/* $NetBSD: svc_vc.c,v 1.7 2000/08/03 00:01:53 fvdl Exp $ */ /* $FreeBSD$ */ /* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ #include #if defined(LIBC_SCCS) && !defined(lint) static char *sccsid = "@(#)svc_tcp.c 1.21 87/08/11 Copyr 1984 Sun Micro"; static char *sccsid = "@(#)svc_tcp.c 2.2 88/08/01 4.0 RPCSRC"; #endif /* * svc_vc.c, Server side for Connection Oriented based RPC. * * Actually implements two flavors of transporter - * a tcp rendezvouser (a listner and connection establisher) * and a record/tcp stream. */ #include "namespace.h" #include "reentrant.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rpc_com.h" #include "un-namespace.h" struct cmessage { struct cmsghdr cmsg; struct cmsgcred cmcred; }; static SVCXPRT *makefd_xprt __P((int, u_int, u_int)); static bool_t rendezvous_request __P((SVCXPRT *, struct rpc_msg *)); static enum xprt_stat rendezvous_stat __P((SVCXPRT *)); static void svc_vc_destroy __P((SVCXPRT *)); static int read_vc __P((caddr_t, caddr_t, int)); static int write_vc __P((caddr_t, caddr_t, int)); static enum xprt_stat svc_vc_stat __P((SVCXPRT *)); static bool_t svc_vc_recv __P((SVCXPRT *, struct rpc_msg *)); static bool_t svc_vc_getargs __P((SVCXPRT *, xdrproc_t, caddr_t)); static bool_t svc_vc_freeargs __P((SVCXPRT *, xdrproc_t, caddr_t)); static bool_t svc_vc_reply __P((SVCXPRT *, struct rpc_msg *)); static void svc_vc_rendezvous_ops __P((SVCXPRT *)); static void svc_vc_ops __P((SVCXPRT *)); static bool_t svc_vc_control __P((SVCXPRT *xprt, const u_int rq, void *in)); static int __msgread_withcred(int, void *, size_t, struct cmessage *); static int __msgwrite(int, void *, size_t); struct cf_rendezvous { /* kept in xprt->xp_p1 for rendezvouser */ u_int sendsize; u_int recvsize; }; struct cf_conn { /* kept in xprt->xp_p1 for actual connection */ enum xprt_stat strm_stat; u_int32_t x_id; XDR xdrs; char verf_body[MAX_AUTH_BYTES]; }; /* * Usage: * xprt = svc_vc_create(sock, send_buf_size, recv_buf_size); * * Creates, registers, and returns a (rpc) tcp based transporter. * Once *xprt is initialized, it is registered as a transporter * see (svc.h, xprt_register). This routine returns * a NULL if a problem occurred. * * The filedescriptor passed in is expected to refer to a bound, but * not yet connected socket. * * Since streams do buffered io similar to stdio, the caller can specify * how big the send and receive buffers are via the second and third parms; * 0 => use the system default. */ SVCXPRT * svc_vc_create(fd, sendsize, recvsize) int fd; u_int sendsize; u_int recvsize; { SVCXPRT *xprt; struct cf_rendezvous *r = NULL; struct __rpc_sockinfo si; struct sockaddr_storage sslocal; socklen_t slen; r = mem_alloc(sizeof(*r)); if (r == NULL) { warnx("svc_vc_create: out of memory"); goto cleanup_svc_vc_create; } if (!