/*- * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. * Copyright (c) 2004 The FreeBSD Foundation * Copyright (c) 2004-2008 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 */ /* * Comments on the socket life cycle: * * soalloc() sets of socket layer state for a socket, called only by * socreate() and sonewconn(). Socket layer private. * * sodealloc() tears down socket layer state for a socket, called only by * sofree() and sonewconn(). Socket layer private. * * pru_attach() associates protocol layer state with an allocated socket; * called only once, may fail, aborting socket allocation. This is called * from socreate() and sonewconn(). Socket layer private. * * pru_detach() disassociates protocol layer state from an attached socket, * and will be called exactly once for sockets in which pru_attach() has * been successfully called. If pru_attach() returned an error, * pru_detach() will not be called. Socket layer private. * * pru_abort() and pru_close() notify the protocol layer that the last * consumer of a socket is starting to tear down the socket, and that the * protocol should terminate the connection. Historically, pru_abort() also * detached protocol state from the socket state, but this is no longer the * case. * * socreate() creates a socket and attaches protocol state. This is a public * interface that may be used by socket layer consumers to create new * sockets. * * sonewconn() creates a socket and attaches protocol state. This is a * public interface that may be used by protocols to create new sockets when * a new connection is received and will be available for accept() on a * listen socket. * * soclose() destroys a socket after possibly waiting for it to disconnect. * This is a public interface that socket consumers should use to close and * release a socket when done with it. * * soabort() destroys a socket without waiting for it to disconnect (used * only for incoming connections that are already partially or fully * connected). This is used internally by the socket layer when clearing * listen socket queues (due to overflow or close on the listen socket), but * is also a public interface protocols may use to abort connections in * their incomplete listen queues should they no longer be required. Sockets * placed in completed connection listen queues should not be aborted for * reasons described in the comment above the soclose() implementation. This * is not a general purpose close routine, and except in the specific * circumstances described here, should not be used. * * sofree() will free a socket and its protocol state if all references on * the socket have been released, and is the public interface to attempt to * free a socket when a reference is removed. This is a socket layer private * interface. * * NOTE: In addition to socreate() and soclose(), which provide a single * socket reference to the consumer to be managed as required, there are two * calls to explicitly manage socket references, soref(), and sorele(). * Currently, these are generally required only when transitioning a socket * from a listen queue to a file descriptor, in order to prevent garbage * collection of the socket at an untimely moment. For a number of reasons, * these interfaces are not preferred, and should be avoided. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_mac.h" #include "opt_zero.h" #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include /* for struct knote */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_IA32 #include #include extern struct sysentvec ia32_freebsd_sysvec; #endif static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags); static void filt_sordetach(struct knote *kn); static int filt_soread(struct knote *kn, long hint); static void filt_sowdetach(struct knote *kn); static int filt_sowrite(struct knote *kn, long hint); static int filt_solisten(struct knote *kn, long hint); static struct filterops solisten_filtops = { 1, NULL, filt_sordetach, filt_solisten }; static struct filterops soread_filtops = { 1, NULL, filt_sordetach, filt_soread }; static struct filterops sowrite_filtops = { 1, NULL, filt_sowdetach, filt_sowrite }; uma_zone_t socket_zone; so_gen_t so_gencnt; /* generation count for sockets */ int maxsockets; MALLOC_DEFINE(M_SONAME, "soname", "socket name"); MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); static int somaxconn = SOMAXCONN; static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS); /* XXX: we dont have SYSCTL_USHORT */ SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection " "queue size"); static int numopensockets; SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, &numopensockets, 0, "Number of open sockets"); #ifdef ZERO_COPY_SOCKETS /* These aren't static because they're used in other files. */ int so_zero_copy_send = 1; int so_zero_copy_receive = 1; SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, "Zero copy controls"); SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, &so_zero_copy_receive, 0, "Enable zero copy receive"); SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, &so_zero_copy_send, 0, "Enable zero copy send"); #endif /* ZERO_COPY_SOCKETS */ /* * accept_mtx locks down per-socket fields relating to accept queues. See * socketvar.h for an annotation of the protected fields of struct socket. */ struct mtx accept_mtx; MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); /* * so_global_mtx protects so_gencnt, numopensockets, and the per-socket * so_gencnt field. */ static struct mtx so_global_mtx; MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); /* * General IPC sysctl name space, used by sockets and a variety of other IPC * types. */ SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); /* * Sysctl to get and set the maximum global sockets limit. Notify protocols * of the change so that they can update their dependent limits as required. */ static int sysctl_maxsockets(SYSCTL_HANDLER_ARGS) { int error, newmaxsockets; newmaxsockets = maxsockets; error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); if (error == 0 && req->newptr) { if (newmaxsockets > maxsockets) { maxsockets = newmaxsockets; if (maxsockets > ((maxfiles / 4) * 3)) { maxfiles = (maxsockets * 5) / 4; maxfilesperproc = (maxfiles * 9) / 10; } EVENTHANDLER_INVOKE(maxsockets_change); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, &maxsockets, 0, sysctl_maxsockets, "IU", "Maximum number of sockets avaliable"); /* * Initialise maxsockets. */ static void init_maxsockets(void *ignored) { TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); } SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); /* * Socket operation routines. These routines are called by the routines in * sys_socket.c or from a system process, and implement the semantics of * socket operations by switching out to the protocol specific routines. */ /* * Get a socket structure from our zone, and initialize it. Note that it * would probably be better to allocate socket and PCB at the same time, but * I'm not convinced that all the protocols can be easily modified to do * this. * * soalloc() returns a socket with a ref count of 0. */ static struct socket * soalloc(void) { struct socket *so; so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); if (so == NULL) return (NULL); #ifdef MAC if (mac_socket_init(so, M_NOWAIT) != 0) { uma_zfree(socket_zone, so); return (NULL); } #endif SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); sx_init(&so->so_snd.sb_sx, "so_snd_sx"); sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); TAILQ_INIT(&so->so_aiojobq); mtx_lock(&so_global_mtx); so->so_gencnt = ++so_gencnt; ++numopensockets; mtx_unlock(&so_global_mtx); return (so); } /* * Free the storage associated with a socket at the socket layer, tear down * locks, labels, etc. All protocol state is assumed already to have been * torn down (and possibly never set up) by the caller. */ static void sodealloc(struct socket *so) { KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); mtx_lock(&so_global_mtx); so->so_gencnt = ++so_gencnt; --numopensockets; /* Could be below, but faster here. */ mtx_unlock(&so_global_mtx); if (so->so_rcv.sb_hiwat) (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); if (so->so_snd.sb_hiwat) (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); #ifdef INET /* remove acccept filter if one is present. */ if (so->so_accf != NULL) do_setopt_accept_filter(so, NULL); #endif #ifdef MAC mac_socket_destroy(so); #endif crfree(so->so_cred); sx_destroy(&so->so_snd.sb_sx); sx_destroy(&so->so_rcv.sb_sx); SOCKBUF_LOCK_DESTROY(&so->so_snd); SOCKBUF_LOCK_DESTROY(&so->so_rcv); uma_zfree(socket_zone, so); } /* * socreate returns a socket with a ref count of 1. The socket should be * closed with soclose(). */ int socreate(int dom, struct socket **aso, int type, int proto, struct ucred *cred, struct thread *td) { struct protosw *prp; struct socket *so; int error; if (proto) prp = pffindproto(dom, proto, type); else prp = pffindtype(dom, type); if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || prp->pr_usrreqs->pru_attach == pru_attach_notsupp) return (EPROTONOSUPPORT); if (jailed(cred) && jail_socket_unixiproute_only && prp->pr_domain->dom_family != PF_LOCAL && prp->pr_domain->dom_family != PF_INET && prp->pr_domain->dom_family != PF_ROUTE) { return (EPROTONOSUPPORT); } if (prp->pr_type != type) return (EPROTOTYPE); so = soalloc(); if (so == NULL) return (ENOBUFS); TAILQ_INIT(&so->so_incomp); TAILQ_INIT(&so->so_comp); so->so_type = type; so->so_cred = crhold(cred); if ((prp->pr_domain->dom_family == PF_INET) || (prp->pr_domain->dom_family == PF_ROUTE)) so->so_fibnum = td->td_proc->p_fibnum; else so->so_fibnum = 0; so->so_proto = prp; #ifdef MAC mac_socket_create(cred, so); #endif knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), NULL, NULL, NULL); knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), NULL, NULL, NULL); so->so_count = 1; /* * Auto-sizing of socket buffers is managed by the protocols and * the appropriate flags must be set in the pru_attach function. */ error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); if (error) { KASSERT(so->so_count == 1, ("socreate: so_count %d", so->so_count)); so->so_count = 0; sodealloc(so); return (error); } *aso = so; return (0); } #ifdef REGRESSION static int regression_sonewconn_earlytest = 1; SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); #endif /* * When an attempt at a new connection is noted on a socket which accepts * connections, sonewconn is called. If the connection is possible (subject * to space constraints, etc.) then we allocate a new structure, propoerly * linked into the data structure of the original socket, and return this. * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. * * Note: the ref count on the socket is 0 on return. */ struct socket * sonewconn(struct socket *head, int connstatus) { struct socket *so; int over; ACCEPT_LOCK(); over = (head->so_qlen > 3 * head->so_qlimit / 2); ACCEPT_UNLOCK(); #ifdef REGRESSION if (regression_sonewconn_earlytest && over) #else if (over) #endif return (NULL); so = soalloc(); if (so == NULL) return (NULL); if ((head->so_options & SO_ACCEPTFILTER) != 0) connstatus = 0; so->so_head = head; so->so_type = head->so_type; so->so_options = head->so_options &~ SO_ACCEPTCONN; so->so_linger = head->so_linger; so->so_state = head->so_state | SS_NOFDREF; so->so_proto = head->so_proto; so->so_cred = crhold(head->so_cred); #ifdef MAC SOCK_LOCK(head); mac_socket_newconn(head, so); SOCK_UNLOCK(head); #endif knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), NULL, NULL, NULL); knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), NULL, NULL, NULL); if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { sodealloc(so); return (NULL); } so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; so->so_snd.sb_lowat = head->so_snd.sb_lowat; so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; so->so_snd.sb_timeo = head->so_snd.sb_timeo; so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; so->so_state |= connstatus; ACCEPT_LOCK(); if (connstatus) { TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); so->so_qstate |= SQ_COMP; head->so_qlen++; } else { /* * Keep removing sockets from the head until there's room for * us to insert on the tail. In pre-locking revisions, this * was a simple if(), but as we could be racing with other * threads and soabort() requires dropping locks, we must * loop waiting for the condition to be true. */ while (head->so_incqlen > head->so_qlimit) { struct socket *sp; sp = TAILQ_FIRST(&head->so_incomp); TAILQ_REMOVE(&head->so_incomp, sp, so_list); head->so_incqlen--; sp->so_qstate &= ~SQ_INCOMP; sp->so_head = NULL; ACCEPT_UNLOCK(); soabort(sp); ACCEPT_LOCK(); } TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); so->so_qstate |= SQ_INCOMP; head->so_incqlen++; } ACCEPT_UNLOCK(); if (connstatus) { sorwakeup(head); wakeup_one(&head->so_timeo); } return (so); } int sobind(struct socket *so, struct sockaddr *nam, struct thread *td) { return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td)); } /* * solisten() transitions a socket from a non-listening state to a listening * state, but can also be used to update the listen queue depth on an * existing listen socket. The protocol will call back into the sockets * layer using solisten_proto_check() and solisten_proto() to check and set * socket-layer listen state. Call backs are used so that the protocol can * acquire both protocol and socket layer locks in whatever order is required * by the protocol. * * Protocol implementors are advised to hold the socket lock across the * socket-layer test and set to avoid races at the socket layer. */ int solisten(struct socket *so, int backlog, struct thread *td) { return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td)); } int solisten_proto_check(struct socket *so) { SOCK_LOCK_ASSERT(so); if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) return (EINVAL); return (0); } void solisten_proto(struct socket *so, int backlog) { SOCK_LOCK_ASSERT(so); if (backlog < 0 || backlog > somaxconn) backlog = somaxconn; so->so_qlimit = backlog; so->so_options |= SO_ACCEPTCONN; } /* * Attempt to free a socket. This should really be sotryfree(). * * sofree() will succeed if: * * - There are no outstanding file descriptor references or related consumers * (so_count == 0). * * - The socket has been closed by user space, if ever open (SS_NOFDREF). * * - The protocol does not have an outstanding strong reference on the socket * (SS_PROTOREF). * * - The socket is not in a completed connection queue, so a process has been * notified that it is present. If it is removed, the user process may * block in accept() despite select() saying the socket was ready. * * Otherwise, it will quietly abort so that a future call to sofree(), when * conditions are right, can succeed. */ void sofree(struct socket *so) { struct protosw *pr = so->so_proto; struct socket *head; ACCEPT_LOCK_ASSERT(); SOCK_LOCK_ASSERT(so); if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { SOCK_UNLOCK(so); ACCEPT_UNLOCK(); return; } head = so->so_head; if (head != NULL) { KASSERT((so->so_qstate & SQ_COMP) != 0 || (so->so_qstate & SQ_INCOMP) != 0, ("sofree: so_head != NULL, but neither SQ_COMP nor " "SQ_INCOMP")); KASSERT((so->so_qstate & SQ_COMP) == 0 || (so->so_qstate & SQ_INCOMP) == 0, ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); TAILQ_REMOVE(&head->so_incomp, so, so_list); head->so_incqlen--; so->so_qstate &= ~SQ_INCOMP; so->so_head = NULL; } KASSERT((so->so_qstate & SQ_COMP) == 0 && (so->so_qstate & SQ_INCOMP) == 0, ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); if (so->so_options & SO_ACCEPTCONN) { KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated")); KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated")); } SOCK_UNLOCK(so); ACCEPT_UNLOCK(); if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); if (pr->pr_usrreqs->pru_detach != NULL) (*pr->pr_usrreqs->pru_detach)(so); /* * From this point on, we assume that no other references to this * socket exist anywhere else in the stack. Therefore, no locks need * to be acquired or held. * * We used to do a lot of socket buffer and socket locking here, as * well as invoke sorflush() and perform wakeups. The direct call to * dom_dispose() and sbrelease_internal() are an inlining of what was * necessary from sorflush(). * * Notice that the socket buffer and kqueue state are torn down * before calling pru_detach. This means that protocols shold not * assume they can perform socket wakeups, etc, in their detach code. */ sbdestroy(&so->so_snd, so); sbdestroy(&so->so_rcv, so); knlist_destroy(&so->so_rcv.sb_sel.si_note); knlist_destroy(&so->so_snd.sb_sel.si_note); sodealloc(so); } /* * Close a socket on last file table reference removal. Initiate disconnect * if connected. Free socket when disconnect complete. * * This function will sorele() the socket. Note that soclose() may be called * prior to the ref count reaching zero. The actual socket structure will * not be freed until the ref count reaches zero. */ int soclose(struct socket *so) { int error = 0; KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); funsetown(&so->so_sigio); if (so->so_state & SS_ISCONNECTED) { if ((so->so_state & SS_ISDISCONNECTING) == 0) { error = sodisconnect(so); if (error) goto drop; } if (so->so_options & SO_LINGER) { if ((so->so_state & SS_ISDISCONNECTING) && (so->so_state & SS_NBIO)) goto drop; while (so->so_state & SS_ISCONNECTED) { error = tsleep(&so->so_timeo, PSOCK | PCATCH, "soclos", so->so_linger * hz); if (error) break; } } } drop: if (so->so_proto->pr_usrreqs->pru_close != NULL) (*so->so_proto->pr_usrreqs->pru_close)(so); if (so->so_options & SO_ACCEPTCONN) { struct socket *sp; ACCEPT_LOCK(); while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { TAILQ_REMOVE(&so->so_incomp, sp, so_list); so->so_incqlen--; sp->so_qstate &= ~SQ_INCOMP; sp->so_head = NULL; ACCEPT_UNLOCK(); soabort(sp); ACCEPT_LOCK(); } while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { TAILQ_REMOVE(&so->so_comp, sp, so_list); so->so_qlen--; sp->so_qstate &= ~SQ_COMP; sp->so_head = NULL; ACCEPT_UNLOCK(); soabort(sp); ACCEPT_LOCK(); } ACCEPT_UNLOCK(); } ACCEPT_LOCK(); SOCK_LOCK(so); KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); so->so_state |= SS_NOFDREF; sorele(so); return (error); } /* * soabort() is used to abruptly tear down a connection, such as when a * resource limit is reached (listen queue depth exceeded), or if a listen * socket is closed while there are sockets waiting to be accepted. * * This interface is tricky, because it is called on an unreferenced socket, * and must be called only by a thread that has actually removed the socket * from the listen queue it was on, or races with other threads are risked. * * This interface will call into the protocol code, so must not be called * with any socket locks held. Protocols do call it while holding their own * recursible protocol mutexes, but this is something