = 0; ctlr < devclass_get_maxunit(ata_devclass); ctlr++) { if ((ch = devclass_get_softc(ata_devclass, ctlr))) { ata_identify(ch->dev); } } /* release the hook that got us here, we are only needed once during boot */ if (ata_delayed_attach) { config_intrhook_disestablish(ata_delayed_attach); free(ata_delayed_attach, M_TEMP); ata_delayed_attach = NULL; } mtx_unlock(&Giant); /* newbus suckage dealt with, release Giant */ } #endif /* * misc support functions */ #ifndef ATA_CAM static device_t ata_add_child(device_t parent, struct ata_device *atadev, int unit) { device_t child; if ((child = device_add_child(parent, NULL, unit))) { device_set_softc(child, atadev); device_quiet(child); atadev->dev = child; atadev->max_iosize = DEV_BSIZE; atadev->mode = ATA_PIO_MAX; } return child; } #endif int ata_getparam(struct ata_device *atadev, int init) { struct ata_channel *ch = device_get_softc(device_get_parent(atadev->dev)); struct ata_request *request; u_int8_t command = 0; int error = ENOMEM, retries = 2; if (ch->devices & (ATA_ATA_MASTER << atadev->unit)) command = ATA_ATA_IDENTIFY; if (ch->devices & (ATA_ATAPI_MASTER << atadev->unit)) command = ATA_ATAPI_IDENTIFY; if (!command) return ENXIO; while (retries-- > 0 && error) { if (!(request = ata_alloc_request())) break; request->dev = atadev->dev; request->timeout = 1; request->retries = 0; request->u.ata.command = command; request->flags = (ATA_R_READ|ATA_R_AT_HEAD|ATA_R_DIRECT); if (!bootverbose) request->flags |= ATA_R_QUIET; request->data = (void *)&atadev->param; request->bytecount = sizeof(struct ata_params); request->donecount = 0; request->transfersize = DEV_BSIZE; ata_queue_request(request); error = request->result; ata_free_request(request); } if (!error && (isprint(atadev->param.model[0]) || isprint(atadev->param.model[1]))) { struct ata_params *atacap = &atadev->param; int16_t *ptr; for (ptr = (int16_t *)atacap; ptr < (int16_t *)atacap + sizeof(struct ata_params)/2; ptr++) { *ptr = le16toh(*ptr); } if (!(!strncmp(atacap->model, "FX", 2) || !strncmp(atacap->model, "NEC", 3) || !strncmp(atacap->model, "Pioneer", 7) || !strncmp(atacap->model, "SHARP", 5))) { bswap(atacap->model, sizeof(atacap->model)); bswap(atacap->revision, sizeof(atacap->revision)); bswap(atacap->serial, sizeof(atacap->serial)); } btrim(atacap->model, sizeof(atacap->model)); bpack(atacap->model, atacap->model, sizeof(atacap->model)); btrim(atacap->revision, sizeof(atacap->revision)); bpack(atacap->revision, atacap->revision, sizeof(atacap->revision)); btrim(atacap->serial, sizeof(atacap->serial)); bpack(atacap->serial, atacap->serial, sizeof(atacap->serial)); if (bootverbose) printf("ata%d-%s: pio=%s wdma=%s udma=%s cable=%s wire\n", device_get_unit(ch->dev), ata_unit2str(atadev), ata_mode2str(ata_pmode(atacap)), ata_mode2str(ata_wmode(atacap)), ata_mode2str(ata_umode(atacap)), (atacap->hwres & ATA_CABLE_ID) ? "80":"40"); if (init) { char buffer[64]; sprintf(buffer, "%.40s/%.8s", atacap->model, atacap->revision); device_set_desc_copy(atadev->dev, buffer); if ((atadev->param.config & ATA_PROTO_ATAPI) && (atadev->param.config != ATA_CFA_MAGIC1) && (atadev->param.config != ATA_CFA_MAGIC2)) { if (atapi_dma && (atadev->param.config & ATA_DRQ_MASK) != ATA_DRQ_INTR && ata_umode(&atadev->param) >= ATA_UDMA2) atadev->mode = ATA_DMA_MAX; } else { if (ata_dma && (ata_umode(&atadev->param) > 0 || ata_wmode(&atadev->param) > 0)) atadev->mode = ATA_DMA_MAX; } } } else { if (!error) error = ENXIO; } return error; } #ifndef ATA_CAM int ata_identify(device_t dev) { struct ata_channel *ch = device_get_softc(dev); struct ata_device *atadev; device_t *children; device_t child, master = NULL; int nchildren, i, n = ch->devices; if (bootverbose) device_printf(dev, "Identifying devices: %08x\n", ch->devices); mtx_lock(&Giant); /* Skip existing devices. */ if (!device_get_children(dev, &children, &nchildren)) { for (i = 0; i < nchildren; i++) { if (children[i] && (atadev = device_get_softc(children[i]))) n &= ~((ATA_ATA_MASTER | ATA_ATAPI_MASTER) << atadev->unit); } free(children, M_TEMP); } /* Create new devices. */ if (bootverbose) device_printf(dev, "New devices: %08x\n", n); if (n == 0) { mtx_unlock(&Giant); return (0); } for (i = 0; i < ATA_PM; ++i) { if (n & (((ATA_ATA_MASTER | ATA_ATAPI_MASTER) << i))) { int unit = -1; if (!(atadev = malloc(sizeof(struct ata_device), M_ATA, M_NOWAIT | M_ZERO))) { device_printf(dev, "out of memory\n"); return ENOMEM; } atadev->unit = i; #ifdef ATA_STATIC_ID if (n & (ATA_ATA_MASTER << i)) unit = (device_get_unit(dev) << 1) + i; #endif if ((child = ata_add_child(dev, atadev, unit))) { /* * PATA slave should be identified first, to allow * device cable detection on master to work properly. */ if (i == 0 && (n & ATA_PORTMULTIPLIER) == 0 && (n & ((ATA_ATA_MASTER | ATA_ATAPI_MASTER) << 1)) != 0) { master = child; continue; } if (ata_getparam(atadev, 1)) { device_delete_child(dev, child); free(atadev, M_ATA); } } else free(atadev, M_ATA); } } if (master) { atadev = device_get_softc(master); if (ata_getparam(atadev, 1)) { device_delete_child(dev, master); free(atadev, M_ATA); } } bus_generic_probe(dev); bus_generic_attach(dev); mtx_unlock(&Giant); return 0; } #endif void ata_default_registers(device_t dev) { struct ata_channel *ch = device_get_softc(dev); /* fill in the defaults from whats setup already */ ch->r_io[ATA_ERROR].res = ch->r_io[ATA_FEATURE].res; ch->r_io[ATA_ERROR].offset = ch->r_io[ATA_FEATURE].offset; ch->r_io[ATA_IREASON].res = ch->r_io[ATA_COUNT].res; ch->r_io[ATA_IREASON].offset = ch->r_io[ATA_COUNT].offset; ch->r_io[ATA_STATUS].res = ch->r_io[ATA_COMMAND].res; ch->r_io[ATA_STATUS].offset = ch->r_io[ATA_COMMAND].offset; ch->r_io[ATA_ALTSTAT].res = ch->r_io[ATA_CONTROL].res; ch->r_io[ATA_ALTSTAT].offset = ch->r_io[ATA_CONTROL].offset; } void ata_modify_if_48bit(struct ata_request *request) { struct ata_channel *ch = device_get_softc(request->parent); struct ata_device *atadev = device_get_softc(request->dev); request->flags &= ~ATA_R_48BIT; if (((request->u.ata.lba + request->u.ata.count) >= ATA_MAX_28BIT_LBA || request->u.ata.count > 256) && atadev->param.support.command2 & ATA_SUPPORT_ADDRESS48) { /* translate command into 48bit version */ switch (request->u.ata.command) { case ATA_READ: request->u.ata.command = ATA_READ48; break; case ATA_READ_MUL: request->u.ata.command = ATA_READ_MUL48; break; case ATA_READ_DMA: if (ch->flags & ATA_NO_48BIT_DMA) { if (request->transfersize > DEV_BSIZE) request->u.ata.command = ATA_READ_MUL48; else request->u.ata.command = ATA_READ48; request->flags &= ~ATA_R_DMA; } else request->u.ata.command = ATA_READ_DMA48; break; case ATA_READ_DMA_QUEUED: if (ch->flags & ATA_NO_48BIT_DMA) { if (request->transfersize > DEV_BSIZE) request->u.ata.command = ATA_READ_MUL48; else request->u.ata.command = ATA_READ48; request->flags &= ~ATA_R_DMA; } else