__rpc_fd2sockinfo(fd, &si)) return NULL; r->sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize); r->recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize); xprt = mem_alloc(sizeof(SVCXPRT)); if (xprt == NULL) { warnx("svc_vc_create: out of memory"); goto cleanup_svc_vc_create; } xprt->xp_tp = NULL; xprt->xp_p1 = (caddr_t)(void *)r; xprt->xp_p2 = NULL; xprt->xp_p3 = NULL; xprt->xp_verf = _null_auth; svc_vc_rendezvous_ops(xprt); xprt->xp_port = (u_short)-1; /* It is the rendezvouser */ xprt->xp_fd = fd; slen = sizeof (struct sockaddr_storage); if (_getsockname(fd, (struct sockaddr *)(void *)&sslocal, &slen) < 0) { warnx("svc_vc_create: could not retrieve local addr"); goto cleanup_svc_vc_create; } xprt->xp_ltaddr.maxlen = xprt->xp_ltaddr.len = sslocal.ss_len; xprt->xp_ltaddr.buf = mem_alloc((size_t)sslocal.ss_len); if (xprt->xp_ltaddr.buf == NULL) { warnx("svc_vc_create: no mem for local addr"); goto cleanup_svc_vc_create; } memcpy(xprt->xp_ltaddr.buf, &sslocal, (size_t)sslocal.ss_len); xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage); xprt_register(xprt); return (xprt); cleanup_svc_vc_create: if (r != NULL) mem_free(r, sizeof(*r)); return (NULL); } /* * Like svtcp_create(), except the routine takes any *open* UNIX file * descriptor as its first input. */ SVCXPRT * svc_fd_create(fd, sendsize, recvsize) int fd; u_int sendsize; u_int recvsize; { struct sockaddr_storage ss; socklen_t slen; SVCXPRT *ret; assert(fd != -1); ret = makefd_xprt(fd, sendsize, recvsize); if (ret == NULL) return NULL; slen = sizeof (struct sockaddr_storage); if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) { warnx("svc_fd_create: could not retrieve local addr"); goto freedata; } ret->xp_ltaddr.maxlen = ret->xp_ltaddr.len = ss.ss_len; ret->xp_ltaddr.buf = mem_alloc((size_t)ss.ss_len); if (ret->xp_ltaddr.buf == NULL) { warnx("svc_fd_create: no mem for local addr"); goto freedata; } memcpy(ret->xp_ltaddr.buf, &ss, (size_t)ss.ss_len); slen = sizeof (struct sockaddr_storage); if (_getpeername(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) { warnx("svc_fd_create: could not retrieve remote addr"); goto freedata; } ret->xp_rtaddr.maxlen = ret->xp_rtaddr.len = ss.ss_len; ret->xp_rtaddr.buf = mem_alloc((size_t)ss.ss_len); if (ret->xp_rtaddr.buf == NULL) { warnx("svc_fd_create: no mem for local addr"); goto freedata; } memcpy(ret->xp_rtaddr.buf, &ss, (size_t)ss.ss_len); #ifdef PORTMAP if (ss.ss_family == AF_INET || ss.ss_family == AF_LOCAL) { ret->xp_raddr = *(struct sockaddr_in *)ret->xp_rtaddr.buf; ret->xp_addrlen = sizeof (struct sockaddr_in); } #endif /* PORTMAP */ return ret; freedata: if (ret->xp_ltaddr.buf != NULL) mem_free(ret->xp_ltaddr.buf, rep->xp_ltaddr.maxlen); return NULL; } static SVCXPRT * makefd_xprt(fd, sendsize, recvsize) int fd; u_int sendsize; u_int recvsize; { SVCXPRT *xprt; struct cf_conn *cd; const char *netid; struct __rpc_sockinfo si; assert(fd != -1); xprt = mem_alloc(sizeof(SVCXPRT)); if (xprt == NULL) { warnx("svc_vc: makefd_xprt: out of memory"); goto done; } memset(xprt, 0, sizeof *xprt); cd = mem_alloc(sizeof(struct cf_conn)); if (cd == NULL) { warnx("svc_tcp: makefd_xprt: out of