that should be subject * to review in the future. */ void soabort(struct socket *so) { /* * In as much as is possible, assert that no references to this * socket are held. This is not quite the same as asserting that the * current thread is responsible for arranging for no references, but * is as close as we can get for now. */ KASSERT(so->so_count == 0, ("soabort: so_count")); KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); if (so->so_proto->pr_usrreqs->pru_abort != NULL) (*so->so_proto->pr_usrreqs->pru_abort)(so); ACCEPT_LOCK(); SOCK_LOCK(so); sofree(so); } int soaccept(struct socket *so, struct sockaddr **nam) { int error; SOCK_LOCK(so); KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); so->so_state &= ~SS_NOFDREF; SOCK_UNLOCK(so); error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); return (error); } int soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) { int error; if (so->so_options & SO_ACCEPTCONN) return (EOPNOTSUPP); /* * If protocol is connection-based, can only connect once. * Otherwise, if connected, try to disconnect first. This allows * user to disconnect by connecting to, e.g., a null address. */ if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && ((so->so_proto->pr_flags & PR_CONNREQUIRED) || (error = sodisconnect(so)))) { error = EISCONN; } else { /* * Prevent accumulated error from previous connection from * biting us. */ so->so_error = 0; error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); } return (error); } int soconnect2(struct socket *so1, struct socket *so2) { return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); } int sodisconnect(struct socket *so) { int error; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); if (so->so_state & SS_ISDISCONNECTING) return (EALREADY); error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); return (error); } #ifdef ZERO_COPY_SOCKETS struct so_zerocopy_stats{ int size_ok; int align_ok; int found_ifp; }; struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; #include #include #include #include #include #include /* * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise * sosend_dgram() and sosend_generic() use m_uiotombuf(). * * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or * all of the data referenced by the uio. If desired, it uses zero-copy. * *space will be updated to reflect data copied in. * * NB: If atomic I/O is requested, the caller must already have checked that * space can hold resid bytes. * * NB: In the event of an error, the caller may need to free the partial * chain pointed to by *mpp. The contents of both *uio and *space may be * modified even in the case of an error. */ static int sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, int flags) { struct mbuf *m, **mp, *top; long len, resid; int error; #ifdef ZERO_COPY_SOCKETS int cow_send; #endif *retmp = top = NULL; mp = ⊤ len = 0; resid = uio->uio_resid; error = 0; do { #ifdef ZERO_COPY_SOCKETS cow_send = 0; #endif /* ZERO_COPY_SOCKETS */ if (resid >= MINCLSIZE) { #ifdef ZERO_COPY_SOCKETS if (top == NULL) { m = m_gethdr(M_WAITOK, MT_DATA); m->m_pkthdr.len = 0; m->m_pkthdr.rcvif = NULL; } else m = m_get(M_WAITOK, MT_DATA); if (so_zero_copy_send && resid>=PAGE_SIZE && *space>=PAGE_SIZE && uio->uio_iov->iov_len>=PAGE_SIZE) { so_zerocp_stats.size_ok++; so_zerocp_stats.align_ok++; cow_send = socow_setup(m, uio); len = cow_send; } if (!cow_send) { m_clget(m, M_WAITOK); len = min(min(MCLBYTES, resid), *space); } #else /* ZERO_COPY_SOCKETS */ if (top == NULL) { m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR); m->m_pkthdr.len = 0; m->m_pkthdr.rcvif = NULL; } else m = m_getcl(M_WAIT, MT_DATA, 0); len = min(min(MCLBYTES, resid), *space); #endif /* ZERO_COPY_SOCKETS */ } else { if (top == NULL) { m = m_gethdr(M_WAIT, MT_DATA); m->m_pkthdr.len = 0; m->m_pkthdr.rcvif = NULL; len = min(min(MHLEN, resid), *space); /* * For datagram protocols, leave room * for protocol headers in first mbuf. */ if (atomic && m && len < MHLEN) MH_ALIGN(m, len); } else { m = m_get(M_WAIT, MT_DATA); len = min(min(MLEN, resid), *space); } } if (m == NULL) { error = ENOBUFS; goto out; } *space -= len; #ifdef ZERO_COPY_SOCKETS if (cow_send) error = 0; else #endif /* ZERO_COPY_SOCKETS */ error = uiomove(mtod(m, void *), (int)len, uio); resid = uio->uio_resid; m->m_len = len; *mp = m; top->m_pkthdr.len += len; if (error) goto out; mp = &m->m_next; if (resid <= 0) { if (flags & MSG_EOR) top->m_flags |= M_EOR; break; } } while (*space > 0 && atomic); out: *retmp = top; return (error); } #endif /*ZERO_COPY_SOCKETS*/ #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) int sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { long space, resid; int clen = 0, error, dontroute; #ifdef ZERO_COPY_SOCKETS int atomic = sosendallatonce(so) || top; #endif KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM")); KASSERT(so->so_proto->pr_flags & PR_ATOMIC, ("sodgram_send: !PR_ATOMIC")); if (uio != NULL) resid = uio->uio_resid; else resid = top->m_pkthdr.len; /* * In theory resid should be unsigned. However, space must be * signed, as it might be less than 0 if we over-committed, and we * must use a signed comparison of space and resid. On the other * hand, a negative resid causes us to loop sending 0-length * segments to the protocol. * * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM * type sockets since that's an error. */ if (resid < 0) { error = EINVAL; goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; if (td != NULL) td->td_ru.ru_msgsnd++; if (control != NULL) clen = control->m_len; SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(&so->so_snd); error = EPIPE; goto out; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto out; } if ((so->so_state & SS_ISCONNECTED) == 0) { /* * `sendto' and `sendmsg' is allowed on a connection-based * socket if it supports implied connect. Return ENOTCONN if * not connected and no address is supplied. */ if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { if ((so->so_state & SS_ISCONFIRMING) == 0 && !(resid == 0 && clen != 0)) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOTCONN; goto out; } } else if (addr == NULL) { if (so->so_proto->pr_flags & PR_CONNREQUIRED) error = ENOTCONN; else error = EDESTADDRREQ; SOCKBUF_UNLOCK(&so->so_snd); goto out; } } /* * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a * problem and need fixing. */ space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; space -= clen; SOCKBUF_UNLOCK(&so->so_snd); if (resid > space) { error = EMSGSIZE; goto out; } if (uio == NULL) { resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else { #ifdef ZERO_COPY_SOCKETS error = sosend_copyin(uio, &top, atomic, &space, flags); if (error) goto out; #else /* * Copy the data from userland into a mbuf chain. * If no data is to be copied in, a single empty mbuf * is returned. */ top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); if (top == NULL) { error = EFAULT; /* only possible error */ goto out; } space -= resid - uio->uio_resid; #endif resid = uio->uio_resid; } KASSERT(resid == 0, ("sosend_dgram: resid != 0")); /* * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock * than with. */ if (dontroute) { SOCK_LOCK(so); so->so_options |= SO_DONTROUTE; SOCK_UNLOCK(so); } /* * XXX all the SBS_CANTSENDMORE checks previously done could be out * of date. We could have recieved a reset packet in an interrupt or * maybe we slept while doing page faults in uiomove() etc. We could * probably recheck again inside the locking protection here, but * there are probably other places that this also happens. We must * rethink this. */ error = (*so->so_proto->pr_usrreqs->pru_send)(so, (flags & MSG_OOB) ? PRUS_OOB : /* * If the user set MSG_EOF, the protocol understands this flag and * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. */ ((flags & MSG_EOF) && (so->so_proto->pr_flags & PR_IMPLOPCL) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME */ (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, top, addr, control, td); if (dontroute) { SOCK_LOCK(so); so->so_options &= ~SO_DONTROUTE; SOCK_UNLOCK(so); } clen = 0; control = NULL; top = NULL; out: if (top != NULL) m_freem(top); if (control != NULL) m_freem(control); return (error); } /* * Send on a socket. If send must go all at once and message is larger than * send buffering, then hard error. Lock against other senders. If must go * all at once and not enough room now, then inform user that this would * block and do nothing. Otherwise, if nonblocking, send as much as * possible. The data to be sent is described by "uio" if nonzero, otherwise * by the mbuf chain "top" (which must be null if uio is not). Data provided * in mbuf chain must be small enough to send all at once. * * Returns nonzero on error, timeout or signal; callers must check for short * counts if EINTR/ERESTART are returned. Data and control buffers are freed * on return. */ int sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { long space, resid; int clen = 0, error, dontroute; int atomic = sosendallatonce(so) || top; if (uio != NULL) resid = uio->uio_resid; else resid = top->m_pkthdr.len; /* * In theory resid should be unsigned. However, space must be * signed, as it might be less than 0 if we over-committed, and we * must use a signed comparison of space and resid. On the other * hand, a negative resid causes us to loop sending 0-length * segments to the protocol. * * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM * type sockets since that's an error. */ if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { error = EINVAL; goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && (so->so_proto->pr_flags & PR_ATOMIC); if (td != NULL) td->td_ru.ru_msgsnd++; if (control != NULL) clen = control->m_len; error = sblock(&so->so_snd, SBLOCKWAIT(flags)); if (error) goto out; restart: do { SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(&so->so_snd); error = EPIPE; goto release; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto release; } if ((so->so_state & SS_ISCONNECTED) == 0) { /* * `sendto' and `sendmsg' is allowed on a connection- * based socket if it supports implied connect. * Return ENOTCONN if not connected and no address is * supplied. */ if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { if ((so->so_state & SS_ISCONFIRMING) == 0 && !