/* Subroutines used for code generation on IBM RS/6000. Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-attr.h" #include "flags.h" #include "recog.h" #include "obstack.h" #include "tree.h" #include "expr.h" #include "optabs.h" #include "except.h" #include "function.h" #include "output.h" #include "basic-block.h" #include "integrate.h" #include "toplev.h" #include "ggc.h" #include "hashtab.h" #include "tm_p.h" #include "target.h" #include "target-def.h" #include "langhooks.h" #include "reload.h" #ifndef TARGET_NO_PROTOTYPE #define TARGET_NO_PROTOTYPE 0 #endif #define min(A,B) ((A) < (B) ? (A) : (B)) #define max(A,B) ((A) > (B) ? (A) : (B)) /* Target cpu type */ enum processor_type rs6000_cpu; struct rs6000_cpu_select rs6000_select[3] = { /* switch name, tune arch */ { (const char *)0, "--with-cpu=", 1, 1 }, { (const char *)0, "-mcpu=", 1, 1 }, { (const char *)0, "-mtune=", 1, 0 }, }; /* Size of long double */ const char *rs6000_long_double_size_string; int rs6000_long_double_type_size; /* Whether -mabi=altivec has appeared */ int rs6000_altivec_abi; /* Whether VRSAVE instructions should be generated. */ int rs6000_altivec_vrsave; /* String from -mvrsave= option. */ const char *rs6000_altivec_vrsave_string; /* Nonzero if we want SPE ABI extensions. */ int rs6000_spe_abi; /* Whether isel instructions should be generated. */ int rs6000_isel; /* Nonzero if we have FPRs. */ int rs6000_fprs = 1; /* String from -misel=. */ const char *rs6000_isel_string; /* Set to nonzero once AIX common-mode calls have been defined. */ static int common_mode_defined; /* Private copy of original value of flag_pic for ABI_AIX. */ static int rs6000_flag_pic; /* Save information from a "cmpxx" operation until the branch or scc is emitted. */ rtx rs6000_compare_op0, rs6000_compare_op1; int rs6000_compare_fp_p; /* Label number of label created for -mrelocatable, to call to so we can get the address of the GOT section */ int rs6000_pic_labelno; #ifdef USING_ELFOS_H /* Which abi to adhere to */ const char *rs6000_abi_name = RS6000_ABI_NAME; /* Semantics of the small data area */ enum rs6000_sdata_type rs6000_sdata = SDATA_DATA; /* Which small data model to use */ const char *rs6000_sdata_name = (char *)0; /* Counter for labels which are to be placed in .fixup. */ int fixuplabelno = 0; #endif /* ABI enumeration available for subtarget to use. */ enum rs6000_abi rs6000_current_abi; /* ABI string from -mabi= option. */ const char *rs6000_abi_string; /* Debug flags */ const char *rs6000_debug_name; int rs6000_debug_stack; /* debug stack applications */ int rs6000_debug_arg; /* debug argument handling */ const char *rs6000_traceback_name; static enum { traceback_default = 0, traceback_none, traceback_part, traceback_full } rs6000_traceback; /* Flag to say the TOC is initialized */ int toc_initialized; char toc_label_name[10]; /* Alias set for saves and restores from the rs6000 stack. */ static int rs6000_sr_alias_set; /* Call distance, overridden by -mlongcall and #pragma longcall(1). The only place that looks at this is rs6000_set_default_type_attributes; everywhere else should rely on the presence or absence of a longcall attribute on the function declaration. */ int rs6000_default_long_calls; const char *rs6000_longcall_switch; struct builtin_description { /* mask is not const because we're going to alter it below. This nonsense will go away when we rewrite the -march infrastructure to give us more target flag bits. */ unsigned int mask; const enum insn_code icode; const char *const name; const enum rs6000_builtins code; }; static void rs6000_add_gc_roots PARAMS ((void)); static int num_insns_constant_wide PARAMS ((HOST_WIDE_INT)); static void validate_condition_mode PARAMS ((enum rtx_code, enum machine_mode)); static rtx rs6000_generate_compare PARAMS ((enum rtx_code)); static void rs6000_maybe_dead PARAMS ((rtx)); static void rs6000_emit_stack_tie PARAMS ((void)); static void rs6000_frame_related PARAMS ((rtx, rtx, HOST_WIDE_INT, rtx, rtx)); static void emit_frame_save PARAMS ((rtx, rtx, enum machine_mode, unsigned int, int, int)); static rtx gen_frame_mem_offset PARAMS ((enum machine_mode, rtx, int)); static void rs6000_emit_allocate_stack PARAMS ((HOST_WIDE_INT, int)); static unsigned rs6000_hash_constant PARAMS ((rtx)); static unsigned toc_hash_function PARAMS ((const void *)); static int toc_hash_eq PARAMS ((const void *, const void *)); static int toc_hash_mark_entry PARAMS ((void **, void *)); static void toc_hash_mark_table PARAMS ((void *)); static int constant_pool_expr_1 PARAMS ((rtx, int *, int *)); static struct machine_function * rs6000_init_machine_status PARAMS ((void)); static bool rs6000_assemble_integer PARAMS ((rtx, unsigned int, int)); #ifdef HAVE_GAS_HIDDEN static void rs6000_assemble_visibility PARAMS ((tree, int)); #endif static int rs6000_ra_ever_killed PARAMS ((void)); static tree rs6000_handle_longcall_attribute PARAMS ((tree *, tree, tree, int, bool *)); const struct attribute_spec rs6000_attribute_table[]; static void rs6000_set_default_type_attributes PARAMS ((tree)); static void rs6000_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT)); static void rs6000_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT)); static void rs6000_output_mi_thunk PARAMS ((FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree)); static rtx rs6000_emit_set_long_const PARAMS ((rtx, HOST_WIDE_INT, HOST_WIDE_INT)); #if TARGET_ELF static unsigned int rs6000_elf_section_type_flags PARAMS ((tree, const char *, int)); static void rs6000_elf_asm_out_constructor PARAMS ((rtx, int)); static void rs6000_elf_asm_out_destructor PARAMS ((rtx, int)); static void rs6000_elf_select_section PARAMS ((tree, int, unsigned HOST_WIDE_INT)); static void rs6000_elf_unique_section PARAMS ((tree, int)); static void rs6000_elf_select_rtx_section PARAMS ((enum machine_mode, rtx, unsigned HOST_WIDE_INT)); static void rs6000_elf_encode_section_info PARAMS ((tree, int)) ATTRIBUTE_UNUSED; static const char *rs6000_elf_strip_name_encoding PARAMS ((const char *)); static bool rs6000_elf_in_small_data_p PARAMS ((tree)); #endif #if TARGET_XCOFF static void rs6000_xcoff_asm_globalize_label PARAMS ((FILE *, const char *)); static void rs6000_xcoff_asm_named_section PARAMS ((const char *, unsigned int)); static void rs6000_xcoff_select_section PARAMS ((tree, int, unsigned HOST_WIDE_INT)); static void rs6000_xcoff_unique_section PARAMS ((tree, int)); static void rs6000_xcoff_select_rtx_section PARAMS ((enum machine_mode, rtx, unsigned HOST_WIDE_INT)); static const char * rs6000_xcoff_strip_name_encoding PARAMS ((const char *)); static unsigned int rs6000_xcoff_section_type_flags PARAMS ((tree, const char *, int)); #endif static void rs6000_xcoff_encode_section_info PARAMS ((tree, int)) ATTRIBUTE_UNUSED; static bool rs6000_binds_local_p PARAMS ((tree)); static int rs6000_adjust_cost PARAMS ((rtx, rtx, rtx, int)); static int rs6000_adjust_priority PARAMS ((rtx, int)); static int rs6000_issue_rate PARAMS ((void)); static void rs6000_init_builtins PARAMS ((void)); static rtx rs6000_expand_unop_builtin PARAMS ((enum insn_code, tree, rtx)); static rtx rs6000_expand_binop_builtin PARAMS ((enum insn_code, tree, rtx)); static rtx rs6000_expand_ternop_builtin PARAMS ((enum insn_code, tree, rtx)); static rtx rs6000_expand_builtin PARAMS ((tree, rtx, rtx, enum machine_mode, int)); static void altivec_init_builtins PARAMS ((void)); static void rs6000_common_init_builtins PARAMS ((void)); static void enable_mask_for_builtins PARAMS ((struct builtin_description *, int, enum rs6000_builtins, enum rs6000_builtins)); static void spe_init_builtins PARAMS ((void)); static rtx spe_expand_builtin PARAMS ((tree, rtx, bool *)); static rtx spe_expand_predicate_builtin PARAMS ((enum insn_code, tree, rtx)); static rtx spe_expand_evsel_builtin PARAMS ((enum insn_code, tree, rtx)); static int rs6000_emit_int_cmove PARAMS ((rtx, rtx, rtx, rtx)); static rtx altivec_expand_builtin PARAMS ((tree, rtx, bool *)); static rtx altivec_expand_ld_builtin PARAMS ((tree, rtx, bool *)); static rtx altivec_expand_st_builtin PARAMS ((tree, rtx, bool *)); static rtx altivec_expand_dst_builtin PARAMS ((tree, rtx, bool *)); static rtx altivec_expand_abs_builtin PARAMS ((enum insn_code, tree, rtx)); static rtx altivec_expand_predicate_builtin PARAMS ((enum insn_code, const char *, tree, rtx)); static rtx altivec_expand_stv_builtin PARAMS ((enum insn_code, tree)); static void rs6000_parse_abi_options PARAMS ((void)); static void rs6000_parse_vrsave_option PARAMS ((void)); static void rs6000_parse_isel_option PARAMS ((void)); static int first_altivec_reg_to_save PARAMS ((void)); static unsigned int compute_vrsave_mask PARAMS ((void)); static void is_altivec_return_reg PARAMS ((rtx, void *)); static rtx generate_set_vrsave PARAMS ((rtx, rs6000_stack_t *, int)); static void altivec_frame_fixup PARAMS ((rtx, rtx, HOST_WIDE_INT)); static int easy_vector_constant PARAMS ((rtx)); /* Default register names. */ char rs6000_reg_names[][8] = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "mq", "lr", "ctr","ap", "0", "1", "2", "3", "4", "5", "6", "7", "xer", /* AltiVec registers. */ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "vrsave", "vscr", /* SPE registers. */ "spe_acc", "spefscr" }; #ifdef TARGET_REGNAMES static const char alt_reg_names[][8] = { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", "mq", "lr", "ctr", "ap", "%cr0", "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7", "xer", /* AltiVec registers. */ "%v0", "%v1", "%v2", "%v3", "%v4", "%v5", "%v6", "%v7", "%v8", "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15", "%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23", "%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31", "vrsave", "vscr", /* SPE registers. */ "spe_acc", "spefscr" }; #endif #ifndef MASK_STRICT_ALIGN #define MASK_STRICT_ALIGN 0 #endif /* The VRSAVE bitmask puts bit %v0 as the most significant bit. */ #define ALTIVEC_REG_BIT(REGNO) (0x80000000 >> ((REGNO) - FIRST_ALTIVEC_REGNO)) /* Initialize the GCC target structure. */ #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE rs6000_attribute_table #undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES #define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES rs6000_set_default_type_attributes #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP DOUBLE_INT_ASM_OP /* Default unaligned ops are only provided for ELF. Find the ops needed for non-ELF systems. */ #ifndef OBJECT_FORMAT_ELF #if TARGET_XCOFF /* For XCOFF. rs6000_assemble_integer will handle unaligned DIs on 64-bit targets. */ #undef TARGET_ASM_UNALIGNED_HI_OP #define TARGET_ASM_UNALIGNED_HI_OP "\t.vbyte\t2," #undef TARGET_ASM_UNALIGNED_SI_OP #define TARGET_ASM_UNALIGNED_SI_OP "\t.vbyte\t4," #undef TARGET_ASM_UNALIGNED_DI_OP #define TARGET_ASM_UNALIGNED_DI_OP "\t.vbyte\t8," #else /* For Darwin. */ #undef TARGET_ASM_UNALIGNED_HI_OP #define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t" #undef TARGET_ASM_UNALIGNED_SI_OP #define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t" #endif #endif /* This hook deals with fixups for relocatable code and DI-mode objects in 64-bit code. */ #undef TARGET_ASM_INTEGER #define TARGET_ASM_INTEGER rs6000_assemble_integer #ifdef HAVE_GAS_HIDDEN #undef TARGET_ASM_ASSEMBLE_VISIBILITY #define TARGET_ASM_ASSEMBLE_VISIBILITY rs6000_assemble_visibility #endif #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE rs6000_output_function_prologue #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE rs6000_output_function_epilogue #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE rs6000_issue_rate #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST rs6000_adjust_cost #undef TARGET_SCHED_ADJUST_PRIORITY #define TARGET_SCHED_ADJUST_PRIORITY rs6000_adjust_priority #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS rs6000_init_builtins #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN rs6000_expand_builtin #undef TARGET_BINDS_LOCAL_P #define TARGET_BINDS_LOCAL_P rs6000_binds_local_p #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK rs6000_output_mi_thunk /* ??? Should work everywhere, but ask dje@watson.ibm.com before enabling for AIX. */ #if TARGET_OBJECT_FORMAT != OBJECT_XCOFF #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall #endif struct gcc_target targetm = TARGET_INITIALIZER; /* Override command line options. Mostly we process the processor type and sometimes adjust other TARGET_ options. */ void rs6000_override_options (default_cpu) const char *default_cpu; { size_t i, j; struct rs6000_cpu_select *ptr; /* Simplify the entries below by making a mask for any POWER variant and any PowerPC variant. */ #define POWER_MASKS (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING) #define POWERPC_MASKS (MASK_POWERPC | MASK_PPC_GPOPT \ | MASK_PPC_GFXOPT | MASK_POWERPC64) #define POWERPC_OPT_MASKS (MASK_PPC_GPOPT | MASK_PPC_GFXOPT) static struct ptt { const char *const name; /* Canonical processor name. */ const enum processor_type processor; /* Processor type enum value. */ const int target_enable; /* Target flags to enable. */ const int target_disable; /* Target flags to disable. */ } const processor_target_table[] = {{"common", PROCESSOR_COMMON, MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_MASKS}, {"power", PROCESSOR_POWER, MASK_POWER | MASK_MULTIPLE | MASK_STRING, MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS}, {"power2", PROCESSOR_POWER, MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING, POWERPC_MASKS | MASK_NEW_MNEMONICS}, {"power3", PROCESSOR_PPC630, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT}, {"power4", PROCESSOR_POWER4, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT}, {"powerpc", PROCESSOR_POWERPC, MASK_POWERPC | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, {"powerpc64", PROCESSOR_POWERPC64, MASK_POWERPC | MASK_POWERPC64 | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS}, {"rios", PROCESSOR_RIOS1, MASK_POWER | MASK_MULTIPLE | MASK_STRING, MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS}, {"rios1", PROCESSOR_RIOS1, MASK_POWER | MASK_MULTIPLE | MASK_STRING, MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS}, {"rsc", PROCESSOR_PPC601, MASK_POWER | MASK_MULTIPLE | MASK_STRING, MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS}, {"rsc1", PROCESSOR_PPC601, MASK_POWER | MASK_MULTIPLE | MASK_STRING, MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS}, {"rios2", PROCESSOR_RIOS2, MASK_POWER | MASK_MULTIPLE | MASK_STRING | MASK_POWER2, POWERPC_MASKS | MASK_NEW_MNEMONICS}, {"rs64a", PROCESSOR_RS64A, MASK_POWERPC | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS}, {"401", PROCESSOR_PPC403, MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, {"403", PROCESSOR_PPC403, MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS | MASK_STRICT_ALIGN, POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, {"405", PROCESSOR_PPC405, MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, {"505", PROCESSOR_MPCCORE, MASK_POWERPC | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, {"601", PROCESSOR_PPC601, MASK_POWER | MASK_POWERPC | MASK_NEW_MNEMONICS | MASK_MULTIPLE | MASK_STRING, MASK_POWER2 | POWERPC_OPT_MASKS | MASK_POWERPC64}, {"602", PROCESSOR_PPC603, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, {"603", PROCESSOR_PPC603, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, {"603e", PROCESSOR_PPC603, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, {"ec603e", PROCESSOR_PPC603, MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, {"604", PROCESSOR_PPC604, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, {"604e", PROCESSOR_PPC604e, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, {"620", PROCESSOR_PPC620, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT}, {"630", PROCESSOR_PPC630, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT}, {"740", PROCESSOR_PPC750, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, {"750", PROCESSOR_PPC750, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, {"7400", PROCESSOR_PPC7400, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, {"7450", PROCESSOR_PPC7450, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, {"8540", PROCESSOR_PPC8540, MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, {"801", PROCESSOR_MPCCORE, MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, {"821", PROCESSOR_MPCCORE, MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, {"823", PROCESSOR_MPCCORE, MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, {"860", PROCESSOR_MPCCORE, MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS, POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}}; const size_t ptt_size = ARRAY_SIZE (processor_target_table); /* Save current -mmultiple/-mno-multiple status. */ int multiple = TARGET_MULTIPLE; /* Save current -mstring/-mno-string status. */ int string = TARGET_STRING; /* Identify the processor type. */ rs6000_select[0].string = default_cpu; rs6000_cpu = TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT; for (i = 0; i < ARRAY_SIZE (rs6000_select); i++) { ptr = &rs6000_select[i]; if (ptr->string != (char *)0 && ptr->string[0] != '\0') { for (j = 0; j < ptt_size; j++) if (! strcmp (ptr->string, processor_target_table[j].name)) { if (ptr->set_tune_p) rs6000_cpu = processor_target_table[j].processor; if (ptr->set_arch_p) { target_flags |= processor_target_table[j].target_enable; target_flags &= ~processor_target_table[j].target_disable; } break; } if (j == ptt_size) error ("bad value (%s) for %s switch", ptr->string, ptr->name); } } if (rs6000_cpu == PROCESSOR_PPC8540) rs6000_isel = 1; /* If we are optimizing big endian systems for space, use the load/store multiple and string instructions. */ if (BYTES_BIG_ENDIAN && optimize_size) target_flags |= MASK_MULTIPLE | MASK_STRING; /* If -mmultiple or -mno-multiple was explicitly used, don't override with the processor default */ if (TARGET_MULTIPLE_SET) target_flags = (target_flags & ~MASK_MULTIPLE) | multiple; /* If -mstring or -mno-string was explicitly used, don't override with the processor default. */ if (TARGET_STRING_SET) target_flags = (target_flags & ~MASK_STRING) | string; /* Don't allow -mmultiple or -mstring on little endian systems unless the cpu is a 750, because the hardware doesn't support the instructions used in little endian mode, and causes an alignment trap. The 750 does not cause an alignment trap (except when the target is unaligned). */ if (! BYTES_BIG_ENDIAN && rs6000_cpu != PROCESSOR_PPC750) { if (TARGET_MULTIPLE) { target_flags &= ~MASK_MULTIPLE; if (TARGET_MULTIPLE_SET) warning ("-mmultiple is not supported on little endian systems"); } if (TARGET_STRING) { target_flags &= ~MASK_STRING; if (TARGET_STRING_SET) warning ("-mstring is not supported on little endian systems"); } } if (flag_pic != 0 && DEFAULT_ABI == ABI_AIX) { rs6000_flag_pic = flag_pic; flag_pic = 0; } /* For Darwin, always silently make -fpic and -fPIC identical. */ if (flag_pic == 1 && DEFAULT_ABI == ABI_DARWIN) flag_pic = 2; /* Set debug flags */ if (rs6000_debug_name) { if (! strcmp (rs6000_debug_name, "all")) rs6000_debug_stack = rs6000_debug_arg = 1; else if (! strcmp (rs6000_debug_name, "stack")) rs6000_debug_stack = 1; else if (! strcmp (rs6000_debug_name, "arg")) rs6000_debug_arg = 1; else error ("unknown -mdebug-%s switch", rs6000_debug_name); } if (rs6000_traceback_name) { if (! strncmp (rs6000_traceback_name, "full", 4)) rs6000_traceback = traceback_full; else if (! strncmp (rs6000_traceback_name, "part", 4)) rs6000_traceback = traceback_part; else if (! strncmp (rs6000_traceback_name, "no", 2)) rs6000_traceback = traceback_none; else error ("unknown -mtraceback arg `%s'; expecting `full', `partial' or `none'", rs6000_traceback_name); } /* Set size of long double */ rs6000_long_double_type_size = 64; if (rs6000_long_double_size_string) { char *tail; int size = strtol (rs6000_long_double_size_string, &tail, 10); if (*tail != '\0' || (size != 64 && size != 128)) error ("Unknown switch -mlong-double-%s", rs6000_long_double_size_string); else rs6000_long_double_type_size = size; } /* Handle -mabi= options. */ rs6000_parse_abi_options (); /* Handle -mvrsave= option. */ rs6000_parse_vrsave_option (); /* Handle -misel= option. */ rs6000_parse_isel_option (); #ifdef SUBTARGET_OVERRIDE_OPTIONS SUBTARGET_OVERRIDE_OPTIONS; #endif #ifdef SUBSUBTARGET_OVERRIDE_OPTIONS SUBSUBTARGET_OVERRIDE_OPTIONS; #endif /* Handle -m(no-)longcall option. This is a bit of a cheap hack, using TARGET_OPTIONS to handle a toggle switch, but we're out of bits in target_flags so TARGET_SWITCHES cannot be used. Assumption here is that rs6000_longcall_switch points into the text of the complete option, rather than being a copy, so we can scan back for the presence or absence of the no- modifier. */ if (rs6000_longcall_switch) { const char *base = rs6000_longcall_switch; while (base[-1] != 'm') base--; if (*rs6000_longcall_switch != '\0') error ("invalid option `%s'", base); rs6000_default_long_calls = (base[0] != 'n'); } #ifdef TARGET_REGNAMES /* If the user desires alternate register names, copy in the alternate names now. */ if (TARGET_REGNAMES) memcpy (rs6000_reg_names, alt_reg_names, sizeof (rs6000_reg_names)); #endif /* Set TARGET_AIX_STRUCT_RET last, after the ABI is determined. If -maix-struct-return or -msvr4-struct-return was explicitly used, don't override with the ABI default. */ if (!(target_flags & MASK_AIX_STRUCT_RET_SET)) { if (DEFAULT_ABI == ABI_V4 && !DRAFT_V4_STRUCT_RET) target_flags = (target_flags & ~MASK_AIX_STRUCT_RET); else target_flags |= MASK_AIX_STRUCT_RET; } if (TARGET_LONG_DOUBLE_128 && (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN)) real_format_for_mode[TFmode - QFmode] = &ibm_extended_format; /* Register global variables with the garbage collector. */ rs6000_add_gc_roots (); /* Allocate an alias set for register saves & restores from stack. */ rs6000_sr_alias_set = new_alias_set (); if (TARGET_TOC) ASM_GENERATE_INTERNAL_LABEL (toc_label_name, "LCTOC", 1); /* We can only guarantee the availability of DI pseudo-ops when assembling for 64-bit targets. */ if (!TARGET_64BIT) { targetm.asm_out.aligned_op.di = NULL; targetm.asm_out.unaligned_op.di = NULL; } /* Arrange to save and restore machine status around nested functions. */ init_machine_status = rs6000_init_machine_status; } /* Handle -misel= option. */ static void rs6000_parse_isel_option () { if (rs6000_isel_string == 0) return; else if (! strcmp (rs6000_isel_string, "yes")) rs6000_isel = 1; else if (! strcmp (rs6000_isel_string, "no")) rs6000_isel = 0; else error ("unknown -misel= option specified: '%s'", rs6000_isel_string); } /* Handle -mvrsave= options. */ static void rs6000_parse_vrsave_option () { /* Generate VRSAVE instructions by default. */ if (rs6000_altivec_vrsave_string == 0 || ! strcmp (rs6000_altivec_vrsave_string, "yes")) rs6000_altivec_vrsave = 1; else if (! strcmp (rs6000_altivec_vrsave_string, "no")) rs6000_altivec_vrsave = 0; else error ("unknown -mvrsave= option specified: '%s'", rs6000_altivec_vrsave_string); } /* Handle -mabi= options. */ static void rs6000_parse_abi_options () { if (rs6000_abi_string == 0) return; else if (! strcmp (rs6000_abi_string, "altivec")) rs6000_altivec_abi = 1; else if (! strcmp (rs6000_abi_string, "no-altivec")) rs6000_altivec_abi = 0; else if (! strcmp (rs6000_abi_string, "spe")) rs6000_spe_abi = 1; else if (! strcmp (rs6000_abi_string, "no-spe")) rs6000_spe_abi = 0; else error ("unknown ABI specified: '%s'", rs6000_abi_string); } void optimization_options (level, size) int level ATTRIBUTE_UNUSED; int size ATTRIBUTE_UNUSED; { } /* Do anything needed at the start of the asm file. */ void rs6000_file_start (file, default_cpu) FILE *file; const char *default_cpu; { size_t i; char buffer[80]; const char *start = buffer; struct rs6000_cpu_select *ptr; if (flag_verbose_asm) { sprintf (buffer, "\n%s rs6000/powerpc options:", ASM_COMMENT_START); rs6000_select[0].string = default_cpu; for (i = 0; i < ARRAY_SIZE (rs6000_select); i++) { ptr = &rs6000_select[i]; if (ptr->string != (char *)0 && ptr->string[0] != '\0') { fprintf (file, "%s %s%s", start, ptr->name, ptr->string); start = ""; } } #ifdef USING_ELFOS_H switch (rs6000_sdata) { case SDATA_NONE: fprintf (file, "%s -msdata=none", start); start = ""; break; case SDATA_DATA: fprintf (file, "%s -msdata=data", start); start = ""; break; case SDATA_SYSV: fprintf (file, "%s -msdata=sysv", start); start = ""; break; case SDATA_EABI: fprintf (file, "%s -msdata=eabi", start); start = ""; break; } if (rs6000_sdata && g_switch_value) { fprintf (file, "%s -G %d", start, g_switch_value); start = ""; } #endif if (*start == '\0') putc ('\n', file); } } /* Return nonzero if this function is known to have a null epilogue. */ int direct_return () { if (reload_completed) { rs6000_stack_t *info = rs6000_stack_info (); if (info->first_gp_reg_save == 32 && info->first_fp_reg_save == 64 && info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1 && ! info->lr_save_p && ! info->cr_save_p && info->vrsave_mask == 0 && ! info->push_p) return 1; } return 0; } /* Returns 1 always. */ int any_operand (op, mode) rtx op ATTRIBUTE_UNUSED; enum machine_mode mode ATTRIBUTE_UNUSED; { return 1; } /* Returns 1 if op is the count register. */ int count_register_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) != REG) return 0; if (REGNO (op) == COUNT_REGISTER_REGNUM) return 1; if (REGNO (op) > FIRST_PSEUDO_REGISTER) return 1; return 0; } /* Returns 1 if op is an altivec register. */ int altivec_register_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (register_operand (op, mode) && (GET_CODE (op) != REG || REGNO (op) > FIRST_PSEUDO_REGISTER || ALTIVEC_REGNO_P (REGNO (op)))); } int xer_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) != REG) return 0; if (XER_REGNO_P (REGNO (op))) return 1; return 0; } /* Return 1 if OP is a signed 8-bit constant. Int multiplication by such constants completes more quickly. */ int s8bit_cint_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return ( GET_CODE (op) == CONST_INT && (INTVAL (op) >= -128 && INTVAL (op) <= 127)); } /* Return 1 if OP is a constant that can fit in a D field. */ int short_cint_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && CONST_OK_FOR_LETTER_P (INTVAL (op), 'I')); } /* Similar for an unsigned D field. */ int u_short_cint_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && CONST_OK_FOR_LETTER_P (INTVAL (op) & GET_MODE_MASK (mode), 'K')); } /* Return 1 if OP is a CONST_INT that cannot fit in a signed D field. */ int non_short_cint_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x8000) >= 0x10000); } /* Returns 1 if OP is a CONST_INT that is a positive value and an exact power of 2. */ int exact_log2_cint_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && INTVAL (op) > 0 && exact_log2 (INTVAL (op)) >= 0); } /* Returns 1 if OP is a register that is not special (i.e., not MQ, ctr, or lr). */ int gpc_reg_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) && (GET_CODE (op) != REG || (REGNO (op) >= ARG_POINTER_REGNUM && !XER_REGNO_P (REGNO (op))) || REGNO (op) < MQ_REGNO)); } /* Returns 1 if OP is either a pseudo-register or a register denoting a CR field. */ int cc_reg_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) && (GET_CODE (op) != REG || REGNO (op) >= FIRST_PSEUDO_REGISTER || CR_REGNO_P (REGNO (op)))); } /* Returns 1 if OP is either a pseudo-register or a register denoting a CR field that isn't CR0. */ int cc_reg_not_cr0_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) && (GET_CODE (op) != REG || REGNO (op) >= FIRST_PSEUDO_REGISTER || CR_REGNO_NOT_CR0_P (REGNO (op)))); } /* Returns 1 if OP is either a constant integer valid for a D-field or a non-special register. If a register, it must be in the proper mode unless MODE is VOIDmode. */ int reg_or_short_operand (op, mode) rtx op; enum machine_mode mode; { return short_cint_operand (op, mode) || gpc_reg_operand (op, mode); } /* Similar, except check if the negation of the constant would be valid for a D-field. */ int reg_or_neg_short_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return CONST_OK_FOR_LETTER_P (INTVAL (op), 'P'); return gpc_reg_operand (op, mode); } /* Returns 1 if OP is either a constant integer valid for a DS-field or a non-special register. If a register, it must be in the proper mode unless MODE is VOIDmode. */ int reg_or_aligned_short_operand (op, mode) rtx op; enum machine_mode mode; { if (gpc_reg_operand (op, mode)) return 1; else if (short_cint_operand (op, mode) && !