memory"); mem_free(xprt, sizeof(SVCXPRT)); xprt = NULL; goto done; } cd->strm_stat = XPRT_IDLE; xdrrec_create(&(cd->xdrs), sendsize, recvsize, (caddr_t)(void *)xprt, read_vc, write_vc); xprt->xp_p1 = (caddr_t)(void *)cd; xprt->xp_verf.oa_base = cd->verf_body; svc_vc_ops(xprt); /* truely deals with calls */ xprt->xp_port = 0; /* this is a connection, not a rendezvouser */ xprt->xp_fd = fd; if (__rpc_fd2sockinfo(fd, &si) && __rpc_sockinfo2netid(&si, &netid)) xprt->xp_netid = strdup(netid); xprt_register(xprt); done: return (xprt); } /*ARGSUSED*/ static bool_t rendezvous_request(xprt, msg) SVCXPRT *xprt; struct rpc_msg *msg; { int sock; struct cf_rendezvous *r; struct sockaddr_storage addr; socklen_t len; struct __rpc_sockinfo si; assert(xprt != NULL); assert(msg != NULL); r = (struct cf_rendezvous *)xprt->xp_p1; again: len = sizeof addr; if ((sock = _accept(xprt->xp_fd, (struct sockaddr *)(void *)&addr, &len)) < 0) { if (errno == EINTR) goto again; return (FALSE); } /* * make a new transporter (re-uses xprt) */ xprt = makefd_xprt(sock, r->sendsize, r->recvsize); xprt->xp_rtaddr.buf = mem_alloc(len); if (xprt->xp_rtaddr.buf == NULL) return (FALSE); memcpy(xprt->xp_rtaddr.buf, &addr, len); xprt->xp_rtaddr.len = len; #ifdef PORTMAP if (addr.ss_family == AF_INET || addr.ss_family == AF_LOCAL) { xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf; xprt->xp_addrlen = sizeof (struct sockaddr_in); } #endif /* PORTMAP */ if (__rpc_fd2sockinfo(sock, &si) && si.si_proto == IPPROTO_TCP) { len = 1; /* XXX fvdl - is this useful? */ _setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, &len, sizeof (len)); } return (FALSE); /* there is never an rpc msg to be processed */ } /*ARGSUSED*/ static enum xprt_stat rendezvous_stat(xprt) SVCXPRT *xprt; { return (XPRT_IDLE); } static void svc_vc_destroy(xprt) SVCXPRT *xprt; { struct cf_conn *cd; struct cf_rendezvous *r; assert(xprt != NULL); cd = (struct cf_conn *)xprt->xp_p1; xprt_unregister(xprt); if (xprt->xp_fd != RPC_ANYFD) (void)_close(xprt->xp_fd); if (xprt->xp_port != 0) { /* a rendezvouser socket */ r = (struct cf_rendezvous *)xprt->xp_p1; mem_free(r, sizeof (struct cf_rendezvous)); xprt->xp_port = 0; } else { /* an actual connection socket */ XDR_DESTROY(&(cd->xdrs)); mem_free(cd, sizeof(struct cf_conn)); } if (xprt->xp_rtaddr.buf) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen); if (xprt->xp_ltaddr.buf) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen); if (xprt->xp_tp) free(xprt->xp_tp); if (xprt->xp_netid) free(xprt->xp_netid); mem_free(xprt, sizeof(SVCXPRT)); } /*ARGSUSED*/ static bool_t svc_vc_control(xprt, rq, in) SVCXPRT *xprt; const u_int rq; void *in; { return (FALSE); } /* * reads data from the tcp or uip connection. * any error is fatal and the connection is closed. * (And a read of zero bytes is a half closed stream => error.) * All read operations timeout after 35 seconds. A timeout is * fatal for the connection. */ static int read_vc(xprtp, buf, len) caddr_t