/*- * Copyright (c) 2013 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_DMAR_CTX, "dmar_ctx", "Intel DMAR Context"); static void dmar_ctx_unload_task(void *arg, int pending); static void dmar_ensure_ctx_page(struct dmar_unit *dmar, int bus) { struct sf_buf *sf; dmar_root_entry_t *re; vm_page_t ctxm; /* * Allocated context page must be linked. */ ctxm = dmar_pgalloc(dmar->ctx_obj, 1 + bus, DMAR_PGF_NOALLOC); if (ctxm != NULL) return; /* * Page not present, allocate and link. Note that other * thread might execute this sequence in parallel. This * should be safe, because the context entries written by both * threads are equal. */ TD_PREP_PINNED_ASSERT; ctxm = dmar_pgalloc(dmar->ctx_obj, 1 + bus, DMAR_PGF_ZERO | DMAR_PGF_WAITOK); re = dmar_map_pgtbl(dmar->ctx_obj, 0, DMAR_PGF_NOALLOC, &sf); re += bus; dmar_pte_store(&re->r1, DMAR_ROOT_R1_P | (DMAR_ROOT_R1_CTP_MASK & VM_PAGE_TO_PHYS(ctxm))); dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(dmar)); TD_PINNED_ASSERT; } static dmar_ctx_entry_t * dmar_map_ctx_entry(struct dmar_ctx *ctx, struct sf_buf **sfp) { dmar_ctx_entry_t *ctxp; ctxp = dmar_map_pgtbl(ctx->dmar->ctx_obj, 1 + ctx->bus, DMAR_PGF_NOALLOC | DMAR_PGF_WAITOK, sfp); ctxp += ((ctx->slot & 0x1f) << 3) + (ctx->func & 0x7); return (ctxp); } static void ctx_tag_init(struct dmar_ctx *ctx) { bus_addr_t maxaddr; maxaddr = MIN(ctx->end, BUS_SPACE_MAXADDR); ctx->ctx_tag.common.ref_count = 1; /* Prevent free */ ctx->ctx_tag.common.impl = &bus_dma_dmar_impl; ctx->ctx_tag.common.boundary = PCI_DMA_BOUNDARY; ctx->ctx_tag.common.lowaddr = maxaddr; ctx->ctx_tag.common.highaddr = maxaddr; ctx->ctx_tag.common.maxsize = maxaddr; ctx->ctx_tag.common.nsegments = BUS_SPACE_UNRESTRICTED; ctx->ctx_tag.common.maxsegsz = maxaddr; ctx->ctx_tag.ctx = ctx; /* XXXKIB initialize tag further */ } static void ctx_id_entry_init(struct dmar_ctx *ctx, dmar_ctx_entry_t *ctxp) { struct dmar_unit *unit; vm_page_t ctx_root; unit = ctx->dmar; KASSERT(ctxp->ctx1 == 0 && ctxp->ctx2 == 0, ("dmar%d: initialized ctx entry %d:%d:%d 0x%jx 0x%jx", unit->unit, ctx->bus, ctx->slot, ctx->func, ctxp->ctx1, ctxp->ctx2)); ctxp->ctx2 = DMAR_CTX2_DID(ctx->domain); ctxp->ctx2 |= ctx->awlvl; if ((ctx->flags & DMAR_CTX_IDMAP) != 0 && (unit->hw_ecap & DMAR_ECAP_PT) != 0) { KASSERT(ctx->pgtbl_obj == NULL, ("ctx %p non-null pgtbl_obj", ctx)); dmar_pte_store(&ctxp->ctx1, DMAR_CTX1_T_PASS | DMAR_CTX1_P); } else { ctx_root = dmar_pgalloc(ctx->pgtbl_obj, 0, DMAR_PGF_NOALLOC); dmar_pte_store(&ctxp->ctx1, DMAR_CTX1_T_UNTR | (DMAR_CTX1_ASR_MASK & VM_PAGE_TO_PHYS(ctx_root)) | DMAR_CTX1_P); } } static int ctx_init_rmrr(struct dmar_ctx *ctx, device_t dev) { struct dmar_map_entries_tailq rmrr_entries; struct dmar_map_entry *entry, *entry1; vm_page_t *ma; dmar_gaddr_t start, end; vm_pindex_t