(resid == 0 && clen != 0)) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOTCONN; goto release; } } else if (addr == NULL) { SOCKBUF_UNLOCK(&so->so_snd); if (so->so_proto->pr_flags & PR_CONNREQUIRED) error = ENOTCONN; else error = EDESTADDRREQ; goto release; } } space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; if ((atomic && resid > so->so_snd.sb_hiwat) || clen > so->so_snd.sb_hiwat) { SOCKBUF_UNLOCK(&so->so_snd); error = EMSGSIZE; goto release; } if (space < resid + clen && (atomic || space < so->so_snd.sb_lowat || space < clen)) { if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { SOCKBUF_UNLOCK(&so->so_snd); error = EWOULDBLOCK; goto release; } error = sbwait(&so->so_snd); SOCKBUF_UNLOCK(&so->so_snd); if (error) goto release; goto restart; } SOCKBUF_UNLOCK(&so->so_snd); space -= clen; do { if (uio == NULL) { resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else { #ifdef ZERO_COPY_SOCKETS error = sosend_copyin(uio, &top, atomic, &space, flags); if (error != 0) goto release; #else /* * Copy the data from userland into a mbuf * chain. If no data is to be copied in, * a single empty mbuf is returned. */ top = m_uiotombuf(uio, M_WAITOK, space, (atomic ? max_hdr : 0), (atomic ? M_PKTHDR : 0) | ((flags & MSG_EOR) ? M_EOR : 0)); if (top == NULL) { error = EFAULT; /* only possible error */ goto release; } space -= resid - uio->uio_resid; #endif resid = uio->uio_resid; } if (dontroute) { SOCK_LOCK(so); so->so_options |= SO_DONTROUTE; SOCK_UNLOCK(so); } /* * XXX all the SBS_CANTSENDMORE checks previously * done could be out of date. We could have recieved * a reset packet in an interrupt or maybe we slept * while doing page faults in uiomove() etc. We * could probably recheck again inside the locking * protection here, but there are probably other * places that this also happens. We must rethink * this. */ error = (*so->so_proto->pr_usrreqs->pru_send)(so, (flags & MSG_OOB) ? PRUS_OOB : /* * If the user set MSG_EOF, the protocol understands * this flag and nothing left to send then use * PRU_SEND_EOF instead of PRU_SEND. */ ((flags & MSG_EOF) && (so->so_proto->pr_flags & PR_IMPLOPCL) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME. */ (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, top, addr, control, td); if (dontroute) { SOCK_LOCK(so); so->so_options &= ~SO_DONTROUTE; SOCK_UNLOCK(so); } clen = 0; control = NULL; top = NULL; if (error) goto release; } while (resid && space > 0); } while (resid); release: sbunlock(&so->so_snd); out: if (top != NULL) m_freem(top); if (control != NULL) m_freem(control); return (error); } int sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { /* XXXRW: Temporary debugging. */ KASSERT(so->so_proto->pr_usrreqs->pru_sosend != sosend, ("sosend: protocol calls sosend")); return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, control, flags, td)); } /* * The part of soreceive() that implements reading non-inline out-of-band * data from a socket. For more complete comments, see soreceive(), from * which this code originated. * * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is * unable to return an mbuf chain to the caller. */ static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) { struct protosw *pr = so->so_proto; struct mbuf *m; int error; KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); m = m_get(M_WAIT, MT_DATA); error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); if (error) goto bad; do { #ifdef ZERO_COPY_SOCKETS if (so_zero_copy_receive) { int disposable; if ((m->m_flags & M_EXT) && (m->m_ext.ext_type == EXT_DISPOSABLE)) disposable = 1; else disposable = 0; error = uiomoveco(mtod(m, void *), min(uio->uio_resid, m->m_len), uio, disposable); } else #endif /* ZERO_COPY_SOCKETS */ error = uiomove(mtod(m, void *), (int) min(uio->uio_resid, m->m_len), uio); m = m_free(m); } while (uio->uio_resid && error == 0 && m); bad: if (m != NULL) m_freem(m); return (error); } /* * Following replacement or removal of the first mbuf on the first mbuf chain * of a socket buffer, push necessary state changes back into the socket * buffer so that other consumers see the values consistently. 'nextrecord' * is the callers locally stored value of the original value of * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. * NOTE: 'nextrecord' may be NULL. */ static __inline void sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) { SOCKBUF_LOCK_ASSERT(sb); /* * First, update for the new value of nextrecord. If necessary, make * it the first record. */ if (sb->sb_mb != NULL) sb->sb_mb->m_nextpkt = nextrecord; else sb->sb_mb = nextrecord; /* * Now update any dependent socket buffer fields to reflect the new * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the * addition of a second clause that takes care of the case where * sb_mb has been updated, but remains the last record. */ if (sb->sb_mb == NULL) { sb->sb_mbtail = NULL; sb->sb_lastrecord = NULL; } else if (sb->sb_mb->m_nextpkt == NULL) sb->sb_lastrecord = sb->sb_mb; } /* * Implement receive operations on a socket. We depend on the way that * records are added to the sockbuf by sbappend. In particular, each record * (mbufs linked through m_next) must begin with an address if the protocol * so specifies, followed by an optional mbuf or mbufs containing ancillary * data, and then zero or more mbufs of data. In order to allow parallelism * between network receive and copying to user space, as well as avoid * sleeping with a mutex held, we release the socket buffer mutex during the * user space copy. Although the sockbuf is locked, new data may still be * appended, and thus we must maintain consistency of the sockbuf during that * time. * * The caller may receive the data as a single mbuf chain by supplying an * mbuf **mp0 for use in returning the chain. The uio is then used only for * the count in uio_resid. */ int soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { struct mbuf *m, **mp; int flags, len, error, offset; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; int moff, type = 0; int orig_resid = uio->uio_resid; mp = mp0; if (psa != NULL) *psa = NULL; if (controlp != NULL) *controlp = NULL; if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; if (flags & MSG_OOB) return (soreceive_rcvoob(so, uio, flags)); if (mp != NULL) *mp = NULL; if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) && uio->uio_resid) (*pr->pr_usrreqs->pru_rcvd)(so, 0); error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); if (error) return (error); restart: SOCKBUF_LOCK(&so->so_rcv); m = so->so_rcv.sb_mb; /* * If we have less data than requested, block awaiting more (subject * to any timeout) if: * 1. the current count is less than the low water mark, or * 2. MSG_WAITALL is set, and it is possible to do the entire * receive operation at once if we block (resid <= hiwat). * 3. MSG_DONTWAIT is not set * If MSG_WAITALL is set but resid is larger than the receive buffer, * we have to do the receive in sections, and thus risk returning a * short count if a timeout or signal occurs after we start. */ if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && so->so_rcv.sb_cc < uio->uio_resid) && (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { KASSERT(m != NULL || !so->so_rcv.sb_cc, ("receive: m == %p so->so_rcv.sb_cc == %u", m, so->so_rcv.sb_cc)); if (so->so_error) { if (m != NULL) goto dontblock; error = so->so_error; if ((flags & MSG_PEEK) == 0) so->so_error = 0; SOCKBUF_UNLOCK(&so->so_rcv); goto release; } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { if (m == NULL) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } else goto dontblock; } for (; m != NULL; m = m->m_next) if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { m = so->so_rcv.sb_mb; goto dontblock; } if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && (so->so_proto->pr_flags & PR_CONNREQUIRED)) { SOCKBUF_UNLOCK(&so->so_rcv); error = ENOTCONN; goto release; } if (uio->uio_resid == 0) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } if ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO))) { SOCKBUF_UNLOCK(&so->so_rcv); error = EWOULDBLOCK; goto release; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); error = sbwait(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); if (error) goto release; goto restart; } dontblock: /* * From this point onward, we maintain 'nextrecord' as a cache of the * pointer to the next record in the socket buffer. We must keep the * various socket buffer pointers and local stack versions of the * pointers in sync, pushing out modifications before dropping the * socket buffer mutex, and re-reading them when picking it up. * * Otherwise, we will race with the network stack appending new data * or records onto the socket buffer by using inconsistent/stale * versions of the field, possibly resulting in socket buffer * corruption. * * By holding the high-level sblock(), we prevent simultaneous * readers from pulling off the front of the socket buffer. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); nextrecord = m->m_nextpkt; if (pr->pr_flags & PR_ADDR) { KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); orig_resid = 0; if (psa != NULL) *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_NOWAIT); if (flags & MSG_PEEK) { m = m->m_next; } else { sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; sockbuf_pushsync(&so->so_rcv, nextrecord); } } /* * Process one or more MT_CONTROL mbufs present before any data mbufs * in the first mbuf chain on the socket buffer. If MSG_PEEK, we * just copy the data; if !MSG_PEEK, we call into the protocol to * perform externalization (or freeing if controlp == NULL). */ if (m != NULL && m->m_type == MT_CONTROL) { struct mbuf *cm = NULL, *cmn; struct mbuf **cme = &cm; do { if (flags & MSG_PEEK) { if (controlp != NULL) { *controlp = m_copy(m, 0, m->m_len); controlp = &(*controlp)->m_next; } m = m->m_next; } else { sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m->m_next; m->m_next = NULL; *cme = m; cme = &(*cme)->m_next; m = so->so_rcv.sb_mb; } } while (m != NULL && m->m_type == MT_CONTROL); if ((flags & MSG_PEEK) == 0) sockbuf_pushsync(&so->so_rcv, nextrecord); while (cm != NULL) { cmn = cm->m_next; cm->m_next = NULL; if (pr->pr_domain->dom_externalize != NULL) { SOCKBUF_UNLOCK(&so->so_rcv); error = (*pr->pr_domain->dom_externalize) (cm, controlp); SOCKBUF_LOCK(&so->so_rcv); } else if (controlp != NULL) *controlp = cm; else m_freem(cm); if (controlp != NULL) { orig_resid = 0; while (*controlp != NULL) controlp = &(*controlp)->m_next; } cm = cmn; } if (m != NULL) nextrecord = so->so_rcv.sb_mb->m_nextpkt; else nextrecord = so->so_rcv.sb_mb; orig_resid = 0; } if (m != NULL) { if ((flags & MSG_PEEK) == 0) { KASSERT(m->m_nextpkt == nextrecord, ("soreceive: post-control, nextrecord !sync")); if (nextrecord == NULL) { KASSERT(so->so_rcv.sb_mb == m, ("soreceive: post-control, sb_mb!=m")); KASSERT(so->so_rcv.sb_lastrecord == m, ("soreceive: post-control, lastrecord!=m")); } } type = m->m_type; if (type == MT_OOBDATA) flags |= MSG_OOB; } else { if ((flags & MSG_PEEK) == 0) { KASSERT(so->so_rcv.sb_mb == nextrecord, ("soreceive: sb_mb != nextrecord")); if (so->so_rcv.sb_mb == NULL) { KASSERT(so->so_rcv.sb_lastrecord == NULL, ("soreceive: sb_lastercord != NULL")); } } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * Now continue to read any data mbufs off of the head of the socket * buffer until the read request is satisfied. Note that 'type' is * used to store the type of any mbuf reads that have happened so far * such that soreceive() can stop reading if the type changes, which * causes soreceive() to return only one of regular data and inline * out-of-band data in a single socket receive operation. */ moff = 0; offset = 0; while (m != NULL && uio->uio_resid > 0 && error == 0) { /* * If the type of mbuf has changed since the last mbuf * examined ('type'), end the receive operation. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (m->m_type == MT_OOBDATA) { if (type != MT_OOBDATA) break; } else if (type == MT_OOBDATA) break; else KASSERT(m->m_type == MT_DATA, ("m->m_type == %d", m->m_type)); so->so_rcv.sb_state &= ~SBS_RCVATMARK; len = uio->uio_resid; if (so->so_oobmark && len > so->so_oobmark - offset) len = so->so_oobmark - offset; if (len > m->m_len - moff) len = m->m_len - moff; /* * If mp is set, just pass back the mbufs. Otherwise copy * them out via the uio, then free. Sockbuf must be * consistent here (points to current mbuf, it points to next * record) when we drop priority; we must note any additions * to the sockbuf when we block interrupts again. */ if (mp == NULL) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); #ifdef ZERO_COPY_SOCKETS if (so_zero_copy_receive) { int disposable; if ((m->m_flags & M_EXT) && (m->m_ext.ext_type == EXT_DISPOSABLE)) disposable = 1; else disposable = 0; error = uiomoveco(mtod(m, char *) + moff, (int)len, uio, disposable); } else #endif /* ZERO_COPY_SOCKETS */ error = uiomove(mtod(m, char *) + moff, (int)len, uio); SOCKBUF_LOCK(&so->so_rcv); if (error) { /* * The MT_SONAME mbuf has already been removed * from the record, so it is necessary to * remove the data mbufs, if any, to preserve * the invariant in the case of PR_ADDR that * requires MT_SONAME mbufs at the head of * each record. */ if (m && pr->pr_flags & PR_ATOMIC && ((flags & MSG_PEEK) == 0)) (void)sbdroprecord_locked(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); goto release; } } else uio->uio_resid -= len; SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (len == m->m_len - moff) { if (m->m_flags & M_EOR) flags |= MSG_EOR; if (flags & MSG_PEEK) { m = m->m_next; moff = 0; } else { nextrecord = m->m_nextpkt; sbfree(&so->so_rcv, m); if (mp != NULL) { *mp = m; mp = &m->m_next; so->so_rcv.sb_mb = m = m->m_next; *mp = NULL; } else { so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; } sockbuf_pushsync(&so->so_rcv, nextrecord); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); } } else { if (flags & MSG_PEEK) moff += len; else { if (mp != NULL) { int copy_flag; if (flags & MSG_DONTWAIT) copy_flag = M_DONTWAIT; else copy_flag = M_WAIT; if (copy_flag == M_WAIT) SOCKBUF_UNLOCK(&so->so_rcv); *mp = m_copym(m, 0, len, copy_flag); if (copy_flag == M_WAIT) SOCKBUF_LOCK(&so->so_rcv); if (*mp == NULL) { /* * m_copym() couldn't * allocate an mbuf. Adjust * uio_resid back (it was * adjusted down by len * bytes, which we didn't end * up "copying" over). */ uio->uio_resid += len; break; } } m->m_data += len; m->m_len -= len; so->so_rcv.sb_cc -= len; } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_oobmark) { if ((flags & MSG_PEEK) == 0) { so->so_oobmark -= len; if (so->so_oobmark == 0) { so->so_rcv.sb_state |= SBS_RCVATMARK; break; } } else { offset += len; if (offset == so->so_oobmark) break; } } if (flags & MSG_EOR) break; /* * If the MSG_WAITALL flag is set (for non-atomic socket), we * must not quit until "uio->uio_resid == 0" or an error * termination. If a signal/timeout occurs, return with a * short count but without error. Keep sockbuf locked * against other readers. */ while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && !sosendallatonce(so) && nextrecord == NULL) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) break; /* * Notify the protocol that some data has been * drained before blocking. */ if (pr->pr_flags & PR_WANTRCVD) { SOCKBUF_UNLOCK(&so->so_rcv); (*pr->pr_usrreqs->pru_rcvd)(so, flags); SOCKBUF_LOCK(&so->so_rcv); } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); error = sbwait(&so->so_rcv); if (error) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } m = so->so_rcv.sb_mb; if (m != NULL) nextrecord = m->m_nextpkt; } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (m != NULL && pr->pr_flags & PR_ATOMIC) { flags |= MSG_TRUNC; if ((flags & MSG_PEEK) == 0) (void) sbdroprecord_locked(&so->so_rcv); } if ((flags & MSG_PEEK) == 0) { if (m == NULL) { /* * First part is an inline SB_EMPTY_FIXUP(). Second * part makes sure sb_lastrecord is up-to-date if * there is still data in the socket buffer. */ so->so_rcv.sb_mb = nextrecord; if (so->so_rcv.sb_mb == NULL) { so->so_rcv.sb_mbtail = NULL; so->so_rcv.sb_lastrecord = NULL; } else if (nextrecord->m_nextpkt == NULL) so->so_rcv.sb_lastrecord = nextrecord; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * If soreceive() is being done from the socket callback, * then don't need to generate ACK to peer to update window, * since ACK will be generated on return to TCP. */ if (!(flags & MSG_SOCALLBCK) && (pr->pr_flags & PR_WANTRCVD)) { SOCKBUF_UNLOCK(&so->so_rcv); (*pr->pr_usrreqs->pru_rcvd)(so, flags); SOCKBUF_LOCK(&so->so_rcv); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (orig_resid == uio->uio_resid && orig_resid && (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { SOCKBUF_UNLOCK(&so->so_rcv); goto restart; } SOCKBUF_UNLOCK(&so->so_rcv); if (flagsp != NULL) *flagsp |= flags; release: sbunlock(&so->so_rcv); return (error); } /* * Optimized version of soreceive() for simple datagram cases from userspace; * this is experimental, and while heavily tested, may contain errors. */ int soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { struct mbuf *m, *m2; int flags, len, error, offset; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; if (psa != NULL) *psa = NULL; if (controlp != NULL) *controlp = NULL; if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; /* * For any complicated cases, fall back to the full * soreceive_generic(). */ if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) return (soreceive_generic(so, psa, uio, mp0, controlp, flagsp)); /* * Enforce restrictions on use. */ KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, ("soreceive_dgram: wantrcvd")); KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, ("soreceive_dgram: SBS_RCVATMARK")); KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, ("soreceive_dgram: P_CONNREQUIRED")); restart: SOCKBUF_LOCK(&so->so_rcv); m = so->so_rcv.sb_mb; /* * If we have less data than requested, block awaiting more (subject * to any timeout) if: * 1. the current count is less than the low water mark, or * 2. MSG_WAITALL is set, and it is possible to do the entire * receive operation at once