xprtp; caddr_t buf; int len; { SVCXPRT *xprt; int sock; int milliseconds = 35 * 1000; struct pollfd pollfd; struct sockaddr *sa; struct cmessage *cm; xprt = (SVCXPRT *)(void *)xprtp; assert(xprt != NULL); sock = xprt->xp_fd; do { pollfd.fd = sock; pollfd.events = POLLIN; pollfd.revents = 0; switch (_poll(&pollfd, 1, milliseconds)) { case -1: if (errno == EINTR) continue; /*FALLTHROUGH*/ case 0: goto fatal_err; default: break; } } while ((pollfd.revents & POLLIN) == 0); cm = NULL; sa = (struct sockaddr *)xprt->xp_rtaddr.buf; if (sa->sa_family == AF_LOCAL) { cm = (struct cmessage *)xprt->xp_verf.oa_base; if ((len = __msgread_withcred(sock, buf, len, cm)) > 0) { xprt->xp_p2 = &cm->cmcred; return (len); } else goto fatal_err; } else { if ((len = _read(sock, buf, (size_t)len)) > 0) return (len); } fatal_err: ((struct cf_conn *)(xprt->xp_p1))->strm_stat = XPRT_DIED; return (-1); } /* * writes data to the tcp connection. * Any error is fatal and the connection is closed. */ static int write_vc(xprtp, buf, len) caddr_t xprtp; caddr_t buf; int len; { SVCXPRT *xprt; int i, cnt; struct sockaddr *sa; xprt = (SVCXPRT *)(void *)xprtp; assert(xprt != NULL); sa = (struct sockaddr *)xprt->xp_rtaddr.buf; if (sa->sa_family == AF_LOCAL) { for (cnt = len; cnt > 0; cnt -= i, buf += i) { if ((i = __msgwrite(xprt->xp_fd, buf, (size_t)cnt)) < 0) { ((struct cf_conn *)(xprt->xp_p1))->strm_stat = XPRT_DIED; return (-1); } } } else { for (cnt = len; cnt > 0; cnt -= i, buf += i) { if ((i = _write(xprt->xp_fd, buf, (size_t)cnt)) < 0) { ((struct cf_conn *)(xprt->xp_p1))->strm_stat = XPRT_DIED; return (-1); } } } return (len); } static enum xprt_stat svc_vc_stat(xprt) SVCXPRT *xprt; { struct cf_conn *cd; assert(xprt != NULL); cd = (struct cf_conn *)(xprt->xp_p1); if (cd->strm_stat == XPRT_DIED) return (XPRT_DIED); if (! xdrrec_eof(&(cd->xdrs))) return (XPRT_MOREREQS); return (XPRT_IDLE); } static bool_t svc_vc_recv(xprt, msg) SVCXPRT *xprt; struct rpc_msg *msg; { struct cf_conn *cd; XDR *xdrs; assert(xprt != NULL); assert(msg != NULL); cd = (struct cf_conn *)(xprt->xp_p1); xdrs = &(cd->xdrs); xdrs->x_op = XDR_DECODE; (void)xdrrec_skiprecord(xdrs); if (xdr_callmsg(xdrs, msg)) { cd->x_id = msg->rm_xid; return (TRUE); } cd->strm_stat = XPRT_DIED; return (FALSE); } static bool_t svc_vc_getargs(xprt, xdr_args, args_ptr) SVCXPRT *xprt; xdrproc_t xdr_args; caddr_t args_ptr; { assert(xprt != NULL); /* args_ptr may be NULL */ return ((*xdr_args)(&(((struct cf_conn *)(xprt->xp_p1))->xdrs), args_ptr)); } static bool_t svc_vc_freeargs(xprt, xdr_args, args_ptr) SVCXPRT *xprt; xdrproc_t xdr_args; caddr_t args_ptr; { XDR *xdrs; assert(xprt != NULL); /* args_ptr may be NULL */ xdrs = &(((struct cf_conn *)(xprt->xp_p1))->xdrs); xdrs->x_op = XDR_FREE; return ((*xdr_args)(xdrs, args_ptr)); } static bool_t svc_vc_reply(xprt, msg) SVCXPRT *xprt; struct rpc_msg *msg; { struct cf_conn *cd; XDR *xdrs; bool_t stat; assert(xprt != NULL); assert(msg != NULL); cd = (struct cf_conn *)(xprt->xp_p1); xdrs = &(cd->xdrs); xdrs->x_op = XDR_ENCODE; msg->rm_xid = cd->x_id; stat = xdr_replymsg(xdrs, msg); (void)xdrrec_endofrecord(xdrs, TRUE); return (stat); } static void svc_vc_ops(xprt) SVCXPRT *xprt; { static struct xp_ops ops; static struct xp_ops2 ops2; extern mutex_t ops_lock; /* VARIABLES PROTECTED BY ops_lock: ops, ops2 */ mutex_lock(&ops_lock); if (ops.xp_recv == NULL) { ops.xp_recv = svc_vc_recv; ops.xp_stat = svc_vc_stat; ops.xp_getargs = svc_vc_getargs; ops.xp_reply = svc_vc_reply; ops.xp_freeargs = svc_vc_freeargs; ops.xp_destroy = svc_vc_destroy; ops2.xp_control = svc_vc_control; } xprt->xp_ops = &ops; xprt->xp_ops2 = &ops2; mutex_unlock(&ops_lock); } static void svc_vc_rendezvous_ops(xprt) SVCXPRT *xprt; { static struct xp_ops ops; static struct xp_ops2 ops2; extern mutex_t ops_lock; mutex_lock(&ops_lock); if (ops.xp_recv == NULL) { ops.xp_recv = rendezvous_request; ops.xp_stat = rendezvous_stat; ops.xp_getargs = (bool_t (*) __P((SVCXPRT *, xdrproc_t, caddr_t)))abort; ops.xp_reply = (bool_t (*) __P((SVCXPRT *, struct rpc_msg *)))abort; ops.xp_freeargs = (bool_t (*) __P((SVCXPRT *, xdrproc_t, caddr_t)))abort, ops.xp_destroy = svc_vc_destroy; ops2.xp_control = svc_vc_control; } xprt->xp_ops = &ops; xprt->xp_ops2 = &ops2; mutex_unlock(&ops_lock); } int __msgread_withcred(sock, buf, cnt, cmp) int sock; void *buf; size_t cnt; struct cmessage *cmp; { struct iovec iov[1]; struct msghdr msg; union { struct cmsghdr cmsg; char control[CMSG_SPACE(sizeof(struct cmsgcred))]; } cm; int ret; bzero(&cm, sizeof(cm)); iov[0].iov_base = buf; iov[0].iov_len = cnt; msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_control = &cm; msg.msg_controllen = CMSG_SPACE(sizeof(struct cmsgcred)); msg.msg_flags = 0; ret = _recvmsg(sock, &msg, 0); bcopy(&cm.cmsg, &cmp->cmsg, sizeof(cmp->cmsg)); bcopy(CMSG_DATA(&cm), &cmp->cmcred, sizeof(cmp->cmcred)); if (msg.msg_controllen == 0 || (msg.msg_flags & MSG_CTRUNC) != 0) return (-1); return (ret); } static int __msgwrite(sock, buf, cnt) int sock; void *buf; size_t cnt; { struct iovec iov[1]; struct msghdr msg; struct cmessage cm; bzero((char *)&cm, sizeof(cm)); iov[0].iov_base = buf; iov[0].iov_len = cnt; cm.cmsg.cmsg_type = SCM_CREDS; cm.cmsg.cmsg_level = SOL_SOCKET; cm.cmsg.cmsg_len = sizeof(struct cmessage); msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_control = (caddr_t)&cm; msg.msg_controllen = sizeof(struct cmessage); msg.msg_flags = 0; return(_sendmsg(sock, &msg, 0)); } /* * Get the effective UID of the sending process. Used by rpcbind and keyserv * (AF_LOCAL). */ int __rpc_get_local_uid(SVCXPRT *transp, uid_t *uid) { struct cmsgcred *cmcred; struct cmessage *cm; struct cmsghdr *cmp; cm = (struct cmessage *)transp->xp_verf.oa_base; if (cm == NULL) return (-1); cmp = &cm->cmsg; if (cmp == NULL || cmp->cmsg_level != SOL_SOCKET || cmp->cmsg_type != SCM_CREDS) return (-1); cmcred = __svc_getcallercreds(transp); if (cmcred == NULL) return (-1); *uid = cmcred->cmcred_euid; return (0); }