size, i; int error, error1; error = 0; TAILQ_INIT(&rmrr_entries); dmar_ctx_parse_rmrr(ctx, dev, &rmrr_entries); TAILQ_FOREACH_SAFE(entry, &rmrr_entries, unroll_link, entry1) { /* * VT-d specification requires that the start of an * RMRR entry is 4k-aligned. Buggy BIOSes put * anything into the start and end fields. Truncate * and round as neccesary. * * We also allow the overlapping RMRR entries, see * dmar_gas_alloc_region(). */ start = entry->start; end = entry->end; entry->start = trunc_page(start); entry->end = round_page(end); size = OFF_TO_IDX(entry->end - entry->start); ma = malloc(sizeof(vm_page_t) * size, M_TEMP, M_WAITOK); for (i = 0; i < size; i++) { ma[i] = vm_page_getfake(entry->start + PAGE_SIZE * i, VM_MEMATTR_DEFAULT); } error1 = dmar_gas_map_region(ctx, entry, DMAR_MAP_ENTRY_READ | DMAR_MAP_ENTRY_WRITE, DMAR_GM_CANWAIT, ma); /* * Non-failed RMRR entries are owned by context rb * tree. Get rid of the failed entry, but do not stop * the loop. Rest of the parsed RMRR entries are * loaded and removed on the context destruction. */ if (error1 == 0 && entry->end != entry->start) { DMAR_LOCK(ctx->dmar); ctx->flags |= DMAR_CTX_RMRR; DMAR_UNLOCK(ctx->dmar); } else { if (error1 != 0) { device_printf(dev, "dmar%d failed to map RMRR region (%jx, %jx) %d\n", ctx->dmar->unit, start, end, error1); error = error1; } TAILQ_REMOVE(&rmrr_entries, entry, unroll_link); dmar_gas_free_entry(ctx, entry); } for (i = 0; i < size; i++) vm_page_putfake(ma[i]); free(ma, M_TEMP); } return (error); } static struct dmar_ctx * dmar_get_ctx_alloc(struct dmar_unit *dmar, int bus, int slot, int func) { struct dmar_ctx *ctx; ctx = malloc(sizeof(*ctx), M_DMAR_CTX, M_WAITOK | M_ZERO); RB_INIT(&ctx->rb_root); TAILQ_INIT(&ctx->unload_entries); TASK_INIT(&ctx->unload_task, 0, dmar_ctx_unload_task, ctx); mtx_init(&ctx->lock, "dmarctx", NULL, MTX_DEF); ctx->dmar = dmar; ctx->bus = bus; ctx->slot = slot; ctx->func = func; return (ctx); } static void dmar_ctx_dtr(struct dmar_ctx *ctx, bool gas_inited, bool pgtbl_inited) { if (gas_inited) { DMAR_CTX_LOCK(ctx); dmar_gas_fini_ctx(ctx); DMAR_CTX_UNLOCK(ctx); } if (pgtbl_inited) { if (ctx->pgtbl_obj != NULL) DMAR_CTX_PGLOCK(ctx); ctx_free_pgtbl(ctx); } mtx_destroy(&ctx->lock); free(ctx, M_DMAR_CTX); } struct dmar_ctx * dmar_get_ctx(struct dmar_unit *dmar, device_t dev, bool id_mapped, bool rmrr_init) { struct dmar_ctx *ctx, *ctx1; dmar_ctx_entry_t *ctxp; struct sf_buf *sf; int bus, slot, func, error, mgaw; bool enable; bus = pci_get_bus(dev); slot = pci_get_slot(dev); func = pci_get_function(dev); enable = false; TD_PREP_PINNED_ASSERT; DMAR_LOCK(dmar); ctx = dmar_find_ctx_locked(dmar, bus, slot, func); error = 0; if (ctx == NULL) { /* * Perform the allocations which require sleep or have * higher chance