if we block (resid <= hiwat). * 3. MSG_DONTWAIT is not set * If MSG_WAITALL is set but resid is larger than the receive buffer, * we have to do the receive in sections, and thus risk returning a * short count if a timeout or signal occurs after we start. */ if (m == NULL) { KASSERT(m != NULL || !so->so_rcv.sb_cc, ("receive: m == %p so->so_rcv.sb_cc == %u", m, so->so_rcv.sb_cc)); if (so->so_error) { if (m != NULL) goto dontblock; error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_rcv); return (error); } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { if (m == NULL) { SOCKBUF_UNLOCK(&so->so_rcv); return (0); } else goto dontblock; } if (uio->uio_resid == 0) { SOCKBUF_UNLOCK(&so->so_rcv); return (0); } if ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO))) { SOCKBUF_UNLOCK(&so->so_rcv); error = EWOULDBLOCK; return (error); } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); error = sbwait(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); if (error) return (error); goto restart; } dontblock: /* * From this point onward, we maintain 'nextrecord' as a cache of the * pointer to the next record in the socket buffer. We must keep the * various socket buffer pointers and local stack versions of the * pointers in sync, pushing out modifications before dropping the * socket buffer mutex, and re-reading them when picking it up. * * Otherwise, we will race with the network stack appending new data * or records onto the socket buffer by using inconsistent/stale * versions of the field, possibly resulting in socket buffer * corruption. * * By holding the high-level sblock(), we prevent simultaneous * readers from pulling off the front of the socket buffer. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); nextrecord = m->m_nextpkt; if (pr->pr_flags & PR_ADDR) { KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); if (psa != NULL) *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_NOWAIT); sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; sockbuf_pushsync(&so->so_rcv, nextrecord); } if (m == NULL) { /* XXXRW: Can this happen? */ SOCKBUF_UNLOCK(&so->so_rcv); return (0); } KASSERT(m->m_nextpkt == nextrecord, ("soreceive: post-control, nextrecord !sync")); if (nextrecord == NULL) { KASSERT(so->so_rcv.sb_mb == m, ("soreceive: post-control, sb_mb!=m")); KASSERT(so->so_rcv.sb_lastrecord == m, ("soreceive: post-control, lastrecord!=m")); } SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); KASSERT(m == so->so_rcv.sb_mb, ("soreceive_dgram: m not sb_mb")); KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, ("soreceive_dgram: m_nextpkt != nextrecord")); /* * Pull 'm' and its chain off the front of the packet queue. */ so->so_rcv.sb_mb = NULL; sockbuf_pushsync(&so->so_rcv, nextrecord); /* * Walk 'm's chain and free that many bytes from the socket buffer. */ for (m2 = m; m2 != NULL; m2 = m2->m_next) sbfree(&so->so_rcv, m2); /* * Do a few last checks before we let go of the lock. */ SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); /* * Packet to copyout() is now in 'm' and it is disconnected from the * queue. * * Process one or more MT_CONTROL mbufs present before any data mbufs * in the first mbuf chain on the socket buffer. If MSG_PEEK, we * just copy the data; if !MSG_PEEK, we call into the protocol to * perform externalization (or freeing if controlp == NULL). */ if (m->m_type == MT_CONTROL) { struct mbuf *cm = NULL, *cmn; struct mbuf **cme = &cm; do { m2 = m->m_next; m->m_next = NULL; *cme = m; cme = &(*cme)->m_next; m = m2; } while (m != NULL && m->m_type == MT_CONTROL); while (cm != NULL) { cmn = cm->m_next; cm->m_next = NULL; if (pr->pr_domain->dom_externalize != NULL) { error = (*pr->pr_domain->dom_externalize) (cm, controlp); } else if (controlp != NULL) *controlp = cm; else m_freem(cm); if (controlp != NULL) { while (*controlp != NULL) controlp = &(*controlp)->m_next; } cm = cmn; } } KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); offset = 0; while (m != NULL && uio->uio_resid > 0) { len = uio->uio_resid; if (len > m->m_len) len = m->m_len; error = uiomove(mtod(m, char *), (int)len, uio); if (error) { m_freem(m); return (error); } m = m_free(m); } if (m != NULL && pr->pr_flags & PR_ATOMIC) flags |= MSG_TRUNC; m_freem(m); if (flagsp != NULL) *flagsp |= flags; return (0); } int soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { /* XXXRW: Temporary debugging. */ KASSERT(so->so_proto->pr_usrreqs->pru_soreceive != soreceive, ("soreceive: protocol calls soreceive")); return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, controlp, flagsp)); } int soshutdown(struct socket *so, int how) { struct protosw *pr = so->so_proto; if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) return (EINVAL); if (pr->pr_usrreqs->pru_flush != NULL) { (*pr->pr_usrreqs->pru_flush)(so, how); } if (how != SHUT_WR) sorflush(so); if (how != SHUT_RD) return ((*pr->pr_usrreqs->pru_shutdown)(so)); return (0); } void sorflush(struct socket *so) { struct sockbuf *sb = &so->so_rcv; struct protosw *pr = so->so_proto; struct sockbuf asb; /* * In order to avoid calling dom_dispose with the socket buffer mutex * held, and in order to generally avoid holding the lock for a long * time, we make a copy of the socket buffer and clear the original * (except locks, state). The new socket buffer copy won't have * initialized locks so we can only call routines that won't use or * assert those locks. * * Dislodge threads currently blocked in receive and wait to acquire * a lock against other simultaneous readers before clearing the * socket buffer. Don't let our acquire be interrupted by a signal * despite any existing socket disposition on interruptable waiting. */ socantrcvmore(so); (void) sblock(sb, SBL_WAIT | SBL_NOINTR); /* * Invalidate/clear most of the sockbuf structure, but leave selinfo * and mutex data unchanged. */ SOCKBUF_LOCK(sb); bzero(&asb, offsetof(struct sockbuf, sb_startzero)); bcopy(&sb->sb_startzero, &asb.sb_startzero, sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); bzero(&sb->sb_startzero, sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); SOCKBUF_UNLOCK(sb); sbunlock(sb); /* * Dispose of special rights and flush the socket buffer. Don't call * any unsafe routines (that rely on locks being initialized) on asb. */ if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) (*pr->pr_domain->dom_dispose)(asb.sb_mb); sbrelease_internal(&asb, so); } /* * Perhaps this routine, and sooptcopyout(), below, ought to come in an * additional variant to handle the case where the option value needs to be * some kind of integer, but not a specific size. In addition to their use * here, these functions are also called by the protocol-level pr_ctloutput() * routines. */ int sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) { size_t valsize; /* * If the user gives us more than we wanted, we ignore it, but if we * don't get the minimum length the caller wants, we return EINVAL. * On success, sopt->sopt_valsize is set to however much we actually * retrieved. */ if ((valsize = sopt->sopt_valsize) < minlen) return EINVAL; if (valsize > len) sopt->sopt_valsize = valsize = len; if (sopt->sopt_td != NULL) return (copyin(sopt->sopt_val, buf, valsize)); bcopy(sopt->sopt_val, buf, valsize); return (0); } /* * Kernel version of setsockopt(2). * * XXX: optlen is size_t, not socklen_t */ int so_setsockopt(struct socket *so, int level, int optname, void *optval, size_t optlen) { struct sockopt sopt; sopt.sopt_level = level; sopt.sopt_name = optname; sopt.sopt_dir = SOPT_SET; sopt.sopt_val = optval; sopt.sopt_valsize = optlen; sopt.sopt_td = NULL; return (sosetopt(so, &sopt)); } int sosetopt(struct socket *so, struct sockopt *sopt) { int error, optval; struct linger l; struct timeval tv; u_long val; #ifdef MAC struct mac extmac; #endif error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto && so->so_proto->pr_ctloutput) return ((*so->so_proto->pr_ctloutput) (so, sopt)); error = ENOPROTOOPT; } else { switch (sopt->sopt_name) { #ifdef INET case SO_ACCEPTFILTER: error = do_setopt_accept_filter(so, sopt); if (error) goto bad; break; #endif case SO_LINGER: error = sooptcopyin(sopt, &l, sizeof l, sizeof l); if (error) goto bad; SOCK_LOCK(so); so->so_linger = l.l_linger; if (l.l_onoff) so->so_options |= SO_LINGER; else so->so_options &= ~SO_LINGER; SOCK_UNLOCK(so); break; case SO_DEBUG: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_USELOOPBACK: case SO_BROADCAST: case SO_REUSEADDR: case SO_REUSEPORT: case SO_OOBINLINE: case SO_TIMESTAMP: case SO_BINTIME: case SO_NOSIGPIPE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; SOCK_LOCK(so); if (optval) so->so_options |= sopt->sopt_name; else so->so_options &= ~sopt->sopt_name; SOCK_UNLOCK(so); break; case SO_SETFIB: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (optval < 1 || optval > rt_numfibs) { error = EINVAL; goto bad; } if ((so->so_proto->pr_domain->dom_family == PF_INET) || (so->so_proto->pr_domain->dom_family == PF_ROUTE)) { so->so_fibnum = optval; } else { so->so_fibnum = 0; } break; case SO_SNDBUF: case SO_RCVBUF: case SO_SNDLOWAT: case SO_RCVLOWAT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; /* * Values < 1 make no sense for any of these options, * so disallow them. */ if (optval < 1) { error = EINVAL; goto bad; } switch (sopt->sopt_name) { case SO_SNDBUF: case SO_RCVBUF: if (sbreserve(sopt->sopt_name == SO_SNDBUF ? &so->so_snd : &so->so_rcv, (u_long)optval, so, curthread) == 0) { error = ENOBUFS; goto