(INTVAL (op) & 3)) return 1; return 0; } /* Return 1 if the operand is either a register or an integer whose high-order 16 bits are zero. */ int reg_or_u_short_operand (op, mode) rtx op; enum machine_mode mode; { return u_short_cint_operand (op, mode) || gpc_reg_operand (op, mode); } /* Return 1 is the operand is either a non-special register or ANY constant integer. */ int reg_or_cint_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT || gpc_reg_operand (op, mode)); } /* Return 1 is the operand is either a non-special register or ANY 32-bit signed constant integer. */ int reg_or_arith_cint_operand (op, mode) rtx op; enum machine_mode mode; { return (gpc_reg_operand (op, mode) || (GET_CODE (op) == CONST_INT #if HOST_BITS_PER_WIDE_INT != 32 && ((unsigned HOST_WIDE_INT) (INTVAL (op) + 0x80000000) < (unsigned HOST_WIDE_INT) 0x100000000ll) #endif )); } /* Return 1 is the operand is either a non-special register or a 32-bit signed constant integer valid for 64-bit addition. */ int reg_or_add_cint64_operand (op, mode) rtx op; enum machine_mode mode; { return (gpc_reg_operand (op, mode) || (GET_CODE (op) == CONST_INT #if HOST_BITS_PER_WIDE_INT == 32 && INTVAL (op) < 0x7fff8000 #else && ((unsigned HOST_WIDE_INT) (INTVAL (op) + 0x80008000) < 0x100000000ll) #endif )); } /* Return 1 is the operand is either a non-special register or a 32-bit signed constant integer valid for 64-bit subtraction. */ int reg_or_sub_cint64_operand (op, mode) rtx op; enum machine_mode mode; { return (gpc_reg_operand (op, mode) || (GET_CODE (op) == CONST_INT #if HOST_BITS_PER_WIDE_INT == 32 && (- INTVAL (op)) < 0x7fff8000 #else && ((unsigned HOST_WIDE_INT) ((- INTVAL (op)) + 0x80008000) < 0x100000000ll) #endif )); } /* Return 1 is the operand is either a non-special register or ANY 32-bit unsigned constant integer. */ int reg_or_logical_cint_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) { if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT) { if (GET_MODE_BITSIZE (mode) <= 32) abort (); if (INTVAL (op) < 0) return 0; } return ((INTVAL (op) & GET_MODE_MASK (mode) & (~ (unsigned HOST_WIDE_INT) 0xffffffff)) == 0); } else if (GET_CODE (op) == CONST_DOUBLE) { if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT || mode != DImode) abort (); return CONST_DOUBLE_HIGH (op) == 0; } else return gpc_reg_operand (op, mode); } /* Return 1 if the operand is an operand that can be loaded via the GOT. */ int got_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST || GET_CODE (op) == LABEL_REF); } /* Return 1 if the operand is a simple references that can be loaded via the GOT (labels involving addition aren't allowed). */ int got_no_const_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF); } /* Return the number of instructions it takes to form a constant in an integer register. */ static int num_insns_constant_wide (value) HOST_WIDE_INT value; { /* signed constant loadable with {cal|addi} */ if (CONST_OK_FOR_LETTER_P (value, 'I')) return 1; /* constant loadable with {cau|addis} */ else if (CONST_OK_FOR_LETTER_P (value, 'L')) return 1; #if HOST_BITS_PER_WIDE_INT == 64 else if (TARGET_POWERPC64) { HOST_WIDE_INT low = ((value & 0xffffffff) ^ 0x80000000) - 0x80000000; HOST_WIDE_INT high = value >> 31; if (high == 0 || high == -1) return 2; high >>= 1; if (low == 0) return num_insns_constant_wide (high) + 1; else return (num_insns_constant_wide (high) + num_insns_constant_wide (low) + 1); } #endif else return 2; } int num_insns_constant (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) { #if HOST_BITS_PER_WIDE_INT == 64 if ((INTVAL (op) >> 31) != 0 && (INTVAL (op) >> 31) != -1 && mask64_operand (op, mode)) return 2; else #endif return num_insns_constant_wide (INTVAL (op)); } else if (GET_CODE (op) == CONST_DOUBLE && mode == SFmode) { long l; REAL_VALUE_TYPE rv; REAL_VALUE_FROM_CONST_DOUBLE (rv, op); REAL_VALUE_TO_TARGET_SINGLE (rv, l); return num_insns_constant_wide ((HOST_WIDE_INT) l); } else if (GET_CODE (op) == CONST_DOUBLE) { HOST_WIDE_INT low; HOST_WIDE_INT high; long l[2]; REAL_VALUE_TYPE rv; int endian = (WORDS_BIG_ENDIAN == 0); if (mode == VOIDmode || mode == DImode) { high = CONST_DOUBLE_HIGH (op); low = CONST_DOUBLE_LOW (op); } else { REAL_VALUE_FROM_CONST_DOUBLE (rv, op); REAL_VALUE_TO_TARGET_DOUBLE (rv, l); high = l[endian]; low = l[1 - endian]; } if (TARGET_32BIT) return (num_insns_constant_wide (low) + num_insns_constant_wide (high)); else { if (high == 0 && low >= 0) return num_insns_constant_wide (low); else if (high == -1 && low < 0) return num_insns_constant_wide (low); else if (mask64_operand (op, mode)) return 2; else if (low == 0) return num_insns_constant_wide (high) + 1; else return (num_insns_constant_wide (high) + num_insns_constant_wide (low) + 1); } } else abort (); } /* Return 1 if the operand is a CONST_DOUBLE and it can be put into a register with one instruction per word. We only do this if we can safely read CONST_DOUBLE_{LOW,HIGH}. */ int easy_fp_constant (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) != CONST_DOUBLE || GET_MODE (op) != mode || (GET_MODE_CLASS (mode) != MODE_FLOAT && mode != DImode)) return 0; /* Consider all constants with -msoft-float to be easy. */ if ((TARGET_SOFT_FLOAT || !TARGET_FPRS) && mode != DImode) return 1; /* If we are using V.4 style PIC, consider all constants to be hard. */ if (flag_pic && DEFAULT_ABI == ABI_V4) return 0; #ifdef TARGET_RELOCATABLE /* Similarly if we are using -mrelocatable, consider all constants to be hard. */ if (TARGET_RELOCATABLE) return 0; #endif if (mode == TFmode) { long k[4]; REAL_VALUE_TYPE rv; REAL_VALUE_FROM_CONST_DOUBLE (rv, op); REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k); return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1 && num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1 && num_insns_constant_wide ((HOST_WIDE_INT) k[2]) == 1 && num_insns_constant_wide ((HOST_WIDE_INT) k[3]) == 1); } else if (mode == DFmode) { long k[2]; REAL_VALUE_TYPE rv; REAL_VALUE_FROM_CONST_DOUBLE (rv, op); REAL_VALUE_TO_TARGET_DOUBLE (rv, k); return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1 && num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1); } else if (mode == SFmode) { long l; REAL_VALUE_TYPE rv; REAL_VALUE_FROM_CONST_DOUBLE (rv, op); REAL_VALUE_TO_TARGET_SINGLE (rv, l); return num_insns_constant_wide (l) == 1; } else if (mode == DImode) return ((TARGET_POWERPC64 && GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_LOW (op) == 0) || (num_insns_constant (op, DImode) <= 2)); else if (mode == SImode) return 1; else abort (); } /* Return 1 if the operand is a CONST_INT and can be put into a register with one instruction. */ static int easy_vector_constant (op) rtx op; { rtx elt; int units, i; if (GET_CODE (op) != CONST_VECTOR) return 0; units = CONST_VECTOR_NUNITS (op); /* We can generate 0 easily. Look for that. */ for (i = 0; i < units; ++i) { elt = CONST_VECTOR_ELT (op, i); /* We could probably simplify this by just checking for equality with CONST0_RTX for the current mode, but let's be safe instead. */ switch (GET_CODE (elt)) { case CONST_INT: if (INTVAL (elt) != 0) return 0; break; case CONST_DOUBLE: if (CONST_DOUBLE_LOW (elt) != 0 || CONST_DOUBLE_HIGH (elt) != 0) return 0; break; default: return 0; } } /* We could probably generate a few other constants trivially, but gcc doesn't generate them yet. FIXME later. */ return 1; } /* Return 1 if the operand is the constant 0. This works for scalars as well as vectors. */ int zero_constant (op, mode) rtx op; enum machine_mode mode; { return op == CONST0_RTX (mode); } /* Return 1 if the operand is 0.0. */ int zero_fp_constant (op, mode) rtx op; enum machine_mode mode; { return GET_MODE_CLASS (mode) == MODE_FLOAT && op == CONST0_RTX (mode); } /* Return 1 if the operand is in volatile memory. Note that during the RTL generation phase, memory_operand does not return TRUE for volatile memory references. So this function allows us to recognize volatile references where its safe. */ int volatile_mem_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) != MEM) return 0; if (!MEM_VOLATILE_P (op)) return 0; if (mode != GET_MODE (op)) return 0; if (reload_completed) return memory_operand (op, mode); if (reload_in_progress) return strict_memory_address_p (mode, XEXP (op, 0)); return memory_address_p (mode, XEXP (op, 0)); } /* Return 1 if the operand is an offsettable memory operand. */ int offsettable_mem_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == MEM) && offsettable_address_p (reload_completed || reload_in_progress, mode, XEXP (op, 0))); } /* Return 1 if the operand is either an easy FP constant (see above) or memory. */ int mem_or_easy_const_operand (op, mode) rtx op; enum machine_mode mode; { return memory_operand (op, mode) || easy_fp_constant (op, mode); } /* Return 1 if the operand is either a non-special register or an item that can be used as the operand of a `mode' add insn. */ int add_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return (CONST_OK_FOR_LETTER_P (INTVAL (op), 'I') || CONST_OK_FOR_LETTER_P (INTVAL (op), 'L')); return gpc_reg_operand (op, mode); } /* Return 1 if OP is a constant but not a valid add_operand. */ int non_add_cint_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && !CONST_OK_FOR_LETTER_P (INTVAL (op), 'I') && !CONST_OK_FOR_LETTER_P (INTVAL (op), 'L')); } /* Return 1 if the operand is a non-special register or a constant that can be used as the operand of an OR or XOR insn on the RS/6000. */ int logical_operand (op, mode) rtx op; enum machine_mode mode; { HOST_WIDE_INT opl, oph; if (gpc_reg_operand (op, mode)) return 1; if (GET_CODE (op) == CONST_INT) { opl = INTVAL (op) & GET_MODE_MASK (mode); #if HOST_BITS_PER_WIDE_INT <= 32 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT && opl < 0) return 0; #endif } else if (GET_CODE (op) == CONST_DOUBLE) { if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT) abort (); opl = CONST_DOUBLE_LOW (op); oph = CONST_DOUBLE_HIGH (op); if (oph != 0) return 0; } else return 0; return ((opl & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0 || (opl & ~ (unsigned HOST_WIDE_INT) 0xffff0000) == 0); } /* Return 1 if C is a constant that is not a logical operand (as above), but could be split into one. */ int non_logical_cint_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE) && ! logical_operand (op, mode) && reg_or_logical_cint_operand (op, mode)); } /* Return 1 if C is a constant that can be encoded in a 32-bit mask on the RS/6000. It is if there are no more than two 1->0 or 0->1 transitions. Reject all ones and all zeros, since these should have been optimized away and confuse the making of MB and ME. */ int mask_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { HOST_WIDE_INT c, lsb; if (GET_CODE (op) != CONST_INT) return 0; c = INTVAL (op); /* Fail in 64-bit mode if the mask wraps around because the upper 32-bits of the mask will all be 1s, contrary to GCC's internal view. */ if (TARGET_POWERPC64 && (c & 0x80000001) == 0x80000001) return 0; /* We don't change the number of transitions by inverting, so make sure we start with the LS bit zero. */ if (c & 1) c = ~c; /* Reject all zeros or all ones. */ if (c == 0) return 0; /* Find the first transition. */ lsb = c & -c; /* Invert to look for a second transition. */ c = ~c; /* Erase first transition. */ c &= -lsb; /* Find the second transition (if any). */ lsb = c & -c; /* Match if all the bits above are 1's (or c is zero). */ return c == -lsb; } /* Return 1 for the PowerPC64 rlwinm corner case. */ int mask_operand_wrap (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { HOST_WIDE_INT c, lsb; if (GET_CODE (op) != CONST_INT) return 0; c = INTVAL (op); if ((c & 0x80000001) != 0x80000001) return 0; c = ~c; if (c == 0) return 0; lsb = c & -c; c = ~c; c &= -lsb; lsb = c & -c; return c == -lsb; } /* Return 1 if the operand is a constant that is a PowerPC64 mask. It is if there are no more than one 1->0 or 0->1 transitions. Reject all zeros, since zero should have been optimized away and confuses the making of MB and ME. */ int mask64_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) == CONST_INT) { HOST_WIDE_INT c, lsb; c = INTVAL (op); /* Reject all zeros. */ if (c == 0) return 0; /* We don't change the number of transitions by inverting, so make sure we start with the LS bit zero. */ if (c & 1) c = ~c; /* Find the transition, and check that all bits above are 1's. */ lsb = c & -c; return c == -lsb; } return 0; } /* Like mask64_operand, but allow up to three transitions. This predicate is used by insn patterns that generate two rldicl or rldicr machine insns. */ int mask64_2_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) == CONST_INT) { HOST_WIDE_INT c, lsb; c = INTVAL (op); /* Disallow all zeros. */ if (c == 0) return 0; /* We don't change the number of transitions by inverting, so make sure we start with the LS bit zero. */ if (c & 1) c = ~c; /* Find the first transition. */ lsb = c & -c; /* Invert to look for a second transition. */ c = ~c; /* Erase first transition. */ c &= -lsb; /* Find the second transition. */ lsb = c & -c; /* Invert to look for a third transition. */ c = ~c; /* Erase second transition. */ c &= -lsb; /* Find the third transition (if any). */ lsb = c & -c; /* Match if all the bits above are 1's (or c is zero). */ return c == -lsb; } return 0; } /* Generates shifts and masks for a pair of rldicl or rldicr insns to implement ANDing by the mask IN. */ void build_mask64_2_operands (in, out) rtx in; rtx *out; { #if HOST_BITS_PER_WIDE_INT >= 64 unsigned HOST_WIDE_INT c, lsb, m1, m2; int shift; if (GET_CODE (in) != CONST_INT) abort (); c = INTVAL (in); if (c & 1) { /* Assume c initially something like 0x00fff000000fffff. The idea is to rotate the word so that the middle ^^^^^^ group of zeros is at the MS end and can be cleared with an rldicl mask. We then rotate back and clear off the MS ^^ group of zeros with a second rldicl. */ c = ~c; /* c == 0xff000ffffff00000 */ lsb = c & -c; /* lsb == 0x0000000000100000 */ m1 = -lsb; /* m1 == 0xfffffffffff00000 */ c = ~c; /* c == 0x00fff000000fffff */ c &= -lsb; /* c == 0x00fff00000000000 */ lsb = c & -c; /* lsb == 0x0000100000000000 */ c = ~c; /* c == 0xff000fffffffffff */ c &= -lsb; /* c == 0xff00000000000000 */ shift = 0; while ((lsb >>= 1) != 0) shift++; /* shift == 44 on exit from loop */ m1 <<= 64 - shift; /* m1 == 0xffffff0000000000 */ m1 = ~m1; /* m1 == 0x000000ffffffffff */ m2 = ~c; /* m2 == 0x00ffffffffffffff */ } else { /* Assume c initially something like 0xff000f0000000000. The idea is to rotate the word so that the ^^^ middle group of zeros is at the LS end and can be cleared with an rldicr mask. We then rotate back and clear off the LS group of ^^^^^^^^^^ zeros with a second rldicr. */ lsb = c & -c; /* lsb == 0x0000010000000000 */ m2 = -lsb; /* m2 == 0xffffff0000000000 */ c = ~c; /* c == 0x00fff0ffffffffff */ c &= -lsb; /* c == 0x00fff00000000000 */ lsb = c & -c; /* lsb == 0x0000100000000000 */ c = ~c; /* c == 0xff000fffffffffff */ c &= -lsb; /* c == 0xff00000000000000 */ shift = 0; while ((lsb >>= 1) != 0) shift++; /* shift == 44 on exit from loop */ m1 = ~c; /* m1 == 0x00ffffffffffffff */ m1 >>= shift; /* m1 == 0x0000000000000fff */ m1 = ~m1; /* m1 == 0xfffffffffffff000 */ } /* Note that when we only have two 0->1 and 1->0 transitions, one of the masks will be all 1's. We are guaranteed more than one transition. */ out[0] = GEN_INT (64 - shift); out[1] = GEN_INT (m1); out[2] = GEN_INT (shift); out[3] = GEN_INT (m2); #else (void)in; (void)out; abort (); #endif } /* Return 1 if the operand is either a non-special register or a constant that can be used as the operand of a PowerPC64 logical AND insn. */ int and64_operand (op, mode) rtx op; enum machine_mode mode; { if (fixed_regs[CR0_REGNO]) /* CR0 not available, don't do andi./andis. */ return (gpc_reg_operand (op, mode) || mask64_operand (op, mode)); return (logical_operand (op, mode) || mask64_operand (op, mode)); } /* Like the above, but also match constants that can be implemented with two rldicl or rldicr insns. */ int and64_2_operand (op, mode) rtx op; enum machine_mode mode; { if (fixed_regs[CR0_REGNO]) /* CR0 not available, don't do andi./andis. */ return gpc_reg_operand (op, mode) || mask64_2_operand (op, mode); return logical_operand (op, mode) || mask64_2_operand (op, mode); } /* Return 1 if the operand is either a non-special register or a constant that can be used as the operand of an RS/6000 logical AND insn. */ int and_operand (op, mode) rtx op; enum machine_mode mode; { if (fixed_regs[CR0_REGNO]) /* CR0 not available, don't do andi./andis. */ return (gpc_reg_operand (op, mode) || mask_operand (op, mode)); return (logical_operand (op, mode) || mask_operand (op, mode)); } /* Return 1 if the operand is a general register or memory operand. */ int reg_or_mem_operand (op, mode) rtx op; enum machine_mode mode; { return (gpc_reg_operand (op, mode) || memory_operand (op, mode) || volatile_mem_operand (op, mode)); } /* Return 1 if the operand is a general register or memory operand without pre_inc or pre_dec which produces invalid form of PowerPC lwa instruction. */ int lwa_operand (op, mode) rtx op; enum machine_mode mode; { rtx inner = op; if (reload_completed && GET_CODE (inner) == SUBREG) inner = SUBREG_REG (inner); return gpc_reg_operand (inner, mode) || (memory_operand (inner, mode) && GET_CODE (XEXP (inner, 0)) != PRE_INC && GET_CODE (XEXP (inner, 0)) != PRE_DEC && (GET_CODE (XEXP (inner, 0)) != PLUS || GET_CODE (XEXP (XEXP (inner, 0), 1)) != CONST_INT || INTVAL (XEXP (XEXP (inner, 0), 1)) % 4 == 0)); } /* Return 1 if the operand, used inside a MEM, is a SYMBOL_REF. */ int symbol_ref_operand (op, mode) rtx op; enum machine_mode mode; { if (mode != VOIDmode && GET_MODE (op) != mode) return 0; return (GET_CODE (op) == SYMBOL_REF); } /* Return 1 if the operand, used inside a MEM, is a valid first argument to CALL. This is a SYMBOL_REF, a pseudo-register, LR or CTR. */ int call_operand (op, mode) rtx op; enum machine_mode mode; { if (mode != VOIDmode && GET_MODE (op) != mode) return 0; return (GET_CODE (op) == SYMBOL_REF || (GET_CODE (op) == REG && (REGNO (op) == LINK_REGISTER_REGNUM || REGNO (op) == COUNT_REGISTER_REGNUM || REGNO (op) >= FIRST_PSEUDO_REGISTER))); } /* Return 1 if the operand is a SYMBOL_REF for a function known to be in this file and the function is not weakly defined. */ int current_file_function_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == SYMBOL_REF && (SYMBOL_REF_FLAG (op) || (op == XEXP (DECL_RTL (current_function_decl), 0) && ! DECL_WEAK (current_function_decl)))); } /* Return 1 if this operand is a valid input for a move insn. */ int input_operand (op, mode) rtx op; enum machine_mode mode; { /* Memory is always valid. */ if (memory_operand (op, mode)) return 1; /* Only a tiny bit of handling for CONSTANT_P_RTX is necessary. */ if (GET_CODE (op) == CONSTANT_P_RTX) return 1; /* For floating-point, easy constants are valid. */ if (GET_MODE_CLASS (mode) == MODE_FLOAT && CONSTANT_P (op) && easy_fp_constant (op, mode)) return 1; /* Allow any integer constant. */ if (GET_MODE_CLASS (mode) == MODE_INT && (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE)) return 1; /* For floating-point or multi-word mode, the only remaining valid type is a register. */ if (GET_MODE_CLASS (mode) == MODE_FLOAT || GET_MODE_SIZE (mode) > UNITS_PER_WORD) return register_operand (op, mode); /* The only cases left are integral modes one word or smaller (we do not get called for MODE_CC values). These can be in any register. */ if (register_operand (op, mode)) return 1; /* A SYMBOL_REF referring to the TOC is valid. */ if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (op)) return 1; /* A constant pool expression (relative to the TOC) is valid */ if (TOC_RELATIVE_EXPR_P (op)) return 1; /* V.4 allows SYMBOL_REFs and CONSTs that are in the small data region to be valid. */ if (DEFAULT_ABI == ABI_V4 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST) && small_data_operand (op, Pmode)) return 1; return 0; } /* Return 1 for an operand in small memory on V.4/eabi. */ int small_data_operand (op, mode) rtx op ATTRIBUTE_UNUSED; enum machine_mode mode ATTRIBUTE_UNUSED; { #if TARGET_ELF rtx sym_ref; if (rs6000_sdata == SDATA_NONE || rs6000_sdata == SDATA_DATA) return 0; if (DEFAULT_ABI != ABI_V4) return 0; if (GET_CODE (op) == SYMBOL_REF) sym_ref = op; else if (GET_CODE (op) != CONST || GET_CODE (XEXP (op, 0)) != PLUS || GET_CODE (XEXP (XEXP (op, 0), 0)) != SYMBOL_REF || GET_CODE (XEXP (XEXP (op, 0), 1)) != CONST_INT) return 0; else { rtx sum = XEXP (op, 0); HOST_WIDE_INT summand; /* We have to be careful here, because it is the referenced address that must be 32k from _SDA_BASE_, not just the symbol. */ summand = INTVAL (XEXP (sum, 1)); if (summand < 0 || summand > g_switch_value) return 0; sym_ref = XEXP (sum, 0); } if (*XSTR (sym_ref, 0) != '@') return 0; return 1; #else return 0; #endif } static int constant_pool_expr_1 (op, have_sym, have_toc) rtx op; int *have_sym; int *have_toc; { switch (GET_CODE(op)) { case SYMBOL_REF: if (CONSTANT_POOL_ADDRESS_P (op)) { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (op), Pmode)) { *have_sym = 1; return 1; } else return 0; } else if (! strcmp (XSTR (op, 0), toc_label_name)) { *have_toc = 1; return 1; } else return 0; case PLUS: case MINUS: return (constant_pool_expr_1 (XEXP (op, 0), have_sym, have_toc) && constant_pool_expr_1 (XEXP (op, 1), have_sym, have_toc)); case CONST: return constant_pool_expr_1 (XEXP (op, 0), have_sym, have_toc); case CONST_INT: return 1; default: return 0; } } int constant_pool_expr_p (op) rtx op; { int have_sym = 0; int have_toc = 0; return constant_pool_expr_1 (op, &have_sym, &have_toc) && have_sym; } int toc_relative_expr_p (op) rtx op; { int have_sym = 0; int have_toc = 0; return constant_pool_expr_1 (op, &have_sym, &have_toc) && have_toc; } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This is used from only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE is passed so that this function can use GO_IF_LEGITIMATE_ADDRESS. It is always safe for this function to do nothing. It exists to recognize opportunities to optimize the output. On RS/6000, first check for the sum of a register with a constant integer that is out of range. If so, generate code to add the constant with the low-order 16 bits masked to the register and force this result into another register (this can be done with `cau'). Then generate an address of REG+(CONST&0xffff), allowing for the possibility of bit 16 being a one. Then check for the sum of a register and something not constant, try to load the other things into a register and return the sum. */ rtx rs6000_legitimize_address (x, oldx, mode) rtx x; rtx oldx ATTRIBUTE_UNUSED; enum machine_mode mode; { if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == CONST_INT && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 1)) + 0x8000) >= 0x10000) { HOST_WIDE_INT high_int, low_int; rtx sum; low_int = ((INTVAL (XEXP (x, 1)) & 0xffff) ^ 0x8000) - 0x8000; high_int = INTVAL (XEXP (x, 1)) - low_int; sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (x, 0), GEN_INT (high_int)), 0); return gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int)); } else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) != CONST_INT && GET_MODE_NUNITS (mode) == 1 && ((TARGET_HARD_FLOAT && TARGET_FPRS) || TARGET_POWERPC64 || (mode != DFmode && mode != TFmode)) && (TARGET_POWERPC64 || mode != DImode) && mode != TImode) { return gen_rtx_PLUS (Pmode, XEXP (x, 0), force_reg (Pmode, force_operand (XEXP (x, 1), 0))); } else if (ALTIVEC_VECTOR_MODE (mode)) { rtx reg; /* Make sure both operands are registers. */ if (GET_CODE (x) == PLUS) return gen_rtx_PLUS (Pmode, force_reg (Pmode, XEXP (x, 0)), force_reg (Pmode, XEXP (x, 1))); reg = force_reg (Pmode, x); return reg; } else if (SPE_VECTOR_MODE (mode)) { /* We accept [reg + reg] and [reg + OFFSET]. */ if (GET_CODE (x) == PLUS) { rtx op1 = XEXP (x, 0); rtx op2 = XEXP (x, 1); op1 = force_reg (Pmode, op1); if (GET_CODE (op2) != REG && (GET_CODE (op2) != CONST_INT || !SPE_CONST_OFFSET_OK (INTVAL (op2)))) op2 = force_reg (Pmode, op2); return gen_rtx_PLUS (Pmode, op1, op2); } return force_reg (Pmode, x); } else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC && ! flag_pic && GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_DOUBLE && CONSTANT_P (x) && GET_MODE_NUNITS (mode) == 1 && (GET_MODE_BITSIZE (mode) <= 32 || ((TARGET_HARD_FLOAT && TARGET_FPRS) && mode == DFmode))) { rtx reg = gen_reg_rtx (Pmode); emit_insn (gen_elf_high (reg, (x))); return gen_rtx_LO_SUM (Pmode, reg, (x)); } else if (TARGET_MACHO && TARGET_32BIT && TARGET_NO_TOC && ! flag_pic && GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_DOUBLE && CONSTANT_P (x) && ((TARGET_HARD_FLOAT && TARGET_FPRS) || mode != DFmode) && mode != DImode && mode != TImode) { rtx reg = gen_reg_rtx (Pmode); emit_insn (gen_macho_high (reg, (x))); return gen_rtx_LO_SUM (Pmode, reg, (x)); } else if (TARGET_TOC && CONSTANT_POOL_EXPR_P (x) && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), Pmode)) { return create_TOC_reference (x); } else return NULL_RTX; } /* The convention appears to be to define this wherever it is used. With legitimize_reload_address now defined here, REG_MODE_OK_FOR_BASE_P is now used here. */ #ifndef REG_MODE_OK_FOR_BASE_P #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO) #endif /* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to replace the input X, or the original X if no replacement is called for. The output parameter *WIN is 1 if the calling macro should goto WIN, 0 if it should not. For RS/6000, we wish to handle large displacements off a base register by splitting the addend across an addiu/addis and the mem insn. This cuts number of extra insns needed from 3 to 1. On Darwin, we use this to generate code for floating point constants. A movsf_low is generated so we wind up with 2 instructions rather than 3. The Darwin code is inside #if TARGET_MACHO because only then is machopic_function_base_name() defined. */ rtx rs6000_legitimize_reload_address (x, mode, opnum, type, ind_levels, win) rtx x; enum machine_mode mode; int opnum; int type; int ind_levels ATTRIBUTE_UNUSED; int *win; { /* We must recognize output that we have already generated ourselves. */ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && GET_CODE (XEXP (x, 1)) == CONST_INT) { push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, opnum, (enum reload_type)type); *win = 1; return x; } #if TARGET_MACHO if (DEFAULT_ABI == ABI_DARWIN && flag_pic && GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == PLUS && XEXP (XEXP (x, 0), 0) == pic_offset_table_rtx && GET_CODE (XEXP (XEXP (x, 0), 1)) == HIGH && GET_CODE (XEXP (XEXP (XEXP (x, 0), 1), 0)) == CONST && XEXP (XEXP (XEXP (x, 0), 1), 0) == XEXP (x, 1) && GET_CODE (XEXP (XEXP (x, 1), 0)) == MINUS && GET_CODE (XEXP (XEXP (XEXP (x, 1), 0), 0)) == SYMBOL_REF && GET_CODE (XEXP (XEXP (XEXP (x, 1), 0), 1)) == SYMBOL_REF) { /* Result of previous invocation of this function on Darwin floating point constant. */ push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, (enum reload_type)type); *win = 1; return x; } #endif if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER && REG_MODE_OK_FOR_BASE_P (XEXP (x, 0), mode) && GET_CODE (XEXP (x, 1)) == CONST_INT && !SPE_VECTOR_MODE (mode) && !ALTIVEC_VECTOR_MODE (mode)) { HOST_WIDE_INT val = INTVAL (XEXP (x, 1)); HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; HOST_WIDE_INT high = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; /* Check for 32-bit overflow. */ if (high + low != val) { *win = 0; return x; } /* Reload the high part into a base reg; leave the low part in the mem directly. */ x = gen_rtx_PLUS (GET_MODE (x), gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), GEN_INT (high)), GEN_INT (low)); push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, opnum, (enum reload_type)type); *win = 1; return x; } #if TARGET_MACHO if (GET_CODE (x) == SYMBOL_REF && DEFAULT_ABI == ABI_DARWIN && !ALTIVEC_VECTOR_MODE (mode) && flag_pic) { /* Darwin load of floating point constant. */ rtx offset = gen_rtx (CONST, Pmode, gen_rtx (MINUS, Pmode, x, gen_rtx (SYMBOL_REF, Pmode, machopic_function_base_name ()))); x = gen_rtx (LO_SUM, GET_MODE (x), gen_rtx (PLUS, Pmode, pic_offset_table_rtx, gen_rtx (HIGH, Pmode, offset)), offset); push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, (enum reload_type)type); *win = 1; return x; } #endif if (TARGET_TOC && CONSTANT_POOL_EXPR_P (x) && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), mode)) { (x) = create_TOC_reference (x); *win = 1; return x; } *win = 0; return x; } /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. On the RS/6000, there are four valid address: a SYMBOL_REF that refers to a constant pool entry of an address (or the sum of it plus a constant), a short (16-bit signed) constant plus a register, the sum of two registers, or a register indirect, possibly with an auto-increment. For DFmode and DImode with an constant plus register, we must ensure that both words are addressable or PowerPC64 with offset word aligned. For modes spanning multiple registers (DFmode in 32-bit GPRs, 32-bit DImode, TImode), indexed addressing cannot be used because adjacent memory cells are accessed by adding word-sized offsets during assembly output. */ int rs6000_legitimate_address (mode, x, reg_ok_strict) enum machine_mode mode; rtx x; int reg_ok_strict; { if (LEGITIMATE_INDIRECT_ADDRESS_P (x, reg_ok_strict)) return 1; if ((GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC) && !ALTIVEC_VECTOR_MODE (mode) && !SPE_VECTOR_MODE (mode) && TARGET_UPDATE && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (x, 0), reg_ok_strict)) return 1; if (LEGITIMATE_SMALL_DATA_P (mode, x)) return 1; if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (x)) return 1; /* If not REG_OK_STRICT (before reload) let pass any stack offset. */ if (! reg_ok_strict && GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG && XEXP (x, 0) == virtual_stack_vars_rtx && GET_CODE (XEXP (x, 1)) == CONST_INT) return 1; if (LEGITIMATE_OFFSET_ADDRESS_P (mode, x, reg_ok_strict)) return 1; if (mode != TImode && ((TARGET_HARD_FLOAT && TARGET_FPRS) || TARGET_POWERPC64 || (mode != DFmode && mode != TFmode)) && (TARGET_POWERPC64 || mode != DImode) && LEGITIMATE_INDEXED_ADDRESS_P (x, reg_ok_strict)) return 1; if (LEGITIMATE_LO_SUM_ADDRESS_P (mode, x, reg_ok_strict)) return 1; return 0; } /* Try to output insns to set TARGET equal to the constant C if it can be done in less than N insns. Do all computations in MODE. Returns the place where the output has been placed if it can be done and the insns have been emitted. If it would take more than N insns, zero is returned and no insns and emitted. */ rtx rs6000_emit_set_const (dest, mode, source, n) rtx dest, source; enum machine_mode mode; int n ATTRIBUTE_UNUSED; { rtx result, insn, set; HOST_WIDE_INT c0, c1; if (mode == QImode || mode == HImode) { if (dest == NULL) dest = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (VOIDmode, dest, source)); return dest; } else if (mode == SImode) { result = no_new_pseudos ? dest : gen_reg_rtx (SImode); emit_insn (gen_rtx_SET (VOIDmode, result, GEN_INT (INTVAL (source) & (~ (HOST_WIDE_INT) 0xffff)))); emit_insn (gen_rtx_SET (VOIDmode, dest, gen_rtx_IOR (SImode, result, GEN_INT (INTVAL (source) & 0xffff)))); result = dest; } else if (mode == DImode) { if (GET_CODE (source) == CONST_INT) { c0 = INTVAL (source); c1 = -(c0 < 0); } else if (GET_CODE (source) == CONST_DOUBLE) { #if HOST_BITS_PER_WIDE_INT >= 64 c0 = CONST_DOUBLE_LOW (source); c1 = -(c0 < 0); #else c0 = CONST_DOUBLE_LOW (source); c1 = CONST_DOUBLE_HIGH (source); #endif } else abort (); result = rs6000_emit_set_long_const (dest, c0, c1); } else abort (); insn = get_last_insn (); set = single_set (insn); if (! CONSTANT_P (SET_SRC (set))) set_unique_reg_note (insn, REG_EQUAL, source); return result; } /* Having failed to find a 3 insn sequence in rs6000_emit_set_const, fall back to a straight forward decomposition. We do this to avoid exponential run times encountered when looking for longer sequences with rs6000_emit_set_const. */ static rtx rs6000_emit_set_long_const (dest, c1, c2) rtx dest; HOST_WIDE_INT c1, c2; { if (!TARGET_POWERPC64) { rtx operand1, operand2; operand1 = operand_subword_force (dest, WORDS_BIG_ENDIAN == 0, DImode); operand2 = operand_subword_force (dest, WORDS_BIG_ENDIAN != 0, DImode); emit_move_insn (operand1, GEN_INT (c1)); emit_move_insn (operand2, GEN_INT (c2)); } else { HOST_WIDE_INT ud1, ud2, ud3, ud4; ud1 = c1 & 0xffff; ud2 = (c1 & 0xffff0000) >> 16; #if HOST_BITS_PER_WIDE_INT >= 64 c2 = c1 >> 32; #endif ud3 = c2 & 0xffff; ud4 = (c2 & 0xffff0000) >> 16; if ((ud4 == 0xffff && ud3 == 0xffff && ud2 == 0xffff && (ud1 & 0x8000)) || (ud4 == 0 && ud3 == 0 && ud2 == 0 && ! (ud1 & 0x8000))) { if (ud1 & 0x8000) emit_move_insn (dest, GEN_INT (((ud1 ^ 0x8000) - 0x8000))); else emit_move_insn (dest, GEN_INT (ud1)); } else if ((ud4 == 0xffff && ud3 == 0xffff && (ud2 & 0x8000)) || (ud4 == 0 && ud3 == 0 && ! (ud2 & 0x8000))) { if (ud2 & 0x8000) emit_move_insn (dest, GEN_INT (((ud2 << 16) ^ 0x80000000) - 0x80000000)); else emit_move_insn (dest, GEN_INT (ud2 << 16)); if (ud1 != 0) emit_move_insn (dest, gen_rtx_IOR (DImode, dest, GEN_INT (ud1))); } else if ((ud4 == 0xffff && (ud3 & 0x8000)) || (ud4 == 0 && ! (ud3 & 0x8000))) { if (ud3 & 0x8000) emit_move_insn (dest, GEN_INT (((ud3 << 16) ^ 0x80000000) - 0x80000000)); else emit_move_insn (dest, GEN_INT (ud3 << 16)); if (ud2 != 0) emit_move_insn (dest, gen_rtx_IOR (DImode, dest, GEN_INT (ud2))); emit_move_insn (dest, gen_rtx_ASHIFT (DImode, dest, GEN_INT (16))); if (ud1 != 0) emit_move_insn (dest, gen_rtx_IOR (DImode, dest, GEN_INT (ud1))); } else { if (ud4 & 0x8000) emit_move_insn (dest, GEN_INT (((ud4 << 16) ^ 0x80000000) - 0x80000000)); else emit_move_insn (dest, GEN_INT (ud4 << 16)); if (ud3 != 0) emit_move_insn (dest, gen_rtx_IOR (DImode, dest, GEN_INT (ud3))); emit_move_insn (dest, gen_rtx_ASHIFT (DImode, dest, GEN_INT (32))); if (ud2 != 0) emit_move_insn (dest, gen_rtx_IOR (DImode, dest, GEN_INT (ud2 << 16))); if (ud1 != 0) emit_move_insn (dest, gen_rtx_IOR (DImode, dest, GEN_INT (ud1))); } } return dest; } /* Emit a move from SOURCE to DEST in mode MODE. */ void rs6000_emit_move (dest, source, mode) rtx dest; rtx source; enum machine_mode mode; { rtx operands[2]; operands[0] = dest; operands[1] = source; /* Sanity checks. Check that we get CONST_DOUBLE only when we should. */ if (GET_CODE (operands[1]) == CONST_DOUBLE && ! FLOAT_MODE_P (mode) && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT) { /* FIXME. This should never happen. */ /* Since it seems that it does, do the safe thing and convert to a CONST_INT. */ operands[1] = gen_int_mode (CONST_DOUBLE_LOW (operands[1]), mode); } if (GET_CODE (operands[1]) == CONST_DOUBLE && ! FLOAT_MODE_P (mode) && ((CONST_DOUBLE_HIGH (operands[1]) == 0 && CONST_DOUBLE_LOW (operands[1]) >= 0) || (CONST_DOUBLE_HIGH (operands[1]) == -1 && CONST_DOUBLE_LOW (operands[1]) < 0))) abort (); /* Check if GCC is setting up a block move that will end up using FP registers as temporaries. We must make sure this is acceptable. */ if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM && mode == DImode && (SLOW_UNALIGNED_ACCESS (DImode, MEM_ALIGN (operands[0])) || SLOW_UNALIGNED_ACCESS (DImode, MEM_ALIGN (operands[1]))) && ! (SLOW_UNALIGNED_ACCESS (SImode, (MEM_ALIGN (operands[0]) > 32 ? 32 : MEM_ALIGN (operands[0]))) || SLOW_UNALIGNED_ACCESS (SImode, (MEM_ALIGN (operands[1]) > 32 ? 32 : MEM_ALIGN (operands[1])))) && ! MEM_VOLATILE_P (operands [0]) && ! MEM_VOLATILE_P (operands [1])) { emit_move_insn (adjust_address (operands[0], SImode, 0), adjust_address (operands[1], SImode, 0)); emit_move_insn (adjust_address (operands[0], SImode, 4), adjust_address (operands[1], SImode, 4)); return; } if (!no_new_pseudos) { if (GET_CODE (operands[1]) == MEM && optimize > 0 && (mode == QImode || mode == HImode || mode == SImode) && GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)) { rtx reg = gen_reg_rtx (word_mode); emit_insn (gen_rtx_SET (word_mode, reg, gen_rtx_ZERO_EXTEND (word_mode, operands[1]))); operands[1] = gen_lowpart (mode, reg); } if (GET_CODE (operands[0]) != REG) operands[1] = force_reg (mode, operands[1]); } if (mode == SFmode && ! TARGET_POWERPC && TARGET_HARD_FLOAT && TARGET_FPRS && GET_CODE (operands[0]) == MEM) { int regnum; if (reload_in_progress || reload_completed) regnum = true_regnum (operands[1]); else if (GET_CODE (operands[1]) == REG) regnum = REGNO (operands[1]); else regnum = -1; /* If operands[1] is a register, on POWER it may have double-precision data in it, so truncate it to single precision. */ if (FP_REGNO_P (regnum) || regnum >= FIRST_PSEUDO_REGISTER) { rtx newreg; newreg = (no_new_pseudos ? operands[1] : gen_reg_rtx (mode)); emit_insn (gen_aux_truncdfsf2 (newreg, operands[1])); operands[1] = newreg; } } /* Handle the case where reload calls us with an invalid address. */ if (reload_in_progress && mode == Pmode && (! general_operand (operands[1], mode) || ! nonimmediate_operand (operands[0], mode))) goto emit_set; /* Handle the case of CONSTANT_P_RTX. */ if (GET_CODE (operands[1]) == CONSTANT_P_RTX) goto emit_set; /* FIXME: In the long term, this switch statement should go away and be replaced by a sequence of tests based on things like mode == Pmode. */ switch (mode) { case HImode: case QImode: if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONST_INT) operands[1] = force_const_mem (mode, operands[1]); break; case TFmode: case DFmode: case SFmode: if (CONSTANT_P (operands[1]) && ! easy_fp_constant (operands[1], mode)) operands[1] = force_const_mem (mode, operands[1]); break; case V16QImode: case V8HImode: case V4SFmode: case V4SImode: case V4HImode: case V2SFmode: case V2SImode: case V1DImode: if (CONSTANT_P (operands[1]) && !easy_vector_constant (operands[1])) operands[1] = force_const_mem (mode, operands[1]); break; case SImode: case DImode: /* Use default pattern for address of ELF small data */ if (TARGET_ELF && mode == Pmode && DEFAULT_ABI == ABI_V4 && (GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == CONST) && small_data_operand (operands[1], mode)) { emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1])); return; } if (DEFAULT_ABI == ABI_V4 && mode == Pmode && mode == SImode && flag_pic == 1 && got_operand (operands[1], mode)) { emit_insn (gen_movsi_got (operands[0], operands[1])); return; } if ((TARGET_ELF || DEFAULT_ABI == ABI_DARWIN) && TARGET_NO_TOC && ! flag_pic && mode == Pmode && CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != HIGH && GET_CODE (operands[1]) != CONST_INT) { rtx target = (no_new_pseudos ? operands[0] : gen_reg_rtx (mode)); /* If this is a function address on -mcall-aixdesc, convert it to the address of the descriptor. */ if (DEFAULT_ABI == ABI_AIX && GET_CODE (operands[1]) == SYMBOL_REF && XSTR (operands[1], 0)[0] == '.') { const char *name = XSTR (operands[1], 0); rtx new_ref; while (*name == '.') name++; new_ref = gen_rtx_SYMBOL_REF (Pmode, name); CONSTANT_POOL_ADDRESS_P (new_ref) = CONSTANT_POOL_ADDRESS_P (operands[1]); SYMBOL_REF_FLAG (new_ref) = SYMBOL_REF_FLAG (operands[1]); SYMBOL_REF_USED (new_ref) = SYMBOL_REF_USED (operands[1]); operands[1] = new_ref; } if (DEFAULT_ABI == ABI_DARWIN) { emit_insn (gen_macho_high (target, operands[1])); emit_insn (gen_macho_low (operands[0], target, operands[1])); return; } emit_insn (gen_elf_high (target, operands[1])); emit_insn (gen_elf_low (operands[0], target, operands[1])); return; } /* If this is a SYMBOL_REF that refers to a constant pool entry, and we have put it in the TOC, we just need to make a TOC-relative reference to it. */ if (TARGET_TOC && GET_CODE (operands[1]) == SYMBOL_REF && CONSTANT_POOL_EXPR_P (operands[1]) && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (operands[1]), get_pool_mode (operands[1]))) { operands[1] = create_TOC_reference (operands[1]); } else if (mode == Pmode && CONSTANT_P (operands[1]) && ((GET_CODE (operands[1]) != CONST_INT && ! easy_fp_constant (operands[1], mode)) || (GET_CODE (operands[1]) == CONST_INT && num_insns_constant (operands[1], mode) > 2) || (GET_CODE (operands[0]) == REG && FP_REGNO_P (REGNO (operands[0])))) && GET_CODE (operands[1]) != HIGH && ! LEGITIMATE_CONSTANT_POOL_ADDRESS_P (operands[1]) && ! TOC_RELATIVE_EXPR_P (operands[1])) { /* Emit a USE operation so that the constant isn't deleted if expensive optimizations are turned on because nobody references it. This should only be done for operands that contain SYMBOL_REFs with CONSTANT_POOL_ADDRESS_P set. This should not be done for operands that contain LABEL_REFs. For now, we just handle the obvious case. */ if (GET_CODE (operands[1]) != LABEL_REF) emit_insn (gen_rtx_USE (VOIDmode, operands[1])); #if TARGET_MACHO /* Darwin uses a special PIC legitimizer. */ if (DEFAULT_ABI == ABI_DARWIN && flag_pic) { operands[1] = rs6000_machopic_legitimize_pic_address (operands[1], mode, operands[0]); if (operands[0] != operands[1]) emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1])); return; } #endif /* If we are to limit the number of things we put in the TOC and this is a symbol plus a constant we can add in one insn, just put the symbol in the TOC and add the constant. Don't do this if reload is in progress. */ if (GET_CODE (operands[1]) == CONST && TARGET_NO_SUM_IN_TOC && ! reload_in_progress && GET_CODE (XEXP (operands[1], 0)) == PLUS && add_operand (XEXP (XEXP (operands[1], 0), 1), mode) && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF || GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF) && ! side_effects_p (operands[0])) { rtx sym = force_const_mem (mode, XEXP (XEXP (operands[1], 0), 0)); rtx other = XEXP (XEXP (operands[1], 0), 1); sym = force_reg (mode, sym); if (mode == SImode) emit_insn (gen_addsi3 (operands[0], sym, other)); else emit_insn (gen_adddi3 (operands[0], sym, other)); return; } operands[1] = force_const_mem (mode, operands[1]); if (TARGET_TOC && CONSTANT_POOL_EXPR_P (XEXP (operands[1], 0)) && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P ( get_pool_constant (XEXP (operands[1], 0)), get_pool_mode (XEXP (operands[1], 0)))) { operands[1] = gen_rtx_MEM (mode, create_TOC_reference (XEXP (operands[1], 0))); set_mem_alias_set (operands[1], get_TOC_alias_set ()); RTX_UNCHANGING_P (operands[1]) = 1; } } break; case TImode: if (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) != REG && ! reload_in_progress) operands[0] = replace_equiv_address (operands[0], copy_addr_to_reg (XEXP (operands[0], 0))); if (GET_CODE (operands[1]) == MEM && GET_CODE (XEXP (operands[1], 0)) != REG && ! reload_in_progress) operands[1] = replace_equiv_address (operands[1], copy_addr_to_reg (XEXP (operands[1], 0))); if (TARGET_POWER) { emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, gen_rtx_SET (VOIDmode, operands[0], operands[1]), gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (SImode))))); return; } break; default: abort (); } /* Above, we may have called force_const_mem which may have returned an invalid address. If we can, fix this up; otherwise, reload will have to deal with it. */ if (GET_CODE (operands[1]) == MEM && ! reload_in_progress) operands[1] = validize_mem (operands[1]); emit_set: emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1])); } /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. For incoming args we set the number of arguments in the prototype large so we never return a PARALLEL. */ void init_cumulative_args (cum, fntype, libname, incoming, libcall) CUMULATIVE_ARGS *cum; tree fntype; rtx libname ATTRIBUTE_UNUSED; int incoming; int libcall; { static CUMULATIVE_ARGS zero_cumulative; *cum = zero_cumulative; cum->words = 0; cum->fregno = FP_ARG_MIN_REG; cum->vregno = ALTIVEC_ARG_MIN_REG; cum->prototype = (fntype && TYPE_ARG_TYPES (fntype)); cum->call_cookie = ((DEFAULT_ABI == ABI_V4 && libcall) ? CALL_LIBCALL : CALL_NORMAL); cum->sysv_gregno = GP_ARG_MIN_REG; if (incoming) cum->nargs_prototype = 1000; /* don't return a PARALLEL */ else if (cum->prototype) cum->nargs_prototype = (list_length (TYPE_ARG_TYPES (fntype)) - 1 + (TYPE_MODE (TREE_TYPE (fntype)) == BLKmode || RETURN_IN_MEMORY (TREE_TYPE (fntype)))); else cum->nargs_prototype = 0; cum->orig_nargs = cum->nargs_prototype; /* Check for a longcall attribute. */ if (fntype && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype)) && !lookup_attribute ("shortcall", TYPE_ATTRIBUTES (fntype))) cum->call_cookie = CALL_LONG; if (TARGET_DEBUG_ARG) { fprintf (stderr, "\ninit_cumulative_args:"); if (fntype) { tree ret_type = TREE_TYPE (fntype); fprintf (stderr, " ret code = %s,", tree_code_name[ (int)TREE_CODE (ret_type) ]); } if (cum->call_cookie & CALL_LONG) fprintf (stderr, " longcall,"); fprintf (stderr, " proto = %d, nargs = %d\n", cum->prototype, cum->nargs_prototype); } } /* If defined, a C expression which determines whether, and in which direction, to pad out an argument with extra space. The value should be of type `enum direction': either `upward' to pad above the argument, `downward' to pad below, or `none' to inhibit padding. For the AIX ABI structs are always stored left shifted in their argument slot. */ enum direction function_arg_padding (mode, type) enum machine_mode mode; tree type; { if (type != 0 && AGGREGATE_TYPE_P (type)) return upward; /* This is the default definition. */ return (! BYTES_BIG_ENDIAN ? upward : ((mode == BLKmode ? (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && int_size_in_bytes (type) < (PARM_BOUNDARY / BITS_PER_UNIT)) : GET_MODE_BITSIZE (mode) < PARM_BOUNDARY) ? downward : upward)); } /* If defined, a C expression that gives the alignment boundary, in bits, of an argument with the specified mode and type. If it is not defined, PARM_BOUNDARY is used for all arguments. V.4 wants long longs to be double word aligned. */ int function_arg_boundary (mode, type) enum machine_mode mode; tree type ATTRIBUTE_UNUSED; { if (DEFAULT_ABI == ABI_V4 && (mode == DImode || mode == DFmode)) return 64; else if (SPE_VECTOR_MODE (mode)) return 64; else if (TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode)) return 128; else return PARM_BOUNDARY; } /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ void function_arg_advance (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { cum->nargs_prototype--; if (TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode)) { if (cum->vregno <= ALTIVEC_ARG_MAX_REG && cum->nargs_prototype >= 0) cum->vregno++; else cum->words += RS6000_ARG_SIZE (mode, type); } else if (TARGET_SPE_ABI && TARGET_SPE && SPE_VECTOR_MODE (mode) && named && cum->sysv_gregno <= GP_ARG_MAX_REG) cum->sysv_gregno++; else if (DEFAULT_ABI == ABI_V4) { if (TARGET_HARD_FLOAT && TARGET_FPRS && (mode == SFmode || mode == DFmode)) { if (cum->fregno <= FP_ARG_V4_MAX_REG) cum->fregno++; else { if (mode == DFmode) cum->words += cum->words & 1; cum->words += RS6000_ARG_SIZE (mode, type); } } else { int n_words; int gregno = cum->sysv_gregno; /* Aggregates and IEEE quad get passed by reference. */ if ((type && AGGREGATE_TYPE_P (type)) || mode == TFmode) n_words = 1; else n_words = RS6000_ARG_SIZE (mode, type); /* Long long and SPE vectors are put in odd registers. */ if (n_words == 2 && (gregno & 1) == 0) gregno += 1; /* Long long and SPE vectors are not split between registers and stack. */ if (gregno + n_words - 1 > GP_ARG_MAX_REG) { /* Long long is aligned on the stack. */ if (n_words == 2) cum->words += cum->words & 1; cum->words += n_words; } /* Note: continuing to accumulate gregno past when we've started spilling to the stack indicates the fact that we've started spilling to the stack to expand_builtin_saveregs. */ cum->sysv_gregno = gregno + n_words; } if (TARGET_DEBUG_ARG) { fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ", cum->words, cum->fregno); fprintf (stderr, "gregno = %2d, nargs = %4d, proto = %d, ", cum->sysv_gregno, cum->nargs_prototype, cum->prototype); fprintf (stderr, "mode = %4s, named = %d\n", GET_MODE_NAME (mode), named); } } else { int align = (TARGET_32BIT && (cum->words & 1) != 0 && function_arg_boundary (mode, type) == 64) ? 