request->u.ata.command = ATA_READ_DMA_QUEUED48; break; case ATA_WRITE: request->u.ata.command = ATA_WRITE48; break; case ATA_WRITE_MUL: request->u.ata.command = ATA_WRITE_MUL48; break; case ATA_WRITE_DMA: if (ch->flags & ATA_NO_48BIT_DMA) { if (request->transfersize > DEV_BSIZE) request->u.ata.command = ATA_WRITE_MUL48; else request->u.ata.command = ATA_WRITE48; request->flags &= ~ATA_R_DMA; } else request->u.ata.command = ATA_WRITE_DMA48; break; case ATA_WRITE_DMA_QUEUED: if (ch->flags & ATA_NO_48BIT_DMA) { if (request->transfersize > DEV_BSIZE) request->u.ata.command = ATA_WRITE_MUL48; else request->u.ata.command = ATA_WRITE48; request->u.ata.command = ATA_WRITE48; request->flags &= ~ATA_R_DMA; } else request->u.ata.command = ATA_WRITE_DMA_QUEUED48; break; case ATA_FLUSHCACHE: request->u.ata.command = ATA_FLUSHCACHE48; break; case ATA_SET_MAX_ADDRESS: request->u.ata.command = ATA_SET_MAX_ADDRESS48; break; default: return; } request->flags |= ATA_R_48BIT; } else if (atadev->param.support.command2 & ATA_SUPPORT_ADDRESS48) { /* translate command into 48bit version */ switch (request->u.ata.command) { case ATA_FLUSHCACHE: request->u.ata.command = ATA_FLUSHCACHE48; break; case ATA_READ_NATIVE_MAX_ADDRESS: request->u.ata.command = ATA_READ_NATIVE_MAX_ADDRESS48; break; case ATA_SET_MAX_ADDRESS: request->u.ata.command = ATA_SET_MAX_ADDRESS48; break; default: return; } request->flags |= ATA_R_48BIT; } } void ata_udelay(int interval) { /* for now just use DELAY, the timer/sleep subsytems are not there yet */ if (1 || interval < (1000000/hz) || ata_delayed_attach) DELAY(interval); else pause("ataslp", interval/(1000000/hz)); } char * ata_unit2str(struct ata_device *atadev) { struct ata_channel *ch = device_get_softc(device_get_parent(atadev->dev)); static char str[8]; if (ch->devices & ATA_PORTMULTIPLIER) sprintf(str, "port%d", atadev->unit); else sprintf(str, "%s", atadev->unit == ATA_MASTER ? "master" : "slave"); return str; } const char * ata_mode2str(int mode) { switch (mode) { case -1: return "UNSUPPORTED"; case ATA_PIO0: return "PIO0"; case ATA_PIO1: return "PIO1"; case ATA_PIO2: return "PIO2"; case ATA_PIO3: return "PIO3"; case ATA_PIO4: return "PIO4"; case ATA_WDMA0: return "WDMA0"; case ATA_WDMA1: return "WDMA1"; case ATA_WDMA2: return "WDMA2"; case ATA_UDMA0: return "UDMA16"; case ATA_UDMA1: return "UDMA25"; case ATA_UDMA2: return "UDMA33"; case ATA_UDMA3: return "UDMA40"; case ATA_UDMA4: return "UDMA66"; case ATA_UDMA5: return "UDMA100"; case ATA_UDMA6: return "UDMA133"; case ATA_SA150: return "SATA150"; case ATA_SA300: return "SATA300"; default: if (mode & ATA_DMA_MASK) return "BIOSDMA"; else return "BIOSPIO"; } } const char * ata_satarev2str(int rev) { switch (rev) { case 0: return ""; case 1: return "SATA 1.5Gb/s"; case 2: return "SATA 3Gb/s"; case 3: return "SATA 6Gb/s"; default: return "???"; } } int ata_atapi(device_t dev) { struct ata_channel *ch = device_get_softc(device_get_parent(dev)); struct ata_device *atadev = device_get_softc(dev); return (ch->devices & (ATA_ATAPI_MASTER << atadev->unit)); } int ata_pmode(struct ata_params *ap) { if (ap->atavalid & ATA_FLAG_64_70) { if (ap->apiomodes & 0x02) return ATA_PIO4; if (ap->apiomodes & 0x01) return ATA_PIO3; } if (ap->mwdmamodes & 0x04) return ATA_PIO4; if (ap->mwdmamodes & 0x02) return ATA_PIO3; if (ap->mwdmamodes & 0x01) return ATA_PIO2; if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x200) return