bad; } (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; break; /* * Make sure the low-water is never greater than the * high-water. */ case SO_SNDLOWAT: SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_lowat = (optval > so->so_snd.sb_hiwat) ? so->so_snd.sb_hiwat : optval; SOCKBUF_UNLOCK(&so->so_snd); break; case SO_RCVLOWAT: SOCKBUF_LOCK(&so->so_rcv); so->so_rcv.sb_lowat = (optval > so->so_rcv.sb_hiwat) ? so->so_rcv.sb_hiwat : optval; SOCKBUF_UNLOCK(&so->so_rcv); break; } break; case SO_SNDTIMEO: case SO_RCVTIMEO: #ifdef COMPAT_IA32 if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) { struct timeval32 tv32; error = sooptcopyin(sopt, &tv32, sizeof tv32, sizeof tv32); CP(tv32, tv, tv_sec); CP(tv32, tv, tv_usec); } else #endif error = sooptcopyin(sopt, &tv, sizeof tv, sizeof tv); if (error) goto bad; /* assert(hz > 0); */ if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || tv.tv_usec < 0 || tv.tv_usec >= 1000000) { error = EDOM; goto bad; } /* assert(tick > 0); */ /* assert(ULONG_MAX - INT_MAX >= 1000000); */ val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; if (val > INT_MAX) { error = EDOM; goto bad; } if (val == 0 && tv.tv_usec != 0) val = 1; switch (sopt->sopt_name) { case SO_SNDTIMEO: so->so_snd.sb_timeo = val; break; case SO_RCVTIMEO: so->so_rcv.sb_timeo = val; break; } break; case SO_LABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof extmac, sizeof extmac); if (error) goto bad; error = mac_setsockopt_label(sopt->sopt_td->td_ucred, so, &extmac); #else error = EOPNOTSUPP; #endif break; default: error = ENOPROTOOPT; break; } if (error == 0 && so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { (void) ((*so->so_proto->pr_ctloutput) (so, sopt)); } } bad: return (error); } /* * Helper routine for getsockopt. */ int sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) { int error; size_t valsize; error = 0; /* * Documented get behavior is that we always return a value, possibly * truncated to fit in the user's buffer. Traditional behavior is * that we always tell the user precisely how much we copied, rather * than something useful like the total amount we had available for * her. Note that this interface is not idempotent; the entire * answer must generated ahead of time. */ valsize = min(len, sopt->sopt_valsize); sopt->sopt_valsize = valsize; if (sopt->sopt_val != NULL) { if (sopt->sopt_td != NULL) error = copyout(buf, sopt->sopt_val, valsize); else bcopy(buf, sopt->sopt_val, valsize); } return (error); } int sogetopt(struct socket *so, struct sockopt *sopt) { int error, optval; struct linger l; struct timeval tv; #ifdef MAC struct mac extmac; #endif error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto && so->so_proto->pr_ctloutput) { return ((*so->so_proto->pr_ctloutput) (so, sopt)); } else return (ENOPROTOOPT); } else { switch (sopt->sopt_name) { #ifdef INET case SO_ACCEPTFILTER: error = do_getopt_accept_filter(so, sopt); break; #endif case SO_LINGER: SOCK_LOCK(so); l.l_onoff = so->so_options & SO_LINGER; l.l_linger = so->so_linger; SOCK_UNLOCK(so); error = sooptcopyout(sopt, &l, sizeof l); break; case SO_USELOOPBACK: case SO_DONTROUTE: case SO_DEBUG: case SO_KEEPALIVE: case SO_REUSEADDR: case SO_REUSEPORT: case SO_BROADCAST: case SO_OOBINLINE: case SO_ACCEPTCONN: case SO_TIMESTAMP: case SO_BINTIME: case SO_NOSIGPIPE: optval = so->so_options & sopt->sopt_name; integer: error = sooptcopyout(sopt, &optval, sizeof optval); break; case SO_TYPE: optval = so->so_type; goto integer; case SO_ERROR: SOCK_LOCK(so); optval = so->so_error; so->so_error = 0; SOCK_UNLOCK(so); goto integer; case SO_SNDBUF: optval = so->so_snd.sb_hiwat; goto integer; case SO_RCVBUF: optval = so->so_rcv.sb_hiwat; goto integer; case SO_SNDLOWAT: optval = so->so_snd.sb_lowat; goto integer; case SO_RCVLOWAT: optval = so->so_rcv.sb_lowat; goto integer; case SO_SNDTIMEO: case SO_RCVTIMEO: optval = (sopt->sopt_name == SO_SNDTIMEO ? so->so_snd.sb_timeo : so->so_rcv.sb_timeo); tv.tv_sec = optval / hz; tv.tv_usec = (optval % hz) * tick; #ifdef COMPAT_IA32 if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) { struct timeval32 tv32; CP(tv, tv32, tv_sec); CP(tv, tv32, tv_usec); error = sooptcopyout(sopt, &tv32, sizeof tv32); } else #endif error = sooptcopyout(sopt, &tv, sizeof tv); break; case SO_LABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof(extmac), sizeof(extmac)); if (error) return (error); error = mac_getsockopt_label(sopt->sopt_td->td_ucred, so, &extmac); if (error) return (error); error = sooptcopyout(sopt, &extmac, sizeof extmac); #else error = EOPNOTSUPP; #endif break; case SO_PEERLABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof(extmac), sizeof(extmac)); if (error) return (error); error = mac_getsockopt_peerlabel( sopt->sopt_td->td_ucred, so, &extmac); if (error) return (error); error = sooptcopyout(sopt, &extmac, sizeof extmac); #else error = EOPNOTSUPP; #endif break; case SO_LISTENQLIMIT: optval = so->so_qlimit; goto integer; case SO_LISTENQLEN: optval = so->so_qlen; goto integer; case SO_LISTENINCQLEN: optval = so->so_incqlen; goto integer; default: error = ENOPROTOOPT; break; } return (error); } } /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ int soopt_getm(struct sockopt *sopt, struct mbuf **mp) { struct mbuf *m, *m_prev; int sopt_size = sopt->sopt_valsize; MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); return ENOBUFS; } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; *mp = m; m_prev = m; while (sopt_size) { MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); if (m == NULL) { m_freem(*mp); return ENOBUFS; } if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_td != NULL ? M_WAIT : M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); m_freem(*mp); return ENOBUFS; } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; m_prev->m_next = m; m_prev = m; } return (0); } /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ int soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; if (sopt->sopt_val == NULL) return (0); while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_td != NULL) { int error; error = copyin(sopt->sopt_val, mtod(m, char *), m->m_len); if (error != 0) { m_freem(m0); return(error); } } else bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); sopt->sopt_valsize -= m->m_len; sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; m = m->m_next; } if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ panic("ip6_sooptmcopyin"); return (0); } /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ int soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; size_t valsize = 0; if (sopt->sopt_val == NULL) return (0); while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_td != NULL) { int error; error = copyout(mtod(m, char *), sopt->sopt_val, m->m_len); if (error != 0) { m_freem(m0); return(error); } } else bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); sopt->sopt_valsize -= m->m_len; sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; valsize += m->m_len; m = m->m_next; } if (m != NULL) { /* enough soopt buffer should be given from user-land */ m_freem(m0); return(EINVAL); } sopt->sopt_valsize = valsize; return (0); } /* * sohasoutofband(): protocol notifies socket layer of the arrival of new * out-of-band data, which will then notify socket consumers. */ void sohasoutofband(struct socket *so) { if (so->so_sigio != NULL) pgsigio(&so->so_sigio, SIGURG, 0); selwakeuppri(&so->so_rcv.sb_sel, PSOCK); } int sopoll(struct socket *so, int events, struct ucred *active_cred, struct thread *td) { /* XXXRW: Temporary debugging. */ KASSERT(so->so_proto->pr_usrreqs->pru_sopoll != sopoll, ("sopoll: protocol calls sopoll")); return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, td)); } int sopoll_generic(struct socket *so, int events, struct ucred *active_cred, struct thread *td) { int revents = 0; SOCKBUF_LOCK(&so->so_snd); SOCKBUF_LOCK(&so->so_rcv); if (events & (POLLIN | POLLRDNORM)) if (soreadable(so)) revents |= events & (POLLIN | POLLRDNORM); if (events & POLLINIGNEOF) if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || !TAILQ_EMPTY(&so->so_comp) || so->so_error) revents |= POLLINIGNEOF; if (events & (POLLOUT | POLLWRNORM)) if (sowriteable(so)) revents |= events & (POLLOUT | POLLWRNORM); if (events & (POLLPRI | POLLRDBAND)) if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) revents |= events & (POLLPRI | POLLRDBAND); if (revents == 0) { if (events & (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND)) { selrecord(td, &so->so_rcv.sb_sel); so->so_rcv.sb_flags |= SB_SEL; } if (events & (POLLOUT | POLLWRNORM)) { selrecord(td, &so->so_snd.sb_sel); so->so_snd.sb_flags |= SB_SEL; } } SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_snd); return (revents); } int soo_kqfilter(struct file *fp, struct knote *kn) { struct socket *so = kn->kn_fp->f_data; struct sockbuf *sb; switch (kn->kn_filter) { case EVFILT_READ: if (so->so_options & SO_ACCEPTCONN) kn->kn_fop = &solisten_filtops; else kn->kn_fop = &soread_filtops; sb = &so->so_rcv; break; case EVFILT_WRITE: kn->kn_fop = &sowrite_filtops; sb = &so->so_snd; break; default: return (EINVAL); } SOCKBUF_LOCK(sb); knlist_add(&sb->sb_sel.si_note, kn, 1); sb->sb_flags |= SB_KNOTE; SOCKBUF_UNLOCK(sb); return (0); } /* * Some routines that return EOPNOTSUPP for entry points that are not * supported by a protocol. Fill in as needed. */ int pru_accept_notsupp(struct socket *so, struct sockaddr **nam) { return EOPNOTSUPP; } int pru_attach_notsupp(struct socket *so, int proto, struct thread *td) { return