to succeed if the sleep is allowed. */ DMAR_UNLOCK(dmar); dmar_ensure_ctx_page(dmar, bus); ctx1 = dmar_get_ctx_alloc(dmar, bus, slot, func); if (id_mapped) { /* * For now, use the maximal usable physical * address of the installed memory to * calculate the mgaw. It is useful for the * identity mapping, and less so for the * virtualized bus address space. */ ctx1->end = ptoa(Maxmem); mgaw = dmar_maxaddr2mgaw(dmar, ctx1->end, false); error = ctx_set_agaw(ctx1, mgaw); if (error != 0) { dmar_ctx_dtr(ctx1, false, false); TD_PINNED_ASSERT; return (NULL); } } else { ctx1->end = BUS_SPACE_MAXADDR; mgaw = dmar_maxaddr2mgaw(dmar, ctx1->end, true); error = ctx_set_agaw(ctx1, mgaw); if (error != 0) { dmar_ctx_dtr(ctx1, false, false); TD_PINNED_ASSERT; return (NULL); } /* Use all supported address space for remapping. */ ctx1->end = 1ULL << (ctx1->agaw - 1); } dmar_gas_init_ctx(ctx1); if (id_mapped) { if ((dmar->hw_ecap & DMAR_ECAP_PT) == 0) { ctx1->pgtbl_obj = ctx_get_idmap_pgtbl(ctx1, ctx1->end); } ctx1->flags |= DMAR_CTX_IDMAP; } else { error = ctx_alloc_pgtbl(ctx1); if (error != 0) { dmar_ctx_dtr(ctx1, true, false); TD_PINNED_ASSERT; return (NULL); } /* Disable local apic region access */ error = dmar_gas_reserve_region(ctx1, 0xfee00000, 0xfeefffff + 1); if (error != 0) { dmar_ctx_dtr(ctx1, true, true); TD_PINNED_ASSERT; return (NULL); } error = ctx_init_rmrr(ctx1, dev); if (error != 0) { dmar_ctx_dtr(ctx1, true, true); TD_PINNED_ASSERT; return (NULL); } } ctxp = dmar_map_ctx_entry(ctx1, &sf); DMAR_LOCK(dmar); /* * Recheck the contexts, other thread might have * already allocated needed one. */ ctx = dmar_find_ctx_locked(dmar, bus, slot, func); if (ctx == NULL) { ctx = ctx1; ctx->domain = alloc_unrl(dmar->domids); if (ctx->domain == -1) { DMAR_UNLOCK(dmar); dmar_unmap_pgtbl(sf, true); dmar_ctx_dtr(ctx, true, true); TD_PINNED_ASSERT; return (NULL); } ctx_tag_init(ctx); /* * This is the first activated context for the * DMAR unit. Enable the translation after * everything is set up. */ if (LIST_EMPTY(&dmar->contexts)) enable = true; LIST_INSERT_HEAD(&dmar->contexts, ctx, link); ctx_id_entry_init(ctx, ctxp); device_printf(dev, "dmar%d pci%d:%d:%d:%d domain %d mgaw %d agaw %d\n", dmar->unit, dmar->segment, bus, slot, func, ctx->domain, ctx->mgaw, ctx->agaw); } else { dmar_ctx_dtr(ctx1, true, true); } dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(dmar)); } ctx->refs++; if ((ctx->flags & DMAR_CTX_RMRR) != 0) ctx->refs++; /* XXXKIB */ /* * If dmar declares Caching Mode as Set, follow 11.5 "Caching * Mode Consideration" and do the (global) invalidation of the * negative TLB entries. */ if ((dmar->hw_cap & DMAR_CAP_CM) != 0 || enable) { if (dmar->qi_enabled) { dmar_qi_invalidate_ctx_glob_locked(dmar); if ((dmar->hw_ecap & DMAR_ECAP_DI) != 