ATA_PIO2; if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x100) return ATA_PIO1; if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x000) return ATA_PIO0; return ATA_PIO0; } int ata_wmode(struct ata_params *ap) { if (ap->mwdmamodes & 0x04) return ATA_WDMA2; if (ap->mwdmamodes & 0x02) return ATA_WDMA1; if (ap->mwdmamodes & 0x01) return ATA_WDMA0; return -1; } int ata_umode(struct ata_params *ap) { if (ap->atavalid & ATA_FLAG_88) { if (ap->udmamodes & 0x40) return ATA_UDMA6; if (ap->udmamodes & 0x20) return ATA_UDMA5; if (ap->udmamodes & 0x10) return ATA_UDMA4; if (ap->udmamodes & 0x08) return ATA_UDMA3; if (ap->udmamodes & 0x04) return ATA_UDMA2; if (ap->udmamodes & 0x02) return ATA_UDMA1; if (ap->udmamodes & 0x01) return ATA_UDMA0; } return -1; } int ata_limit_mode(device_t dev, int mode, int maxmode) { struct ata_device *atadev = device_get_softc(dev); if (maxmode && mode > maxmode) mode = maxmode; if (mode >= ATA_UDMA0 && ata_umode(&atadev->param) > 0) return min(mode, ata_umode(&atadev->param)); if (mode >= ATA_WDMA0 && ata_wmode(&atadev->param) > 0) return min(mode, ata_wmode(&atadev->param)); if (mode > ata_pmode(&atadev->param)) return min(mode, ata_pmode(&atadev->param)); return mode; } static void bswap(int8_t *buf, int len) { u_int16_t *ptr = (u_int16_t*)(buf + len); while (--ptr >= (u_int16_t*)buf) *ptr = ntohs(*ptr); } static void btrim(int8_t *buf, int len) { int8_t *ptr; for (ptr = buf; ptr < buf+len; ++ptr) if (!*ptr || *ptr == '_') *ptr = ' '; for (ptr = buf + len - 1; ptr >= buf && *ptr == ' '; --ptr) *ptr = 0; } static void bpack(int8_t *src, int8_t *dst, int len) { int i, j, blank; for (i = j = blank = 0 ; i < len; i++) { if (blank && src[i] == ' ') continue; if (blank && src[i] != ' ') { dst[j++] = src[i]; blank = 0; continue; } if (src[i] == ' ') { blank = 1; if (i == 0) continue; } dst[j++] = src[i]; } if (j < len) dst[j] = 0x00; } #ifdef ATA_CAM void ata_cam_begin_transaction(device_t dev, union ccb *ccb) { struct ata_channel *ch = device_get_softc(dev); struct ata_request *request; if (!(request = ata_alloc_request())) { device_printf(dev, "FAILURE - out of memory in start\n"); ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); return; } bzero(request, sizeof(*request)); /* setup request */ request->dev = NULL; request->parent = dev; request->unit = ccb->ccb_h.target_id; if (ccb->ccb_h.func_code == XPT_ATA_IO) { request->data = ccb->ataio.data_ptr; request->bytecount = ccb->ataio.dxfer_len; request->u.ata.command = ccb->ataio.cmd.command; request->u.ata.feature = ((uint16_t)ccb->ataio.cmd.features_exp << 8) | (uint16_t)ccb->ataio.cmd.features; request->u.ata.count = ((uint16_t)ccb->ataio.cmd.sector_count_exp << 8) | (uint16_t)ccb->ataio.cmd.sector_count; if (ccb->ataio.cmd.flags & CAM_ATAIO_48BIT) { request->flags |= ATA_R_48BIT; request->u.ata.lba = ((uint64_t)ccb->ataio.cmd.lba_high_exp << 40) | ((uint64_t)ccb->ataio.cmd.lba_mid_exp << 32) | ((uint64_t)ccb->ataio.cmd.lba_low_exp << 24); } else { request->u.ata.lba = ((uint64_t)(ccb->ataio.cmd.device & 0x0f) << 24); } request->u.ata.lba |= ((uint64_t)ccb->ataio.cmd.lba_high << 16) | ((uint64_t)ccb->ataio.cmd.lba_mid << 8) | (uint64_t)ccb->ataio.cmd.lba_low; if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && ccb->ataio.cmd.flags & CAM_ATAIO_DMA) request->flags |= ATA_R_DMA; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) request->flags |= ATA_R_READ; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) request->flags |= ATA_R_WRITE; } else { request->data = ccb->csio.data_ptr; request->bytecount = ccb->csio.dxfer_len; bcopy((ccb->ccb_h.flags & CAM_CDB_POINTER) ? ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes, request->u.atapi.ccb, ccb->csio.cdb_len); request->flags |= ATA_R_ATAPI; if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA) request->flags |= ATA_R_DMA; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) request->flags |= ATA_R_READ; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) request->flags |= ATA_R_WRITE; } request->transfersize = min(request->bytecount, ch->curr[ccb->ccb_h.target_id].bytecount); // request->callback = ad_done; request->retries = 0; request->timeout = (ccb->ccb_h.timeout + 999) / 1000; callout_init_mtx(&request->callout, &ch->state_mtx, CALLOUT_RETURNUNLOCKED); request->ccb = ccb; ch->running = request; ch->state = ATA_ACTIVE; if (ch->hw.begin_transaction(request) == ATA_OP_FINISHED) { ch->running = NULL; ch->state = ATA_IDLE; ata_cam_end_transaction(dev, request); return; } } void ata_cam_end_transaction(device_t dev, struct ata_request *request) { struct ata_channel *ch = device_get_softc(dev); union ccb *ccb = request->ccb; int fatalerr = 0; ccb->ccb_h.status &= ~CAM_STATUS_MASK; if (request->flags & ATA_R_TIMEOUT) { xpt_freeze_simq(ch->sim, 1); ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_CMD_TIMEOUT | CAM_RELEASE_SIMQ; fatalerr = 1; } else if (request->status & ATA_S_ERROR) { if (ccb->ccb_h.func_code == XPT_ATA_IO) { ccb->ccb_h.status |= CAM_ATA_STATUS_ERROR; } else { ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR; ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND; } } else if (request->result == ERESTART) ccb->ccb_h.status |= CAM_REQUEUE_REQ; else if (request->result != 0) ccb->ccb_h.status |= CAM_REQ_CMP_ERR; else ccb->ccb_h.status |= CAM_REQ_CMP; if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP && !(ccb->ccb_h.status & CAM_DEV_QFRZN)) { xpt_freeze_devq(ccb->ccb_h.path, 1); ccb->ccb_h.status |= CAM_DEV_QFRZN; } if (ccb->ccb_h.func_code == XPT_ATA_IO && ((request->status & ATA_S_ERROR) || (ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT))) { struct ata_res *res = &ccb->ataio.res; res->status = request->status; res->error = request->error; res->lba_low = request->u.ata.lba; res->lba_mid = request->u.ata.lba >> 8; res->lba_high = request->u.ata.lba >> 16; res->device = request->u.ata.lba >> 24; res->lba_low_exp = request->u.ata.lba >> 24; res->lba_mid_exp = request->u.ata.lba >> 32; res->lba_high_exp = request->u.ata.lba >> 40; res->sector_count = request->u.ata.count; res->sector_count_exp = request->u.ata.count >> 8; } ata_free_request(request); xpt_done(ccb); /* Do error recovery if needed. */ if (fatalerr) ata_reinit(dev); } static void ataaction(struct cam_sim *sim, union ccb *ccb) { device_t dev; struct ata_channel *ch; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ataaction func_code=%x\n", ccb->ccb_h.func_code)); ch = (struct ata_channel *)cam_sim_softc(sim); dev = ch->dev; switch (ccb->ccb_h.func_code) { /* Common cases first */ case XPT_ATA_IO: /* Execute the requested I/O operation */ case XPT_SCSI_IO: if ((ch->devices & ((ATA_ATA_MASTER | ATA_ATAPI_MASTER) << ccb->ccb_h.target_id)) == 0) { ccb->ccb_h.status = CAM_SEL_TIMEOUT; xpt_done(ccb); break; } if (ch->running) device_printf(dev, "already running!