EOPNOTSUPP; } int pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_connect2_notsupp(struct socket *so1, struct socket *so2) { return EOPNOTSUPP; } int pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { return EOPNOTSUPP; } int pru_disconnect_notsupp(struct socket *so) { return EOPNOTSUPP; } int pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) { return EOPNOTSUPP; } int pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) { return EOPNOTSUPP; } int pru_rcvd_notsupp(struct socket *so, int flags) { return EOPNOTSUPP; } int pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) { return EOPNOTSUPP; } int pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { return EOPNOTSUPP; } /* * This isn't really a ``null'' operation, but it's the default one and * doesn't do anything destructive. */ int pru_sense_null(struct socket *so, struct stat *sb) { sb->st_blksize = so->so_snd.sb_hiwat; return 0; } int pru_shutdown_notsupp(struct socket *so) { return EOPNOTSUPP; } int pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) { return EOPNOTSUPP; } int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { return EOPNOTSUPP; } int pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { return EOPNOTSUPP; } int pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, struct thread *td) { return EOPNOTSUPP; } static void filt_sordetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; SOCKBUF_LOCK(&so->so_rcv); knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); if (knlist_empty(&so->so_rcv.sb_sel.si_note)) so->so_rcv.sb_flags &= ~SB_KNOTE; SOCKBUF_UNLOCK(&so->so_rcv); } /*ARGSUSED*/ static int filt_soread(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; SOCKBUF_LOCK_ASSERT(&so->so_rcv); kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } else if (so->so_error) /* temporary udp error */ return (1); else if (kn->kn_sfflags & NOTE_LOWAT) return (kn->kn_data >= kn->kn_sdata); else return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); } static void filt_sowdetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; SOCKBUF_LOCK(&so->so_snd); knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); if (knlist_empty(&so->so_snd.sb_sel.si_note)) so->so_snd.sb_flags &= ~SB_KNOTE; SOCKBUF_UNLOCK(&so->so_snd); } /*ARGSUSED*/ static int filt_sowrite(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; SOCKBUF_LOCK_ASSERT(&so->so_snd); kn->kn_data = sbspace(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } else if (so->so_error) /* temporary udp error */ return (1); else if (((so->so_state & SS_ISCONNECTED) == 0) && (so->so_proto->pr_flags & PR_CONNREQUIRED)) return (0); else if (kn->kn_sfflags & NOTE_LOWAT) return (kn->kn_data >= kn->kn_sdata); else return (kn->kn_data >= so->so_snd.sb_lowat); } /*ARGSUSED*/ static int filt_solisten(struct knote *kn, long hint) { struct socket *so = kn->kn_fp->f_data; kn->kn_data = so->so_qlen; return (! TAILQ_EMPTY(&so->so_comp)); } int socheckuid(struct socket *so, uid_t uid) { if (so == NULL) return (EPERM); if (so->so_cred->cr_uid != uid) return (EPERM); return (0); } static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS) { int error; int val; val = somaxconn; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr ) return (error); if (val < 1 || val > USHRT_MAX) return (EINVAL); somaxconn = val; return (0); } /* * These functions are used by protocols to notify the socket layer (and its * consumers) of state changes in the sockets driven by protocol-side events. */ /* * Procedures to manipulate state flags of socket and do appropriate wakeups. * * Normal sequence from the active (originating) side is that * soisconnecting() is called during processing of connect() call, resulting * in an eventual call to soisconnected() if/when the connection is * established. When the connection is torn down soisdisconnecting() is * called during processing of disconnect() call, and soisdisconnected() is * called when the connection to the peer is totally severed. The semantics * of these routines are such that connectionless protocols can call * soisconnected() and soisdisconnected() only, bypassing the in-progress * calls when setting up a ``connection'' takes no time. * * From the passive side, a socket is created with two queues of sockets: * so_incomp for connections in progress and so_comp for connections already * made and awaiting user acceptance. As a protocol is preparing incoming * connections, it creates a socket structure queued on so_incomp by calling * sonewconn(). When the connection is established, soisconnected() is * called, and transfers the socket structure to so_comp, making it available * to accept(). * * If a socket is closed with sockets on either so_incomp or so_comp, these * sockets are dropped. * * If higher-level protocols are implemented in the kernel, the wakeups done * here will sometimes cause software-interrupt process scheduling. */ void soisconnecting(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISCONNECTING; SOCK_UNLOCK(so); } void soisconnected(struct socket *so) { struct socket *head; ACCEPT_LOCK(); SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); so->so_state |= SS_ISCONNECTED; head = so->so_head; if (head != NULL && (so->so_qstate & SQ_INCOMP)) { if ((so->so_options & SO_ACCEPTFILTER) == 0) { SOCK_UNLOCK(so); TAILQ_REMOVE(&head->so_incomp, so, so_list); head->so_incqlen--; so->so_qstate &= ~SQ_INCOMP; TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); head->so_qlen++; so->so_qstate |= SQ_COMP; ACCEPT_UNLOCK(); sorwakeup(head); wakeup_one(&head->so_timeo); } else { ACCEPT_UNLOCK(); so->so_upcall = head->so_accf->so_accept_filter->accf_callback; so->so_upcallarg = head->so_accf->so_accept_filter_arg; so->so_rcv.sb_flags |= SB_UPCALL; so->so_options &= ~SO_ACCEPTFILTER; SOCK_UNLOCK(so); so->so_upcall(so, so->so_upcallarg, M_DONTWAIT); } return; } SOCK_UNLOCK(so); ACCEPT_UNLOCK(); wakeup(&so->so_timeo); sorwakeup(so); sowwakeup(so); } void soisdisconnecting(struct socket *so) { /* * Note: This code assumes that SOCK_LOCK(so) and * SOCKBUF_LOCK(&so->so_rcv) are the same. */ SOCKBUF_LOCK(&so->so_rcv); so->so_state &= ~SS_ISCONNECTING; so->so_state |= SS_ISDISCONNECTING; so->so_rcv.sb_state |= SBS_CANTRCVMORE; sorwakeup_locked(so); SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_state |= SBS_CANTSENDMORE; sowwakeup_locked(so); wakeup(&so->so_timeo); } void soisdisconnected(struct socket *so) { /* * Note: This code assumes that SOCK_LOCK(so) and * SOCKBUF_LOCK(&so->so_rcv) are the same. */ SOCKBUF_LOCK(&so->so_rcv); so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISDISCONNECTED; so->so_rcv.sb_state |= SBS_CANTRCVMORE; sorwakeup_locked(so); SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_state |= SBS_CANTSENDMORE; sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); sowwakeup_locked(so); wakeup(&so->so_timeo); } /* * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. */ struct sockaddr * sodupsockaddr(const struct sockaddr *sa, int mflags) { struct sockaddr *sa2; sa2 = malloc(sa->sa_len, M_SONAME, mflags); if (sa2) bcopy(sa, sa2, sa->sa_len); return sa2; } /* * Create an external-format (``xsocket'') structure using the information in * the kernel-format socket structure pointed to by so. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void sotoxsocket(struct socket *so, struct xsocket *xso) { xso->xso_len = sizeof *xso; xso->xso_so = so; xso->so_type = so->so_type; xso->so_options = so->so_options; xso->so_linger = so->so_linger; xso->so_state = so->so_state; xso->so_pcb = so->so_pcb; xso->xso_protocol = so->so_proto->pr_protocol; xso->xso_family = so->so_proto->pr_domain->dom_family; xso->so_qlen = so->so_qlen; xso->so_incqlen = so->so_incqlen; xso->so_qlimit = so->so_qlimit; xso->so_timeo = so->so_timeo; xso->so_error = so->so_error; xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; xso->so_oobmark = so->so_oobmark; sbtoxsockbuf(&so->so_snd, &xso->so_snd); sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); xso->so_uid = so->so_cred->cr_uid; } /* * Socket accessor functions to provide external consumers with * a safe interface to socket state * */ void so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg) { TAILQ_FOREACH(so, &so->so_comp, so_list) func(so, arg); } struct sockbuf * so_sockbuf_rcv(struct socket *so) { return (&so->so_rcv); } struct sockbuf * so_sockbuf_snd(struct socket *so) { return (&so->so_snd); } int so_state_get(const struct socket *so) { return (so->so_state); } void so_state_set(struct socket *so, int val) { so->so_state = val; } int so_options_get(const struct socket *so) { return (so->so_options); } void so_options_set(struct socket *so, int val) { so->so_options = val; } int so_error_get(const struct socket *so) { return (so->so_error); } void so_error_set(struct socket *so, int val) { so->so_error = val; } int so_linger_get(const struct socket *so) { return (so->so_linger); } void so_linger_set(struct socket *so, int val) { so->so_linger = val; } struct protosw * so_protosw_get(const struct socket *so) { return (so->so_proto); } void so_protosw_set(struct socket *so, struct protosw *val) { so->so_proto = val; } void so_sorwakeup(struct socket *so) { sorwakeup(so); } void so_sowwakeup(struct socket *so) { sowwakeup(so); } void so_sorwakeup_locked(struct socket *so) { sorwakeup_locked(so); } void so_sowwakeup_locked(struct socket *so) { sowwakeup_locked(so); } void so_lock(struct socket *so) { SOCK_LOCK(so); } void so_unlock(struct socket *so) { SOCK_UNLOCK(so); }