0) dmar_qi_invalidate_iotlb_glob_locked(dmar); } else { error = dmar_inv_ctx_glob(dmar); if (error == 0 && (dmar->hw_ecap & DMAR_ECAP_DI) != 0) error = dmar_inv_iotlb_glob(dmar); if (error != 0) { dmar_free_ctx_locked(dmar, ctx); TD_PINNED_ASSERT; return (NULL); } } } /* * The dmar lock was potentially dropped between check for the * empty context list and now. Recheck the state of GCMD_TE * to avoid unneeded command. */ if (enable && !rmrr_init && (dmar->hw_gcmd & DMAR_GCMD_TE) == 0) { error = dmar_enable_translation(dmar); if (error != 0) { dmar_free_ctx_locked(dmar, ctx); TD_PINNED_ASSERT; return (NULL); } } DMAR_UNLOCK(dmar); TD_PINNED_ASSERT; return (ctx); } void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx) { struct sf_buf *sf; dmar_ctx_entry_t *ctxp; DMAR_ASSERT_LOCKED(dmar); KASSERT(ctx->refs >= 1, ("dmar %p ctx %p refs %u", dmar, ctx, ctx->refs)); /* * If our reference is not last, only the dereference should * be performed. */ if (ctx->refs > 1) { ctx->refs--; DMAR_UNLOCK(dmar); return; } KASSERT((ctx->flags & DMAR_CTX_RMRR) == 0, ("lost ref on RMRR ctx %p", ctx)); KASSERT((ctx->flags & DMAR_CTX_DISABLED) == 0, ("lost ref on disabled ctx %p", ctx)); /* * Otherwise, the context entry must be cleared before the * page table is destroyed. The mapping of the context * entries page could require sleep, unlock the dmar. */ DMAR_UNLOCK(dmar); TD_PREP_PINNED_ASSERT; ctxp = dmar_map_ctx_entry(ctx, &sf); DMAR_LOCK(dmar); KASSERT(ctx->refs >= 1, ("dmar %p ctx %p refs %u", dmar, ctx, ctx->refs)); /* * Other thread might have referenced the context, in which * case again only the dereference should be performed. */ if (ctx->refs > 1) { ctx->refs--; DMAR_UNLOCK(dmar); dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(dmar)); TD_PINNED_ASSERT; return; } KASSERT((ctx->flags & DMAR_CTX_RMRR) == 0, ("lost ref on RMRR ctx %p", ctx)); KASSERT((ctx->flags & DMAR_CTX_DISABLED) == 0, ("lost ref on disabled ctx %p", ctx)); /* * Clear the context pointer and flush the caches. * XXXKIB: cannot do this if any RMRR entries are still present. */ dmar_pte_clear(&ctxp->ctx1); ctxp->ctx2 = 0; dmar_inv_ctx_glob(dmar); if ((dmar->hw_ecap & DMAR_ECAP_DI) != 0) { if (dmar->qi_enabled) dmar_qi_invalidate_iotlb_glob_locked(dmar); else dmar_inv_iotlb_glob(dmar); } LIST_REMOVE(ctx, link); DMAR_UNLOCK(dmar); /* * The rest of the destruction is invisible for other users of * the dmar unit. */ taskqueue_drain(dmar->delayed_taskqueue, &ctx->unload_task); KASSERT(TAILQ_EMPTY(&ctx->unload_entries), ("unfinished unloads %p", ctx)); dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(dmar)); free_unr(dmar->domids, ctx->domain); dmar_ctx_dtr(ctx, true, true); TD_PINNED_ASSERT; } void dmar_free_ctx(struct dmar_ctx *ctx) { struct dmar_unit *dmar; dmar = ctx->dmar; DMAR_LOCK(dmar); dmar_free_ctx_locked(dmar, ctx); } struct dmar_ctx * dmar_find_ctx_locked(struct dmar_unit *dmar, int bus, int slot, int func) { struct dmar_ctx *ctx; DMAR_ASSERT_LOCKED(dmar); LIST_FOREACH(ctx, &dmar->contexts, link) { if (ctx->bus == bus && ctx->slot == slot && ctx->func == func) return (ctx); } return (NULL); } void dmar_ctx_free_entry(struct dmar_map_entry *entry, bool free) { struct dmar_ctx *ctx; ctx = entry->ctx; DMAR_CTX_LOCK(ctx); if ((entry->flags & DMAR_MAP_ENTRY_RMRR) != 0) dmar_gas_free_region(ctx, entry); else dmar_gas_free_space(ctx, entry); DMAR_CTX_UNLOCK(ctx); if (free) dmar_gas_free_entry(ctx, entry); else entry->flags = 0; } void dmar_ctx_unload_entry(struct dmar_map_entry *entry, bool free) { struct dmar_unit *unit; unit = entry->ctx->dmar; if (unit->qi_enabled) { DMAR_LOCK(unit); dmar_qi_invalidate_locked(entry->ctx, entry->start, entry->end - entry->start, &entry->gseq); if (!free) entry->flags |= DMAR_MAP_ENTRY_QI_NF; TAILQ_INSERT_TAIL(&unit->tlb_flush_entries, entry, dmamap_link); DMAR_UNLOCK(unit); } else { ctx_flush_iotlb_sync(entry->ctx, entry->start, entry->end - entry->start); dmar_ctx_free_entry(entry, free); } } void dmar_ctx_unload(struct dmar_ctx *ctx, struct dmar_map_entries_tailq *entries, bool cansleep) { struct dmar_unit *unit; struct dmar_map_entry *entry, *entry1; struct dmar_qi_genseq gseq; int error; unit = ctx->dmar; TAILQ_FOREACH_SAFE(entry, entries, dmamap_link, entry1) { KASSERT((entry->flags & DMAR_MAP_ENTRY_MAP) != 0, ("not mapped entry %p %p", ctx, entry)); error = ctx_unmap_buf(ctx, entry->start, entry->end - entry->start, cansleep ? DMAR_PGF_WAITOK : 0); KASSERT(error == 0, ("unmap %p error %d", ctx, error)); if (!unit->qi_enabled) { ctx_flush_iotlb_sync(ctx, entry->start, entry->end - entry->start); TAILQ_REMOVE(entries, entry, dmamap_link); dmar_ctx_free_entry(entry, true); } } if (TAILQ_EMPTY(entries)) return; KASSERT(unit->qi_enabled, ("loaded entry left")); DMAR_LOCK(unit); TAILQ_FOREACH(entry, entries, dmamap_link) { entry->gseq.gen = 0; entry->gseq.seq = 0; dmar_qi_invalidate_locked(ctx, entry->start, entry->end - entry->start, TAILQ_NEXT(entry, dmamap_link) == NULL ? &gseq : NULL); } TAILQ_FOREACH_SAFE(entry, entries, dmamap_link, entry1) { entry->gseq = gseq; TAILQ_REMOVE(entries, entry, dmamap_link); TAILQ_INSERT_TAIL(&unit->tlb_flush_entries, entry, dmamap_link); } DMAR_UNLOCK(unit); } static void dmar_ctx_unload_task(void *arg, int pending) { struct dmar_ctx *ctx; struct dmar_map_entries_tailq entries; ctx = arg; TAILQ_INIT(&entries); for (;;) { DMAR_CTX_LOCK(ctx); TAILQ_SWAP(&ctx->unload_entries, &entries, dmar_map_entry, dmamap_link); DMAR_CTX_UNLOCK(ctx); if (TAILQ_EMPTY(&entries)) break; dmar_ctx_unload(ctx, &entries, true); } }