\n"); if (ccb->ccb_h.func_code == XPT_ATA_IO && (ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) && (ccb->ataio.cmd.control & ATA_A_RESET)) { struct ata_res *res = &ccb->ataio.res; bzero(res, sizeof(*res)); if (ch->devices & (ATA_ATA_MASTER << ccb->ccb_h.target_id)) { res->lba_high = 0; res->lba_mid = 0; } else { res->lba_high = 0xeb; res->lba_mid = 0x14; } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } ata_cam_begin_transaction(dev, ccb); break; case XPT_EN_LUN: /* Enable LUN as a target */ case XPT_TARGET_IO: /* Execute target I/O request */ case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */ case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/ case XPT_ABORT: /* Abort the specified CCB */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_SET_TRAN_SETTINGS: { struct ccb_trans_settings *cts = &ccb->cts; struct ata_cam_device *d; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) d = &ch->curr[ccb->ccb_h.target_id]; else d = &ch->user[ccb->ccb_h.target_id]; if ((ch->flags & ATA_SATA) && (ch->flags & ATA_NO_SLAVE)) { if (cts->xport_specific.sata.valid & CTS_SATA_VALID_REVISION) d->revision = cts->xport_specific.sata.revision; if (cts->xport_specific.ata.valid & CTS_SATA_VALID_MODE) { if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { d->mode = ATA_SETMODE(ch->dev, ccb->ccb_h.target_id, cts->xport_specific.sata.mode); } else d->mode = cts->xport_specific.sata.mode; } if (cts->xport_specific.ata.valid & CTS_SATA_VALID_BYTECOUNT) d->bytecount = min(8192, cts->xport_specific.sata.bytecount); } else { if (cts->xport_specific.ata.valid & CTS_ATA_VALID_MODE) { if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { d->mode = ATA_SETMODE(ch->dev, ccb->ccb_h.target_id, cts->xport_specific.ata.mode); } else d->mode = cts->xport_specific.ata.mode; } if (cts->xport_specific.ata.valid & CTS_ATA_VALID_BYTECOUNT) d->bytecount = cts->xport_specific.ata.bytecount; if (ch->flags & ATA_SATA) d->bytecount = min(8192, d->bytecount); } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_GET_TRAN_SETTINGS: { struct ccb_trans_settings *cts = &ccb->cts; struct ata_cam_device *d; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) d = &ch->curr[ccb->ccb_h.target_id]; else d = &ch->user[ccb->ccb_h.target_id]; cts->protocol = PROTO_ATA; cts->protocol_version = PROTO_VERSION_UNSPECIFIED; if ((ch->flags & ATA_SATA) && (ch->flags & ATA_NO_SLAVE)) { cts->transport = XPORT_SATA; cts->transport_version = XPORT_VERSION_UNSPECIFIED; cts->xport_specific.sata.mode = d->mode; cts->xport_specific.sata.valid |= CTS_SATA_VALID_MODE; cts->xport_specific.sata.bytecount = d->bytecount; cts->xport_specific.sata.valid |= CTS_SATA_VALID_BYTECOUNT; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { cts->xport_specific.sata.revision = ATA_GETREV(dev, ccb->ccb_h.target_id); } else cts->xport_specific.sata.revision = d->revision; cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION; } else { cts->transport = XPORT_ATA; cts->transport_version = XPORT_VERSION_UNSPECIFIED; cts->xport_specific.ata.mode = d->mode; cts->xport_specific.ata.valid |= CTS_ATA_VALID_MODE; cts->xport_specific.ata.bytecount = d->bytecount; cts->xport_specific.ata.valid |= CTS_ATA_VALID_BYTECOUNT; } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } #if 0 case XPT_CALC_GEOMETRY: { struct ccb_calc_geometry *ccg; uint32_t size_mb; uint32_t secs_per_cylinder; ccg = &ccb->ccg; size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size); if (size_mb >= 1024 && (aha->extended_trans != 0)) { if (size_mb >= 2048) { ccg->heads = 255; ccg->secs_per_track = 63; } else { ccg->heads = 128; ccg->secs_per_track = 32; } } else { ccg->heads = 64; ccg->secs_per_track = 32; } secs_per_cylinder = ccg->heads * ccg->secs_per_track; ccg->cylinders = ccg->volume_size / secs_per_cylinder; ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } #endif case XPT_RESET_BUS: /* Reset the specified SCSI bus */ case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ ata_reinit(dev); ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; case XPT_TERM_IO: /* Terminate the I/O process */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = PI_SDTR_ABLE; cpi->target_sprt = 0; cpi->hba_misc = PIM_SEQSCAN; cpi->hba_eng_cnt = 0; if (ch->flags & ATA_NO_SLAVE) cpi->max_target = 0; else cpi->max_target = 1; cpi->max_lun = 0; cpi->initiator_id = 0; cpi->bus_id = cam_sim_bus(sim); if (ch->flags & ATA_SATA) cpi->base_transfer_speed = 150000; else cpi->base_transfer_speed = 3300; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "ATA", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); if ((ch->flags & ATA_SATA) && (ch->flags & ATA_NO_SLAVE)) cpi->transport = XPORT_SATA; else cpi->transport = XPORT_ATA; cpi->transport_version = XPORT_VERSION_UNSPECIFIED; cpi->protocol = PROTO_ATA; cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; cpi->maxio = ch->dma.max_iosize ? ch->dma.max_iosize : DFLTPHYS; cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } default: ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } static void atapoll(struct cam_sim *sim) { struct ata_channel *ch = (struct ata_channel *)cam_sim_softc(sim); ata_interrupt_locked(ch); } #endif /* * module handeling */ static int ata_module_event_handler(module_t mod, int what, void *arg) { #ifndef ATA_CAM static struct cdev *atacdev; #endif switch (what) { case MOD_LOAD: #ifndef ATA_CAM /* register controlling device */ atacdev = make_dev(&ata_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "ata"); if (cold) { /* register boot attach to be run when interrupts are enabled */ if (!(ata_delayed_attach = (struct intr_config_hook *) malloc(sizeof(struct intr_config_hook), M_TEMP, M_NOWAIT | M_ZERO))) { printf("ata: malloc of delayed attach hook failed\n"); return EIO; } ata_delayed_attach->ich_func = (void*)ata_boot_attach; if (config_intrhook_establish(ata_delayed_attach) != 0) { printf("ata: config_intrhook_establish failed\n"); free(ata_delayed_attach, M_TEMP); } } #endif return 0; case MOD_UNLOAD: #ifndef ATA_CAM /* deregister controlling device */ destroy_dev(atacdev); #endif return 0; default: return EOPNOTSUPP; } } static moduledata_t ata_moduledata = { "ata", ata_module_event_handler, NULL }; DECLARE_MODULE(ata, ata_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); MODULE_VERSION(ata, 1); static void ata_init(void) { ata_request_zone = uma_zcreate("ata_request", sizeof(struct ata_request), NULL, NULL, NULL, NULL, 0, 0); ata_composite_zone = uma_zcreate("ata_composite", sizeof(struct ata_composite), NULL, NULL, NULL, NULL, 0, 0); } SYSINIT(ata_register, SI_SUB_DRIVERS, SI_ORDER_SECOND, ata_init, NULL); static void ata_uninit(void) { uma_zdestroy(ata_composite_zone); uma_zdestroy(ata_request_zone); } SYSUNINIT(ata_unregister, SI_SUB_DRIVERS, SI_ORDER_SECOND, ata_uninit, NULL);