1 : 0; cum->words += align + RS6000_ARG_SIZE (mode, type); if (GET_MODE_CLASS (mode) == MODE_FLOAT && TARGET_HARD_FLOAT && TARGET_FPRS) cum->fregno += (mode == TFmode ? 2 : 1); if (TARGET_DEBUG_ARG) { fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ", cum->words, cum->fregno); fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s, ", cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode)); fprintf (stderr, "named = %d, align = %d\n", named, align); } } } /* Determine where to put an argument to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). On RS/6000 the first eight words of non-FP are normally in registers and the rest are pushed. Under AIX, the first 13 FP args are in registers. Under V.4, the first 8 FP args are in registers. If this is floating-point and no prototype is specified, we use both an FP and integer register (or possibly FP reg and stack). Library functions (when CALL_LIBCALL is set) always have the proper types for args, so we can pass the FP value just in one register. emit_library_function doesn't support PARALLEL anyway. */ struct rtx_def * function_arg (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { enum rs6000_abi abi = DEFAULT_ABI; /* Return a marker to indicate whether CR1 needs to set or clear the bit that V.4 uses to say fp args were passed in registers. Assume that we don't need the marker for software floating point, or compiler generated library calls. */ if (mode == VOIDmode) { if (abi == ABI_V4 && cum->nargs_prototype < 0 && (cum->call_cookie & CALL_LIBCALL) == 0 && (cum->prototype || TARGET_NO_PROTOTYPE)) { /* For the SPE, we need to crxor CR6 always. */ if (TARGET_SPE_ABI) return GEN_INT (cum->call_cookie | CALL_V4_SET_FP_ARGS); else if (TARGET_HARD_FLOAT && TARGET_FPRS) return GEN_INT (cum->call_cookie | ((cum->fregno == FP_ARG_MIN_REG) ? CALL_V4_SET_FP_ARGS : CALL_V4_CLEAR_FP_ARGS)); } return GEN_INT (cum->call_cookie); } if (TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode)) { if (named && cum->vregno <= ALTIVEC_ARG_MAX_REG) return gen_rtx_REG (mode, cum->vregno); else return NULL; } else if (TARGET_SPE_ABI && TARGET_SPE && SPE_VECTOR_MODE (mode) && named) { if (cum->sysv_gregno <= GP_ARG_MAX_REG) return gen_rtx_REG (mode, cum->sysv_gregno); else return NULL; } else if (abi == ABI_V4) { if (TARGET_HARD_FLOAT && TARGET_FPRS && (mode == SFmode || mode == DFmode)) { if (cum->fregno <= FP_ARG_V4_MAX_REG) return gen_rtx_REG (mode, cum->fregno); else return NULL; } else { int n_words; int gregno = cum->sysv_gregno; /* Aggregates and IEEE quad get passed by reference. */ if ((type && AGGREGATE_TYPE_P (type)) || mode == TFmode) n_words = 1; else n_words = RS6000_ARG_SIZE (mode, type); /* Long long and SPE vectors are put in odd registers. */ if (n_words == 2 && (gregno & 1) == 0) gregno += 1; /* Long long and SPE vectors are not split between registers and stack. */ if (gregno + n_words - 1 <= GP_ARG_MAX_REG) { /* SPE vectors in ... get split into 2 registers. */ if (TARGET_SPE && TARGET_SPE_ABI && SPE_VECTOR_MODE (mode) && !named) { rtx r1, r2; enum machine_mode m = SImode; r1 = gen_rtx_REG (m, gregno); r1 = gen_rtx_EXPR_LIST (m, r1, const0_rtx); r2 = gen_rtx_REG (m, gregno + 1); r2 = gen_rtx_EXPR_LIST (m, r2, GEN_INT (4)); return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2)); } return gen_rtx_REG (mode, gregno); } else return NULL; } } else { int align = (TARGET_32BIT && (cum->words & 1) != 0 && function_arg_boundary (mode, type) == 64) ? 1 : 0; int align_words = cum->words + align; if (type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) return NULL_RTX; if (USE_FP_FOR_ARG_P (*cum, mode, type)) { if (! type || ((cum->nargs_prototype > 0) /* IBM AIX extended its linkage convention definition always to require FP args after register save area hole on the stack. */ && (DEFAULT_ABI != ABI_AIX || ! TARGET_XL_CALL || (align_words < GP_ARG_NUM_REG)))) return gen_rtx_REG (mode, cum->fregno); return gen_rtx_PARALLEL (mode, gen_rtvec (2, gen_rtx_EXPR_LIST (VOIDmode, ((align_words >= GP_ARG_NUM_REG) ? NULL_RTX : (align_words + RS6000_ARG_SIZE (mode, type) > GP_ARG_NUM_REG /* If this is partially on the stack, then we only include the portion actually in registers here. */ ? gen_rtx_REG (SImode, GP_ARG_MIN_REG + align_words) : gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words))), const0_rtx), gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, cum->fregno), const0_rtx))); } else if (align_words < GP_ARG_NUM_REG) return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words); else return NULL_RTX; } } /* For an arg passed partly in registers and partly in memory, this is the number of registers used. For args passed entirely in registers or entirely in memory, zero. */ int function_arg_partial_nregs (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named ATTRIBUTE_UNUSED; { if (DEFAULT_ABI == ABI_V4) return 0; if (USE_FP_FOR_ARG_P (*cum, mode, type) || USE_ALTIVEC_FOR_ARG_P (*cum, mode, type)) { if (cum->nargs_prototype >= 0) return 0; } if (cum->words < GP_ARG_NUM_REG && GP_ARG_NUM_REG < (cum->words + RS6000_ARG_SIZE (mode, type))) { int ret = GP_ARG_NUM_REG - cum->words; if (ret && TARGET_DEBUG_ARG) fprintf (stderr, "function_arg_partial_nregs: %d\n", ret); return ret; } return 0; } /* A C expression that indicates when an argument must be passed by reference. If nonzero for an argument, a copy of that argument is made in memory and a pointer to the argument is passed instead of the argument itself. The pointer is passed in whatever way is appropriate for passing a pointer to that type. Under V.4, structures and unions are passed by reference. As an extension to all ABIs, variable sized types are passed by reference. */ int function_arg_pass_by_reference (cum, mode, type, named) CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED; enum machine_mode mode ATTRIBUTE_UNUSED; tree type; int named ATTRIBUTE_UNUSED; { if (DEFAULT_ABI == ABI_V4 && ((type && AGGREGATE_TYPE_P (type)) || mode == TFmode)) { if (TARGET_DEBUG_ARG) fprintf (stderr, "function_arg_pass_by_reference: aggregate\n"); return 1; } return type && int_size_in_bytes (type) < 0; } /* Perform any needed actions needed for a function that is receiving a variable number of arguments. CUM is as above. MODE and TYPE are the mode and type of the current parameter. PRETEND_SIZE is a variable that should be set to the amount of stack that must be pushed by the prolog to pretend that our caller pushed it. Normally, this macro will push all remaining incoming registers on the stack and set PRETEND_SIZE to the length of the registers pushed. */ void setup_incoming_varargs (cum, mode, type, pretend_size, no_rtl) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int *pretend_size; int no_rtl; { CUMULATIVE_ARGS next_cum; int reg_size = TARGET_32BIT ? 4 : 8; rtx save_area = NULL_RTX, mem; int first_reg_offset, set; tree fntype; int stdarg_p; fntype = TREE_TYPE (current_function_decl); stdarg_p = (TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node)); /* For varargs, we do not want to skip the dummy va_dcl argument. For stdargs, we do want to skip the last named argument. */ next_cum = *cum; if (stdarg_p) function_arg_advance (&next_cum, mode, type, 1); if (DEFAULT_ABI == ABI_V4) { /* Indicate to allocate space on the stack for varargs save area. */ cfun->machine->sysv_varargs_p = 1; if (! no_rtl) save_area = plus_constant (virtual_stack_vars_rtx, - RS6000_VARARGS_SIZE); first_reg_offset = next_cum.sysv_gregno - GP_ARG_MIN_REG; } else { first_reg_offset = next_cum.words; save_area = virtual_incoming_args_rtx; cfun->machine->sysv_varargs_p = 0; if (MUST_PASS_IN_STACK (mode, type)) first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (type), type); } set = get_varargs_alias_set (); if (! no_rtl && first_reg_offset < GP_ARG_NUM_REG) { mem = gen_rtx_MEM (BLKmode, plus_constant (save_area, first_reg_offset * reg_size)), set_mem_alias_set (mem, set); set_mem_align (mem, BITS_PER_WORD); move_block_from_reg (GP_ARG_MIN_REG + first_reg_offset, mem, GP_ARG_NUM_REG - first_reg_offset, (GP_ARG_NUM_REG - first_reg_offset) * UNITS_PER_WORD); /* ??? Does ABI_V4 need this at all? */ *pretend_size = (GP_ARG_NUM_REG - first_reg_offset) * UNITS_PER_WORD; } /* Save FP registers if needed. */ if (DEFAULT_ABI == ABI_V4 && TARGET_HARD_FLOAT && TARGET_FPRS && ! no_rtl && next_cum.fregno <= FP_ARG_V4_MAX_REG) { int fregno = next_cum.fregno; rtx cr1 = gen_rtx_REG (CCmode, CR1_REGNO); rtx lab = gen_label_rtx (); int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG) * 8); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, gen_rtx_NE (VOIDmode, cr1, const0_rtx), gen_rtx_LABEL_REF (VOIDmode, lab), pc_rtx))); while (fregno <= FP_ARG_V4_MAX_REG) { mem = gen_rtx_MEM (DFmode, plus_constant (save_area, off)); set_mem_alias_set (mem, set); emit_move_insn (mem, gen_rtx_REG (DFmode, fregno)); fregno++; off += 8; } emit_label (lab); } } /* Create the va_list data type. */ tree rs6000_build_va_list () { tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl; /* For AIX, prefer 'char *' because that's what the system header files like. */ if (DEFAULT_ABI != ABI_V4) return build_pointer_type (char_type_node); record = (*lang_hooks.types.make_type) (RECORD_TYPE); type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record); f_gpr = build_decl (FIELD_DECL, get_identifier ("gpr"), unsigned_char_type_node); f_fpr = build_decl (FIELD_DECL, get_identifier ("fpr"), unsigned_char_type_node); f_ovf = build_decl (FIELD_DECL, get_identifier ("overflow_arg_area"), ptr_type_node); f_sav = build_decl (FIELD_DECL, get_identifier ("reg_save_area"), ptr_type_node); DECL_FIELD_CONTEXT (f_gpr) = record; DECL_FIELD_CONTEXT (f_fpr) = record; DECL_FIELD_CONTEXT (f_ovf) = record; DECL_FIELD_CONTEXT (f_sav) = record; TREE_CHAIN (record) = type_decl; TYPE_NAME (record) = type_decl; TYPE_FIELDS (record) = f_gpr; TREE_CHAIN (f_gpr) = f_fpr; TREE_CHAIN (f_fpr) = f_ovf; TREE_CHAIN (f_ovf) = f_sav; layout_type (record); /* The correct type is an array type of one element. */ return build_array_type (record, build_index_type (size_zero_node)); } /* Implement va_start. */ void rs6000_va_start (valist, nextarg) tree valist; rtx nextarg; { HOST_WIDE_INT words, n_gpr, n_fpr; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; /* Only SVR4 needs something special. */ if (DEFAULT_ABI != ABI_V4) { std_expand_builtin_va_start (valist, nextarg); return; } f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node)); f_fpr = TREE_CHAIN (f_gpr); f_ovf = TREE_CHAIN (f_fpr); f_sav = TREE_CHAIN (f_ovf); valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist); gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr); fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr); ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf); sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav); /* Count number of gp and fp argument registers used. */ words = current_function_args_info.words; n_gpr = current_function_args_info.sysv_gregno - GP_ARG_MIN_REG; n_fpr = current_function_args_info.fregno - FP_ARG_MIN_REG; if (TARGET_DEBUG_ARG) { fputs ("va_start: words = ", stderr); fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, words); fputs (", n_gpr = ", stderr); fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, n_gpr); fputs (", n_fpr = ", stderr); fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, n_fpr); putc ('\n', stderr); } t = build (MODIFY_EXPR, TREE_TYPE (gpr), gpr, build_int_2 (n_gpr, 0)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); t = build (MODIFY_EXPR, TREE_TYPE (fpr), fpr, build_int_2 (n_fpr, 0)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Find the overflow area. */ t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx); if (words != 0) t = build (PLUS_EXPR, TREE_TYPE (ovf), t, build_int_2 (words * UNITS_PER_WORD, 0)); t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Find the register save area. */ t = make_tree (TREE_TYPE (sav), virtual_stack_vars_rtx); t = build (PLUS_EXPR, TREE_TYPE (sav), t, build_int_2 (-RS6000_VARARGS_SIZE, -1)); t = build (MODIFY_EXPR, TREE_TYPE (sav), sav, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Implement va_arg. */ rtx rs6000_va_arg (valist, type) tree valist, type; { tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, reg, t, u; int indirect_p, size, rsize, n_reg, sav_ofs, sav_scale; rtx lab_false, lab_over, addr_rtx, r; if (DEFAULT_ABI != ABI_V4) { /* Variable sized types are passed by reference. */ if (int_size_in_bytes (type) < 0) { u = build_pointer_type (type); /* Args grow upward. */ t = build (POSTINCREMENT_EXPR, TREE_TYPE (valist), valist, build_int_2 (POINTER_SIZE / BITS_PER_UNIT, 0)); TREE_SIDE_EFFECTS (t) = 1; t = build1 (NOP_EXPR, build_pointer_type (u), t); TREE_SIDE_EFFECTS (t) = 1; t = build1 (INDIRECT_REF, u, t); TREE_SIDE_EFFECTS (t) = 1; return expand_expr (t, NULL_RTX, VOIDmode, EXPAND_NORMAL); } else return std_expand_builtin_va_arg (valist, type); } f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node)); f_fpr = TREE_CHAIN (f_gpr); f_ovf = TREE_CHAIN (f_fpr); f_sav = TREE_CHAIN (f_ovf); valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist); gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr); fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr); ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf); sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav); size = int_size_in_bytes (type); rsize = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if (AGGREGATE_TYPE_P (type) || TYPE_MODE (type) == TFmode) { /* Aggregates and long doubles are passed by reference. */ indirect_p = 1; reg = gpr; n_reg = 1; sav_ofs = 0; sav_scale = 4; size = UNITS_PER_WORD; rsize = 1; } else if (FLOAT_TYPE_P (type) && TARGET_HARD_FLOAT && TARGET_FPRS) { /* FP args go in FP registers, if present. */ indirect_p = 0; reg = fpr; n_reg = 1; sav_ofs = 8*4; sav_scale = 8; } else { /* Otherwise into GP registers. */ indirect_p = 0; reg = gpr; n_reg = rsize; sav_ofs = 0; sav_scale = 4; } /* Pull the value out of the saved registers ... */ lab_false = gen_label_rtx (); lab_over = gen_label_rtx (); addr_rtx = gen_reg_rtx (Pmode); /* AltiVec vectors never go in registers. */ if (!TARGET_ALTIVEC || TREE_CODE (type) != VECTOR_TYPE) { TREE_THIS_VOLATILE (reg) = 1; emit_cmp_and_jump_insns (expand_expr (reg, NULL_RTX, QImode, EXPAND_NORMAL), GEN_INT (8 - n_reg + 1), GE, const1_rtx, QImode, 1, lab_false); /* Long long is aligned in the registers. */ if (n_reg > 1) { u = build (BIT_AND_EXPR, TREE_TYPE (reg), reg, build_int_2 (n_reg - 1, 0)); u = build (PLUS_EXPR, TREE_TYPE (reg), reg, u); u = build (MODIFY_EXPR, TREE_TYPE (reg), reg, u); TREE_SIDE_EFFECTS (u) = 1; expand_expr (u, const0_rtx, VOIDmode, EXPAND_NORMAL); } if (sav_ofs) t = build (PLUS_EXPR, ptr_type_node, sav, build_int_2 (sav_ofs, 0)); else t = sav; u = build (POSTINCREMENT_EXPR, TREE_TYPE (reg), reg, build_int_2 (n_reg, 0)); TREE_SIDE_EFFECTS (u) = 1; u = build1 (CONVERT_EXPR, integer_type_node, u); TREE_SIDE_EFFECTS (u) = 1; u = build (MULT_EXPR, integer_type_node, u, build_int_2 (sav_scale, 0)); TREE_SIDE_EFFECTS (u) = 1; t = build (PLUS_EXPR, ptr_type_node, t, u); TREE_SIDE_EFFECTS (t) = 1; r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL); if (r != addr_rtx) emit_move_insn (addr_rtx, r); emit_jump_insn (gen_jump (lab_over)); emit_barrier (); } emit_label (lab_false); /* ... otherwise out of the overflow area. */ /* Make sure we don't find reg 7 for the next int arg. All AltiVec vectors go in the overflow area. So in the AltiVec case we need to get the vectors from the overflow area, but remember where the GPRs and FPRs are. */ if (n_reg > 1 && (TREE_CODE (type) != VECTOR_TYPE || !TARGET_ALTIVEC)) { t = build (MODIFY_EXPR, TREE_TYPE (reg), reg, build_int_2 (8, 0)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Care for on-stack alignment if needed. */ if (rsize <= 1) t = ovf; else { int align; /* AltiVec vectors are 16 byte aligned. */ if (TARGET_ALTIVEC && TREE_CODE (type) == VECTOR_TYPE) align = 15; else align = 7; t = build (PLUS_EXPR, TREE_TYPE (ovf), ovf, build_int_2 (align, 0)); t = build (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_2 (-align-1, -1)); } t = save_expr (t); r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL); if (r != addr_rtx) emit_move_insn (addr_rtx, r); t = build (PLUS_EXPR, TREE_TYPE (t), t, build_int_2 (size, 0)); t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); emit_label (lab_over); if (indirect_p) { r = gen_rtx_MEM (Pmode, addr_rtx); set_mem_alias_set (r, get_varargs_alias_set ()); emit_move_insn (addr_rtx, r); } return addr_rtx; } /* Builtins. */ #define def_builtin(MASK, NAME, TYPE, CODE) \ do { \ if ((MASK) & target_flags) \ builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD, \ NULL, NULL_TREE); \ } while (0) /* Simple ternary operations: VECd = foo (VECa, VECb, VECc). */ static const struct builtin_description bdesc_3arg[] = { { MASK_ALTIVEC, CODE_FOR_altivec_vmaddfp, "__builtin_altivec_vmaddfp", ALTIVEC_BUILTIN_VMADDFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vmhaddshs, "__builtin_altivec_vmhaddshs", ALTIVEC_BUILTIN_VMHADDSHS }, { MASK_ALTIVEC, CODE_FOR_altivec_vmhraddshs, "__builtin_altivec_vmhraddshs", ALTIVEC_BUILTIN_VMHRADDSHS }, { MASK_ALTIVEC, CODE_FOR_altivec_vmladduhm, "__builtin_altivec_vmladduhm", ALTIVEC_BUILTIN_VMLADDUHM}, { MASK_ALTIVEC, CODE_FOR_altivec_vmsumubm, "__builtin_altivec_vmsumubm", ALTIVEC_BUILTIN_VMSUMUBM }, { MASK_ALTIVEC, CODE_FOR_altivec_vmsummbm, "__builtin_altivec_vmsummbm", ALTIVEC_BUILTIN_VMSUMMBM }, { MASK_ALTIVEC, CODE_FOR_altivec_vmsumuhm, "__builtin_altivec_vmsumuhm", ALTIVEC_BUILTIN_VMSUMUHM }, { MASK_ALTIVEC, CODE_FOR_altivec_vmsumshm, "__builtin_altivec_vmsumshm", ALTIVEC_BUILTIN_VMSUMSHM }, { MASK_ALTIVEC, CODE_FOR_altivec_vmsumuhs, "__builtin_altivec_vmsumuhs", ALTIVEC_BUILTIN_VMSUMUHS }, { MASK_ALTIVEC, CODE_FOR_altivec_vmsumshs, "__builtin_altivec_vmsumshs", ALTIVEC_BUILTIN_VMSUMSHS }, { MASK_ALTIVEC, CODE_FOR_altivec_vnmsubfp, "__builtin_altivec_vnmsubfp", ALTIVEC_BUILTIN_VNMSUBFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vperm_4sf, "__builtin_altivec_vperm_4sf", ALTIVEC_BUILTIN_VPERM_4SF }, { MASK_ALTIVEC, CODE_FOR_altivec_vperm_4si, "__builtin_altivec_vperm_4si", ALTIVEC_BUILTIN_VPERM_4SI }, { MASK_ALTIVEC, CODE_FOR_altivec_vperm_8hi, "__builtin_altivec_vperm_8hi", ALTIVEC_BUILTIN_VPERM_8HI }, { MASK_ALTIVEC, CODE_FOR_altivec_vperm_16qi, "__builtin_altivec_vperm_16qi", ALTIVEC_BUILTIN_VPERM_16QI }, { MASK_ALTIVEC, CODE_FOR_altivec_vsel_4sf, "__builtin_altivec_vsel_4sf", ALTIVEC_BUILTIN_VSEL_4SF }, { MASK_ALTIVEC, CODE_FOR_altivec_vsel_4si, "__builtin_altivec_vsel_4si", ALTIVEC_BUILTIN_VSEL_4SI }, { MASK_ALTIVEC, CODE_FOR_altivec_vsel_8hi, "__builtin_altivec_vsel_8hi", ALTIVEC_BUILTIN_VSEL_8HI }, { MASK_ALTIVEC, CODE_FOR_altivec_vsel_16qi, "__builtin_altivec_vsel_16qi", ALTIVEC_BUILTIN_VSEL_16QI }, { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_16qi, "__builtin_altivec_vsldoi_16qi", ALTIVEC_BUILTIN_VSLDOI_16QI }, { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_8hi, "__builtin_altivec_vsldoi_8hi", ALTIVEC_BUILTIN_VSLDOI_8HI }, { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_4si, "__builtin_altivec_vsldoi_4si", ALTIVEC_BUILTIN_VSLDOI_4SI }, { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_4sf, "__builtin_altivec_vsldoi_4sf", ALTIVEC_BUILTIN_VSLDOI_4SF }, }; /* DST operations: void foo (void *, const int, const char). */ static const struct builtin_description bdesc_dst[] = { { MASK_ALTIVEC, CODE_FOR_altivec_dst, "__builtin_altivec_dst", ALTIVEC_BUILTIN_DST }, { MASK_ALTIVEC, CODE_FOR_altivec_dstt, "__builtin_altivec_dstt", ALTIVEC_BUILTIN_DSTT }, { MASK_ALTIVEC, CODE_FOR_altivec_dstst, "__builtin_altivec_dstst", ALTIVEC_BUILTIN_DSTST }, { MASK_ALTIVEC, CODE_FOR_altivec_dststt, "__builtin_altivec_dststt", ALTIVEC_BUILTIN_DSTSTT } }; /* Simple binary operations: VECc = foo (VECa, VECb). */ static struct builtin_description bdesc_2arg[] = { { MASK_ALTIVEC, CODE_FOR_addv16qi3, "__builtin_altivec_vaddubm", ALTIVEC_BUILTIN_VADDUBM }, { MASK_ALTIVEC, CODE_FOR_addv8hi3, "__builtin_altivec_vadduhm", ALTIVEC_BUILTIN_VADDUHM }, { MASK_ALTIVEC, CODE_FOR_addv4si3, "__builtin_altivec_vadduwm", ALTIVEC_BUILTIN_VADDUWM }, { MASK_ALTIVEC, CODE_FOR_addv4sf3, "__builtin_altivec_vaddfp", ALTIVEC_BUILTIN_VADDFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vaddcuw, "__builtin_altivec_vaddcuw", ALTIVEC_BUILTIN_VADDCUW }, { MASK_ALTIVEC, CODE_FOR_altivec_vaddubs, "__builtin_altivec_vaddubs", ALTIVEC_BUILTIN_VADDUBS }, { MASK_ALTIVEC, CODE_FOR_altivec_vaddsbs, "__builtin_altivec_vaddsbs", ALTIVEC_BUILTIN_VADDSBS }, { MASK_ALTIVEC, CODE_FOR_altivec_vadduhs, "__builtin_altivec_vadduhs", ALTIVEC_BUILTIN_VADDUHS }, { MASK_ALTIVEC, CODE_FOR_altivec_vaddshs, "__builtin_altivec_vaddshs", ALTIVEC_BUILTIN_VADDSHS }, { MASK_ALTIVEC, CODE_FOR_altivec_vadduws, "__builtin_altivec_vadduws", ALTIVEC_BUILTIN_VADDUWS }, { MASK_ALTIVEC, CODE_FOR_altivec_vaddsws, "__builtin_altivec_vaddsws", ALTIVEC_BUILTIN_VADDSWS }, { MASK_ALTIVEC, CODE_FOR_andv4si3, "__builtin_altivec_vand", ALTIVEC_BUILTIN_VAND }, { MASK_ALTIVEC, CODE_FOR_altivec_vandc, "__builtin_altivec_vandc", ALTIVEC_BUILTIN_VANDC }, { MASK_ALTIVEC, CODE_FOR_altivec_vavgub, "__builtin_altivec_vavgub", ALTIVEC_BUILTIN_VAVGUB }, { MASK_ALTIVEC, CODE_FOR_altivec_vavgsb, "__builtin_altivec_vavgsb", ALTIVEC_BUILTIN_VAVGSB }, { MASK_ALTIVEC, CODE_FOR_altivec_vavguh, "__builtin_altivec_vavguh", ALTIVEC_BUILTIN_VAVGUH }, { MASK_ALTIVEC, CODE_FOR_altivec_vavgsh, "__builtin_altivec_vavgsh", ALTIVEC_BUILTIN_VAVGSH }, { MASK_ALTIVEC, CODE_FOR_altivec_vavguw, "__builtin_altivec_vavguw", ALTIVEC_BUILTIN_VAVGUW }, { MASK_ALTIVEC, CODE_FOR_altivec_vavgsw, "__builtin_altivec_vavgsw", ALTIVEC_BUILTIN_VAVGSW }, { MASK_ALTIVEC, CODE_FOR_altivec_vcfux, "__builtin_altivec_vcfux", ALTIVEC_BUILTIN_VCFUX }, { MASK_ALTIVEC, CODE_FOR_altivec_vcfsx, "__builtin_altivec_vcfsx", ALTIVEC_BUILTIN_VCFSX }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpbfp, "__builtin_altivec_vcmpbfp", ALTIVEC_BUILTIN_VCMPBFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequb, "__builtin_altivec_vcmpequb", ALTIVEC_BUILTIN_VCMPEQUB }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequh, "__builtin_altivec_vcmpequh", ALTIVEC_BUILTIN_VCMPEQUH }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequw, "__builtin_altivec_vcmpequw", ALTIVEC_BUILTIN_VCMPEQUW }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpeqfp, "__builtin_altivec_vcmpeqfp", ALTIVEC_BUILTIN_VCMPEQFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgefp, "__builtin_altivec_vcmpgefp", ALTIVEC_BUILTIN_VCMPGEFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtub, "__builtin_altivec_vcmpgtub", ALTIVEC_BUILTIN_VCMPGTUB }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsb, "__builtin_altivec_vcmpgtsb", ALTIVEC_BUILTIN_VCMPGTSB }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtuh, "__builtin_altivec_vcmpgtuh", ALTIVEC_BUILTIN_VCMPGTUH }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsh, "__builtin_altivec_vcmpgtsh", ALTIVEC_BUILTIN_VCMPGTSH }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtuw, "__builtin_altivec_vcmpgtuw", ALTIVEC_BUILTIN_VCMPGTUW }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsw, "__builtin_altivec_vcmpgtsw", ALTIVEC_BUILTIN_VCMPGTSW }, { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtfp, "__builtin_altivec_vcmpgtfp", ALTIVEC_BUILTIN_VCMPGTFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vctsxs, "__builtin_altivec_vctsxs", ALTIVEC_BUILTIN_VCTSXS }, { MASK_ALTIVEC, CODE_FOR_altivec_vctuxs, "__builtin_altivec_vctuxs", ALTIVEC_BUILTIN_VCTUXS }, { MASK_ALTIVEC, CODE_FOR_umaxv16qi3, "__builtin_altivec_vmaxub", ALTIVEC_BUILTIN_VMAXUB }, { MASK_ALTIVEC, CODE_FOR_smaxv16qi3, "__builtin_altivec_vmaxsb", ALTIVEC_BUILTIN_VMAXSB }, { MASK_ALTIVEC, CODE_FOR_umaxv8hi3, "__builtin_altivec_vmaxuh", ALTIVEC_BUILTIN_VMAXUH }, { MASK_ALTIVEC, CODE_FOR_smaxv8hi3, "__builtin_altivec_vmaxsh", ALTIVEC_BUILTIN_VMAXSH }, { MASK_ALTIVEC, CODE_FOR_umaxv4si3, "__builtin_altivec_vmaxuw", ALTIVEC_BUILTIN_VMAXUW }, { MASK_ALTIVEC, CODE_FOR_smaxv4si3, "__builtin_altivec_vmaxsw", ALTIVEC_BUILTIN_VMAXSW }, { MASK_ALTIVEC, CODE_FOR_smaxv4sf3, "__builtin_altivec_vmaxfp", ALTIVEC_BUILTIN_VMAXFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vmrghb, "__builtin_altivec_vmrghb", ALTIVEC_BUILTIN_VMRGHB }, { MASK_ALTIVEC, CODE_FOR_altivec_vmrghh, "__builtin_altivec_vmrghh", ALTIVEC_BUILTIN_VMRGHH }, { MASK_ALTIVEC, CODE_FOR_altivec_vmrghw, "__builtin_altivec_vmrghw", ALTIVEC_BUILTIN_VMRGHW }, { MASK_ALTIVEC, CODE_FOR_altivec_vmrglb, "__builtin_altivec_vmrglb", ALTIVEC_BUILTIN_VMRGLB }, { MASK_ALTIVEC, CODE_FOR_altivec_vmrglh, "__builtin_altivec_vmrglh", ALTIVEC_BUILTIN_VMRGLH }, { MASK_ALTIVEC, CODE_FOR_altivec_vmrglw, "__builtin_altivec_vmrglw", ALTIVEC_BUILTIN_VMRGLW }, { MASK_ALTIVEC, CODE_FOR_uminv16qi3, "__builtin_altivec_vminub", ALTIVEC_BUILTIN_VMINUB }, { MASK_ALTIVEC, CODE_FOR_sminv16qi3, "__builtin_altivec_vminsb", ALTIVEC_BUILTIN_VMINSB }, { MASK_ALTIVEC, CODE_FOR_uminv8hi3, "__builtin_altivec_vminuh", ALTIVEC_BUILTIN_VMINUH }, { MASK_ALTIVEC, CODE_FOR_sminv8hi3, "__builtin_altivec_vminsh", ALTIVEC_BUILTIN_VMINSH }, { MASK_ALTIVEC, CODE_FOR_uminv4si3, "__builtin_altivec_vminuw", ALTIVEC_BUILTIN_VMINUW }, { MASK_ALTIVEC, CODE_FOR_sminv4si3, "__builtin_altivec_vminsw", ALTIVEC_BUILTIN_VMINSW }, { MASK_ALTIVEC, CODE_FOR_sminv4sf3, "__builtin_altivec_vminfp", ALTIVEC_BUILTIN_VMINFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vmuleub, "__builtin_altivec_vmuleub", ALTIVEC_BUILTIN_VMULEUB }, { MASK_ALTIVEC, CODE_FOR_altivec_vmulesb, "__builtin_altivec_vmulesb", ALTIVEC_BUILTIN_VMULESB }, { MASK_ALTIVEC, CODE_FOR_altivec_vmuleuh, "__builtin_altivec_vmuleuh", ALTIVEC_BUILTIN_VMULEUH }, { MASK_ALTIVEC, CODE_FOR_altivec_vmulesh, "__builtin_altivec_vmulesh", ALTIVEC_BUILTIN_VMULESH }, { MASK_ALTIVEC, CODE_FOR_altivec_vmuloub, "__builtin_altivec_vmuloub", ALTIVEC_BUILTIN_VMULOUB }, { MASK_ALTIVEC, CODE_FOR_altivec_vmulosb, "__builtin_altivec_vmulosb", ALTIVEC_BUILTIN_VMULOSB }, { MASK_ALTIVEC, CODE_FOR_altivec_vmulouh, "__builtin_altivec_vmulouh", ALTIVEC_BUILTIN_VMULOUH }, { MASK_ALTIVEC, CODE_FOR_altivec_vmulosh, "__builtin_altivec_vmulosh", ALTIVEC_BUILTIN_VMULOSH }, { MASK_ALTIVEC, CODE_FOR_altivec_vnor, "__builtin_altivec_vnor", ALTIVEC_BUILTIN_VNOR }, { MASK_ALTIVEC, CODE_FOR_iorv4si3, "__builtin_altivec_vor", ALTIVEC_BUILTIN_VOR }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhum, "__builtin_altivec_vpkuhum", ALTIVEC_BUILTIN_VPKUHUM }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwum, "__builtin_altivec_vpkuwum", ALTIVEC_BUILTIN_VPKUWUM }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkpx, "__builtin_altivec_vpkpx", ALTIVEC_BUILTIN_VPKPX }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhss, "__builtin_altivec_vpkuhss", ALTIVEC_BUILTIN_VPKUHSS }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkshss, "__builtin_altivec_vpkshss", ALTIVEC_BUILTIN_VPKSHSS }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwss, "__builtin_altivec_vpkuwss", ALTIVEC_BUILTIN_VPKUWSS }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkswss, "__builtin_altivec_vpkswss", ALTIVEC_BUILTIN_VPKSWSS }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhus, "__builtin_altivec_vpkuhus", ALTIVEC_BUILTIN_VPKUHUS }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkshus, "__builtin_altivec_vpkshus", ALTIVEC_BUILTIN_VPKSHUS }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwus, "__builtin_altivec_vpkuwus", ALTIVEC_BUILTIN_VPKUWUS }, { MASK_ALTIVEC, CODE_FOR_altivec_vpkswus, "__builtin_altivec_vpkswus", ALTIVEC_BUILTIN_VPKSWUS }, { MASK_ALTIVEC, CODE_FOR_altivec_vrlb, "__builtin_altivec_vrlb", ALTIVEC_BUILTIN_VRLB }, { MASK_ALTIVEC, CODE_FOR_altivec_vrlh, "__builtin_altivec_vrlh", ALTIVEC_BUILTIN_VRLH }, { MASK_ALTIVEC, CODE_FOR_altivec_vrlw, "__builtin_altivec_vrlw", ALTIVEC_BUILTIN_VRLW }, { MASK_ALTIVEC, CODE_FOR_altivec_vslb, "__builtin_altivec_vslb", ALTIVEC_BUILTIN_VSLB }, { MASK_ALTIVEC, CODE_FOR_altivec_vslh, "__builtin_altivec_vslh", ALTIVEC_BUILTIN_VSLH }, { MASK_ALTIVEC, CODE_FOR_altivec_vslw, "__builtin_altivec_vslw", ALTIVEC_BUILTIN_VSLW }, { MASK_ALTIVEC, CODE_FOR_altivec_vsl, "__builtin_altivec_vsl", ALTIVEC_BUILTIN_VSL }, { MASK_ALTIVEC, CODE_FOR_altivec_vslo, "__builtin_altivec_vslo", ALTIVEC_BUILTIN_VSLO }, { MASK_ALTIVEC, CODE_FOR_altivec_vspltb, "__builtin_altivec_vspltb", ALTIVEC_BUILTIN_VSPLTB }, { MASK_ALTIVEC, CODE_FOR_altivec_vsplth, "__builtin_altivec_vsplth", ALTIVEC_BUILTIN_VSPLTH }, { MASK_ALTIVEC, CODE_FOR_altivec_vspltw, "__builtin_altivec_vspltw", ALTIVEC_BUILTIN_VSPLTW }, { MASK_ALTIVEC, CODE_FOR_altivec_vsrb, "__builtin_altivec_vsrb", ALTIVEC_BUILTIN_VSRB }, { MASK_ALTIVEC, CODE_FOR_altivec_vsrh, "__builtin_altivec_vsrh", ALTIVEC_BUILTIN_VSRH }, { MASK_ALTIVEC, CODE_FOR_altivec_vsrw, "__builtin_altivec_vsrw", ALTIVEC_BUILTIN_VSRW }, { MASK_ALTIVEC, CODE_FOR_altivec_vsrab, "__builtin_altivec_vsrab", ALTIVEC_BUILTIN_VSRAB }, { MASK_ALTIVEC, CODE_FOR_altivec_vsrah, "__builtin_altivec_vsrah", ALTIVEC_BUILTIN_VSRAH }, { MASK_ALTIVEC, CODE_FOR_altivec_vsraw, "__builtin_altivec_vsraw", ALTIVEC_BUILTIN_VSRAW }, { MASK_ALTIVEC, CODE_FOR_altivec_vsr, "__builtin_altivec_vsr", ALTIVEC_BUILTIN_VSR }, { MASK_ALTIVEC, CODE_FOR_altivec_vsro, "__builtin_altivec_vsro", ALTIVEC_BUILTIN_VSRO }, { MASK_ALTIVEC, CODE_FOR_subv16qi3, "__builtin_altivec_vsububm", ALTIVEC_BUILTIN_VSUBUBM }, { MASK_ALTIVEC, CODE_FOR_subv8hi3, "__builtin_altivec_vsubuhm", ALTIVEC_BUILTIN_VSUBUHM }, { MASK_ALTIVEC, CODE_FOR_subv4si3, "__builtin_altivec_vsubuwm", ALTIVEC_BUILTIN_VSUBUWM }, { MASK_ALTIVEC, CODE_FOR_subv4sf3, "__builtin_altivec_vsubfp", ALTIVEC_BUILTIN_VSUBFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vsubcuw, "__builtin_altivec_vsubcuw", ALTIVEC_BUILTIN_VSUBCUW }, { MASK_ALTIVEC, CODE_FOR_altivec_vsububs, "__builtin_altivec_vsububs", ALTIVEC_BUILTIN_VSUBUBS }, { MASK_ALTIVEC, CODE_FOR_altivec_vsubsbs, "__builtin_altivec_vsubsbs", ALTIVEC_BUILTIN_VSUBSBS }, { MASK_ALTIVEC, CODE_FOR_altivec_vsubuhs, "__builtin_altivec_vsubuhs", ALTIVEC_BUILTIN_VSUBUHS }, { MASK_ALTIVEC, CODE_FOR_altivec_vsubshs, "__builtin_altivec_vsubshs", ALTIVEC_BUILTIN_VSUBSHS }, { MASK_ALTIVEC, CODE_FOR_altivec_vsubuws, "__builtin_altivec_vsubuws", ALTIVEC_BUILTIN_VSUBUWS }, { MASK_ALTIVEC, CODE_FOR_altivec_vsubsws, "__builtin_altivec_vsubsws", ALTIVEC_BUILTIN_VSUBSWS }, { MASK_ALTIVEC, CODE_FOR_altivec_vsum4ubs, "__builtin_altivec_vsum4ubs", ALTIVEC_BUILTIN_VSUM4UBS }, { MASK_ALTIVEC, CODE_FOR_altivec_vsum4sbs, "__builtin_altivec_vsum4sbs", ALTIVEC_BUILTIN_VSUM4SBS }, { MASK_ALTIVEC, CODE_FOR_altivec_vsum4shs, "__builtin_altivec_vsum4shs", ALTIVEC_BUILTIN_VSUM4SHS }, { MASK_ALTIVEC, CODE_FOR_altivec_vsum2sws, "__builtin_altivec_vsum2sws", ALTIVEC_BUILTIN_VSUM2SWS }, { MASK_ALTIVEC, CODE_FOR_altivec_vsumsws, "__builtin_altivec_vsumsws", ALTIVEC_BUILTIN_VSUMSWS }, { MASK_ALTIVEC, CODE_FOR_xorv4si3, "__builtin_altivec_vxor", ALTIVEC_BUILTIN_VXOR }, /* Place holder, leave as first spe builtin. */ { 0, CODE_FOR_spe_evaddw, "__builtin_spe_evaddw", SPE_BUILTIN_EVADDW }, { 0, CODE_FOR_spe_evand, "__builtin_spe_evand", SPE_BUILTIN_EVAND }, { 0, CODE_FOR_spe_evandc, "__builtin_spe_evandc", SPE_BUILTIN_EVANDC }, { 0, CODE_FOR_spe_evdivws, "__builtin_spe_evdivws", SPE_BUILTIN_EVDIVWS }, { 0, CODE_FOR_spe_evdivwu, "__builtin_spe_evdivwu", SPE_BUILTIN_EVDIVWU }, { 0, CODE_FOR_spe_eveqv, "__builtin_spe_eveqv", SPE_BUILTIN_EVEQV }, { 0, CODE_FOR_spe_evfsadd, "__builtin_spe_evfsadd", SPE_BUILTIN_EVFSADD }, { 0, CODE_FOR_spe_evfsdiv, "__builtin_spe_evfsdiv", SPE_BUILTIN_EVFSDIV }, { 0, CODE_FOR_spe_evfsmul, "__builtin_spe_evfsmul", SPE_BUILTIN_EVFSMUL }, { 0, CODE_FOR_spe_evfssub, "__builtin_spe_evfssub", SPE_BUILTIN_EVFSSUB }, { 0, CODE_FOR_spe_evmergehi, "__builtin_spe_evmergehi", SPE_BUILTIN_EVMERGEHI }, { 0, CODE_FOR_spe_evmergehilo, "__builtin_spe_evmergehilo", SPE_BUILTIN_EVMERGEHILO }, { 0, CODE_FOR_spe_evmergelo, "__builtin_spe_evmergelo", SPE_BUILTIN_EVMERGELO }, { 0, CODE_FOR_spe_evmergelohi, "__builtin_spe_evmergelohi", SPE_BUILTIN_EVMERGELOHI }, { 0, CODE_FOR_spe_evmhegsmfaa, "__builtin_spe_evmhegsmfaa", SPE_BUILTIN_EVMHEGSMFAA }, { 0, CODE_FOR_spe_evmhegsmfan, "__builtin_spe_evmhegsmfan", SPE_BUILTIN_EVMHEGSMFAN }, { 0, CODE_FOR_spe_evmhegsmiaa, "__builtin_spe_evmhegsmiaa", SPE_BUILTIN_EVMHEGSMIAA }, { 0, CODE_FOR_spe_evmhegsmian, "__builtin_spe_evmhegsmian", SPE_BUILTIN_EVMHEGSMIAN }, { 0, CODE_FOR_spe_evmhegumiaa, "__builtin_spe_evmhegumiaa", SPE_BUILTIN_EVMHEGUMIAA }, { 0, CODE_FOR_spe_evmhegumian, "__builtin_spe_evmhegumian", SPE_BUILTIN_EVMHEGUMIAN }, { 0, CODE_FOR_spe_evmhesmf, "__builtin_spe_evmhesmf", SPE_BUILTIN_EVMHESMF }, { 0, CODE_FOR_spe_evmhesmfa, "__builtin_spe_evmhesmfa", SPE_BUILTIN_EVMHESMFA }, { 0, CODE_FOR_spe_evmhesmfaaw, "__builtin_spe_evmhesmfaaw", SPE_BUILTIN_EVMHESMFAAW }, { 0, CODE_FOR_spe_evmhesmfanw, "__builtin_spe_evmhesmfanw", SPE_BUILTIN_EVMHESMFANW }, { 0, CODE_FOR_spe_evmhesmi, "__builtin_spe_evmhesmi", SPE_BUILTIN_EVMHESMI }, { 0, CODE_FOR_spe_evmhesmia, "__builtin_spe_evmhesmia", SPE_BUILTIN_EVMHESMIA }, { 0, CODE_FOR_spe_evmhesmiaaw, "__builtin_spe_evmhesmiaaw", SPE_BUILTIN_EVMHESMIAAW }, { 0, CODE_FOR_spe_evmhesmianw, "__builtin_spe_evmhesmianw", SPE_BUILTIN_EVMHESMIANW }, { 0, CODE_FOR_spe_evmhessf, "__builtin_spe_evmhessf", SPE_BUILTIN_EVMHESSF }, { 0, CODE_FOR_spe_evmhessfa, "__builtin_spe_evmhessfa", SPE_BUILTIN_EVMHESSFA }, { 0, CODE_FOR_spe_evmhessfaaw, "__builtin_spe_evmhessfaaw", SPE_BUILTIN_EVMHESSFAAW }, { 0, CODE_FOR_spe_evmhessfanw, "__builtin_spe_evmhessfanw", SPE_BUILTIN_EVMHESSFANW }, { 0, CODE_FOR_spe_evmhessiaaw, "__builtin_spe_evmhessiaaw", SPE_BUILTIN_EVMHESSIAAW }, { 0, CODE_FOR_spe_evmhessianw, "__builtin_spe_evmhessianw", SPE_BUILTIN_EVMHESSIANW }, { 0, CODE_FOR_spe_evmheumi, "__builtin_spe_evmheumi", SPE_BUILTIN_EVMHEUMI }, { 0, CODE_FOR_spe_evmheumia, "__builtin_spe_evmheumia", SPE_BUILTIN_EVMHEUMIA }, { 0, CODE_FOR_spe_evmheumiaaw, "__builtin_spe_evmheumiaaw", SPE_BUILTIN_EVMHEUMIAAW }, { 0, CODE_FOR_spe_evmheumianw, "__builtin_spe_evmheumianw", SPE_BUILTIN_EVMHEUMIANW }, { 0, CODE_FOR_spe_evmheusiaaw, "__builtin_spe_evmheusiaaw", SPE_BUILTIN_EVMHEUSIAAW }, { 0, CODE_FOR_spe_evmheusianw, "__builtin_spe_evmheusianw", SPE_BUILTIN_EVMHEUSIANW }, { 0, CODE_FOR_spe_evmhogsmfaa, "__builtin_spe_evmhogsmfaa", SPE_BUILTIN_EVMHOGSMFAA }, { 0, CODE_FOR_spe_evmhogsmfan, "__builtin_spe_evmhogsmfan", SPE_BUILTIN_EVMHOGSMFAN }, { 0, CODE_FOR_spe_evmhogsmiaa, "__builtin_spe_evmhogsmiaa", SPE_BUILTIN_EVMHOGSMIAA }, { 0, CODE_FOR_spe_evmhogsmian, "__builtin_spe_evmhogsmian", SPE_BUILTIN_EVMHOGSMIAN }, { 0, CODE_FOR_spe_evmhogumiaa, "__builtin_spe_evmhogumiaa", SPE_BUILTIN_EVMHOGUMIAA }, { 0, CODE_FOR_spe_evmhogumian, "__builtin_spe_evmhogumian", SPE_BUILTIN_EVMHOGUMIAN }, { 0, CODE_FOR_spe_evmhosmf, "__builtin_spe_evmhosmf", SPE_BUILTIN_EVMHOSMF }, { 0, CODE_FOR_spe_evmhosmfa, "__builtin_spe_evmhosmfa", SPE_BUILTIN_EVMHOSMFA }, { 0, CODE_FOR_spe_evmhosmfaaw, "__builtin_spe_evmhosmfaaw", SPE_BUILTIN_EVMHOSMFAAW }, { 0, CODE_FOR_spe_evmhosmfanw, "__builtin_spe_evmhosmfanw", SPE_BUILTIN_EVMHOSMFANW }, { 0, CODE_FOR_spe_evmhosmi, "__builtin_spe_evmhosmi", SPE_BUILTIN_EVMHOSMI }, { 0, CODE_FOR_spe_evmhosmia, "__builtin_spe_evmhosmia", SPE_BUILTIN_EVMHOSMIA }, { 0, CODE_FOR_spe_evmhosmiaaw, "__builtin_spe_evmhosmiaaw", SPE_BUILTIN_EVMHOSMIAAW }, { 0, CODE_FOR_spe_evmhosmianw, "__builtin_spe_evmhosmianw", SPE_BUILTIN_EVMHOSMIANW }, { 0, CODE_FOR_spe_evmhossf, "__builtin_spe_evmhossf", SPE_BUILTIN_EVMHOSSF }, { 0, CODE_FOR_spe_evmhossfa, "__builtin_spe_evmhossfa", SPE_BUILTIN_EVMHOSSFA }, { 0, CODE_FOR_spe_evmhossfaaw, "__builtin_spe_evmhossfaaw", SPE_BUILTIN_EVMHOSSFAAW }, { 0, CODE_FOR_spe_evmhossfanw, "__builtin_spe_evmhossfanw", SPE_BUILTIN_EVMHOSSFANW }, { 0, CODE_FOR_spe_evmhossiaaw, "__builtin_spe_evmhossiaaw", SPE_BUILTIN_EVMHOSSIAAW }, { 0, CODE_FOR_spe_evmhossianw, "__builtin_spe_evmhossianw", SPE_BUILTIN_EVMHOSSIANW }, { 0, CODE_FOR_spe_evmhoumi, "__builtin_spe_evmhoumi", SPE_BUILTIN_EVMHOUMI }, { 0, CODE_FOR_spe_evmhoumia, "__builtin_spe_evmhoumia", SPE_BUILTIN_EVMHOUMIA }, { 0, CODE_FOR_spe_evmhoumiaaw, "__builtin_spe_evmhoumiaaw", SPE_BUILTIN_EVMHOUMIAAW }, { 0, CODE_FOR_spe_evmhoumianw, "__builtin_spe_evmhoumianw", SPE_BUILTIN_EVMHOUMIANW }, { 0, CODE_FOR_spe_evmhousiaaw, "__builtin_spe_evmhousiaaw", SPE_BUILTIN_EVMHOUSIAAW }, { 0, CODE_FOR_spe_evmhousianw, "__builtin_spe_evmhousianw", SPE_BUILTIN_EVMHOUSIANW }, { 0, CODE_FOR_spe_evmwhsmf, "__builtin_spe_evmwhsmf", SPE_BUILTIN_EVMWHSMF }, { 0, CODE_FOR_spe_evmwhsmfa, "__builtin_spe_evmwhsmfa", SPE_BUILTIN_EVMWHSMFA }, { 0, CODE_FOR_spe_evmwhsmi, "__builtin_spe_evmwhsmi", SPE_BUILTIN_EVMWHSMI }, { 0, CODE_FOR_spe_evmwhsmia, "__builtin_spe_evmwhsmia", SPE_BUILTIN_EVMWHSMIA }, { 0, CODE_FOR_spe_evmwhssf, "__builtin_spe_evmwhssf", SPE_BUILTIN_EVMWHSSF }, { 0, CODE_FOR_spe_evmwhssfa, "__builtin_spe_evmwhssfa", SPE_BUILTIN_EVMWHSSFA }, { 0, CODE_FOR_spe_evmwhumi, "__builtin_spe_evmwhumi", SPE_BUILTIN_EVMWHUMI }, { 0, CODE_FOR_spe_evmwhumia, "__builtin_spe_evmwhumia", SPE_BUILTIN_EVMWHUMIA }, { 0, CODE_FOR_spe_evmwlsmiaaw, "__builtin_spe_evmwlsmiaaw", SPE_BUILTIN_EVMWLSMIAAW }, { 0, CODE_FOR_spe_evmwlsmianw, "__builtin_spe_evmwlsmianw", SPE_BUILTIN_EVMWLSMIANW }, { 0, CODE_FOR_spe_evmwlssiaaw, "__builtin_spe_evmwlssiaaw", SPE_BUILTIN_EVMWLSSIAAW }, { 0, CODE_FOR_spe_evmwlssianw, "__builtin_spe_evmwlssianw", SPE_BUILTIN_EVMWLSSIANW }, { 0, CODE_FOR_spe_evmwlumi, "__builtin_spe_evmwlumi", SPE_BUILTIN_EVMWLUMI }, { 0, CODE_FOR_spe_evmwlumia, "__builtin_spe_evmwlumia", SPE_BUILTIN_EVMWLUMIA }, { 0, CODE_FOR_spe_evmwlumiaaw, "__builtin_spe_evmwlumiaaw", SPE_BUILTIN_EVMWLUMIAAW }, { 0, CODE_FOR_spe_evmwlumianw, "__builtin_spe_evmwlumianw", SPE_BUILTIN_EVMWLUMIANW }, { 0, CODE_FOR_spe_evmwlusiaaw, "__builtin_spe_evmwlusiaaw", SPE_BUILTIN_EVMWLUSIAAW }, { 0, CODE_FOR_spe_evmwlusianw, "__builtin_spe_evmwlusianw", SPE_BUILTIN_EVMWLUSIANW }, { 0, CODE_FOR_spe_evmwsmf, "__builtin_spe_evmwsmf", SPE_BUILTIN_EVMWSMF }, { 0, CODE_FOR_spe_evmwsmfa, "__builtin_spe_evmwsmfa", SPE_BUILTIN_EVMWSMFA }, { 0, CODE_FOR_spe_evmwsmfaa, "__builtin_spe_evmwsmfaa", SPE_BUILTIN_EVMWSMFAA }, { 0, CODE_FOR_spe_evmwsmfan, "__builtin_spe_evmwsmfan", SPE_BUILTIN_EVMWSMFAN }, { 0, CODE_FOR_spe_evmwsmi, "__builtin_spe_evmwsmi", SPE_BUILTIN_EVMWSMI }, { 0, CODE_FOR_spe_evmwsmia, "__builtin_spe_evmwsmia", SPE_BUILTIN_EVMWSMIA }, { 0, CODE_FOR_spe_evmwsmiaa, "__builtin_spe_evmwsmiaa", SPE_BUILTIN_EVMWSMIAA }, { 0, CODE_FOR_spe_evmwsmian, "__builtin_spe_evmwsmian", SPE_BUILTIN_EVMWSMIAN }, { 0, CODE_FOR_spe_evmwssf, "__builtin_spe_evmwssf", SPE_BUILTIN_EVMWSSF }, { 0, CODE_FOR_spe_evmwssfa, "__builtin_spe_evmwssfa", SPE_BUILTIN_EVMWSSFA }, { 0, CODE_FOR_spe_evmwssfaa, "__builtin_spe_evmwssfaa", SPE_BUILTIN_EVMWSSFAA }, { 0, CODE_FOR_spe_evmwssfan, "__builtin_spe_evmwssfan", SPE_BUILTIN_EVMWSSFAN }, { 0, CODE_FOR_spe_evmwumi, "__builtin_spe_evmwumi", SPE_BUILTIN_EVMWUMI }, { 0, CODE_FOR_spe_evmwumia, "__builtin_spe_evmwumia", SPE_BUILTIN_EVMWUMIA }, { 0, CODE_FOR_spe_evmwumiaa, "__builtin_spe_evmwumiaa", SPE_BUILTIN_EVMWUMIAA }, { 0, CODE_FOR_spe_evmwumian, "__builtin_spe_evmwumian", SPE_BUILTIN_EVMWUMIAN }, { 0, CODE_FOR_spe_evnand, "__builtin_spe_evnand", SPE_BUILTIN_EVNAND }, { 0, CODE_FOR_spe_evnor, "__builtin_spe_evnor", SPE_BUILTIN_EVNOR }, { 0, CODE_FOR_spe_evor, "__builtin_spe_evor", SPE_BUILTIN_EVOR }, { 0, CODE_FOR_spe_evorc, "__builtin_spe_evorc", SPE_BUILTIN_EVORC }, { 0, CODE_FOR_spe_evrlw, "__builtin_spe_evrlw", SPE_BUILTIN_EVRLW }, { 0, CODE_FOR_spe_evslw, "__builtin_spe_evslw", SPE_BUILTIN_EVSLW }, { 0, CODE_FOR_spe_evsrws, "__builtin_spe_evsrws", SPE_BUILTIN_EVSRWS }, { 0, CODE_FOR_spe_evsrwu, "__builtin_spe_evsrwu", SPE_BUILTIN_EVSRWU }, { 0, CODE_FOR_spe_evsubfw, "__builtin_spe_evsubfw", SPE_BUILTIN_EVSUBFW }, /* SPE binary operations expecting a 5-bit unsigned literal. */ { 0, CODE_FOR_spe_evaddiw, "__builtin_spe_evaddiw", SPE_BUILTIN_EVADDIW }, { 0, CODE_FOR_spe_evrlwi, "__builtin_spe_evrlwi", SPE_BUILTIN_EVRLWI }, { 0, CODE_FOR_spe_evslwi, "__builtin_spe_evslwi", SPE_BUILTIN_EVSLWI }, { 0, CODE_FOR_spe_evsrwis, "__builtin_spe_evsrwis", SPE_BUILTIN_EVSRWIS }, { 0, CODE_FOR_spe_evsrwiu, "__builtin_spe_evsrwiu", SPE_BUILTIN_EVSRWIU }, { 0, CODE_FOR_spe_evsubifw, "__builtin_spe_evsubifw", SPE_BUILTIN_EVSUBIFW }, { 0, CODE_FOR_spe_evmwhssfaa, "__builtin_spe_evmwhssfaa", SPE_BUILTIN_EVMWHSSFAA }, { 0, CODE_FOR_spe_evmwhssmaa, "__builtin_spe_evmwhssmaa", SPE_BUILTIN_EVMWHSSMAA }, { 0, CODE_FOR_spe_evmwhsmfaa, "__builtin_spe_evmwhsmfaa", SPE_BUILTIN_EVMWHSMFAA }, { 0, CODE_FOR_spe_evmwhsmiaa, "__builtin_spe_evmwhsmiaa", SPE_BUILTIN_EVMWHSMIAA }, { 0, CODE_FOR_spe_evmwhusiaa, "__builtin_spe_evmwhusiaa", SPE_BUILTIN_EVMWHUSIAA }, { 0, CODE_FOR_spe_evmwhumiaa, "__builtin_spe_evmwhumiaa", SPE_BUILTIN_EVMWHUMIAA }, { 0, CODE_FOR_spe_evmwhssfan, "__builtin_spe_evmwhssfan", SPE_BUILTIN_EVMWHSSFAN }, { 0, CODE_FOR_spe_evmwhssian, "__builtin_spe_evmwhssian", SPE_BUILTIN_EVMWHSSIAN }, { 0, CODE_FOR_spe_evmwhsmfan, "__builtin_spe_evmwhsmfan", SPE_BUILTIN_EVMWHSMFAN }, { 0, CODE_FOR_spe_evmwhsmian, "__builtin_spe_evmwhsmian", SPE_BUILTIN_EVMWHSMIAN }, { 0, CODE_FOR_spe_evmwhusian, "__builtin_spe_evmwhusian", SPE_BUILTIN_EVMWHUSIAN }, { 0, CODE_FOR_spe_evmwhumian, "__builtin_spe_evmwhumian", SPE_BUILTIN_EVMWHUMIAN }, { 0, CODE_FOR_spe_evmwhgssfaa, "__builtin_spe_evmwhgssfaa", SPE_BUILTIN_EVMWHGSSFAA }, { 0, CODE_FOR_spe_evmwhgsmfaa, "__builtin_spe_evmwhgsmfaa", SPE_BUILTIN_EVMWHGSMFAA }, { 0, CODE_FOR_spe_evmwhgsmiaa, "__builtin_spe_evmwhgsmiaa", SPE_BUILTIN_EVMWHGSMIAA }, { 0, CODE_FOR_spe_evmwhgumiaa, "__builtin_spe_evmwhgumiaa", SPE_BUILTIN_EVMWHGUMIAA }, { 0, CODE_FOR_spe_evmwhgssfan, "__builtin_spe_evmwhgssfan", SPE_BUILTIN_EVMWHGSSFAN }, { 0, CODE_FOR_spe_evmwhgsmfan, "__builtin_spe_evmwhgsmfan", SPE_BUILTIN_EVMWHGSMFAN }, { 0, CODE_FOR_spe_evmwhgsmian, "__builtin_spe_evmwhgsmian", SPE_BUILTIN_EVMWHGSMIAN }, { 0, CODE_FOR_spe_evmwhgumian, "__builtin_spe_evmwhgumian", SPE_BUILTIN_EVMWHGUMIAN }, { 0, CODE_FOR_spe_brinc, "__builtin_spe_brinc", SPE_BUILTIN_BRINC }, /* Place-holder. Leave as last binary SPE builtin. */ { 0, CODE_FOR_spe_evxor, "__builtin_spe_evxor", SPE_BUILTIN_EVXOR }, }; /* AltiVec predicates. */ struct builtin_description_predicates { const unsigned int mask; const enum insn_code icode; const char *opcode; const char *const name; const enum rs6000_builtins code; }; static const struct builtin_description_predicates bdesc_altivec_preds[] = { { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpbfp.", "__builtin_altivec_vcmpbfp_p", ALTIVEC_BUILTIN_VCMPBFP_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpeqfp.", "__builtin_altivec_vcmpeqfp_p", ALTIVEC_BUILTIN_VCMPEQFP_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpgefp.", "__builtin_altivec_vcmpgefp_p", ALTIVEC_BUILTIN_VCMPGEFP_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpgtfp.", "__builtin_altivec_vcmpgtfp_p", ALTIVEC_BUILTIN_VCMPGTFP_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpequw.", "__builtin_altivec_vcmpequw_p", ALTIVEC_BUILTIN_VCMPEQUW_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpgtsw.", "__builtin_altivec_vcmpgtsw_p", ALTIVEC_BUILTIN_VCMPGTSW_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpgtuw.", "__builtin_altivec_vcmpgtuw_p", ALTIVEC_BUILTIN_VCMPGTUW_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpgtuh.", "__builtin_altivec_vcmpgtuh_p", ALTIVEC_BUILTIN_VCMPGTUH_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpgtsh.", "__builtin_altivec_vcmpgtsh_p", ALTIVEC_BUILTIN_VCMPGTSH_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpequh.", "__builtin_altivec_vcmpequh_p", ALTIVEC_BUILTIN_VCMPEQUH_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpequb.", "__builtin_altivec_vcmpequb_p", ALTIVEC_BUILTIN_VCMPEQUB_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpgtsb.", "__builtin_altivec_vcmpgtsb_p", ALTIVEC_BUILTIN_VCMPGTSB_P }, { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpgtub.", "__builtin_altivec_vcmpgtub_p", ALTIVEC_BUILTIN_VCMPGTUB_P } }; /* SPE predicates. */ static struct builtin_description bdesc_spe_predicates[] = { /* Place-holder. Leave as first. */ { 0, CODE_FOR_spe_evcmpeq, "__builtin_spe_evcmpeq", SPE_BUILTIN_EVCMPEQ }, { 0, CODE_FOR_spe_evcmpgts, "__builtin_spe_evcmpgts", SPE_BUILTIN_EVCMPGTS }, { 0, CODE_FOR_spe_evcmpgtu, "__builtin_spe_evcmpgtu", SPE_BUILTIN_EVCMPGTU }, { 0, CODE_FOR_spe_evcmplts, "__builtin_spe_evcmplts", SPE_BUILTIN_EVCMPLTS }, { 0, CODE_FOR_spe_evcmpltu, "__builtin_spe_evcmpltu", SPE_BUILTIN_EVCMPLTU }, { 0, CODE_FOR_spe_evfscmpeq, "__builtin_spe_evfscmpeq", SPE_BUILTIN_EVFSCMPEQ }, { 0, CODE_FOR_spe_evfscmpgt, "__builtin_spe_evfscmpgt", SPE_BUILTIN_EVFSCMPGT }, { 0, CODE_FOR_spe_evfscmplt, "__builtin_spe_evfscmplt", SPE_BUILTIN_EVFSCMPLT }, { 0, CODE_FOR_spe_evfststeq, "__builtin_spe_evfststeq", SPE_BUILTIN_EVFSTSTEQ }, { 0, CODE_FOR_spe_evfststgt, "__builtin_spe_evfststgt", SPE_BUILTIN_EVFSTSTGT }, /* Place-holder. Leave as last. */ { 0, CODE_FOR_spe_evfststlt, "__builtin_spe_evfststlt", SPE_BUILTIN_EVFSTSTLT }, }; /* SPE evsel predicates. */ static struct builtin_description bdesc_spe_evsel[] = { /* Place-holder. Leave as first. */ { 0, CODE_FOR_spe_evcmpgts, "__builtin_spe_evsel_gts", SPE_BUILTIN_EVSEL_CMPGTS }, { 0, CODE_FOR_spe_evcmpgtu, "__builtin_spe_evsel_gtu", SPE_BUILTIN_EVSEL_CMPGTU }, { 0, CODE_FOR_spe_evcmplts, "__builtin_spe_evsel_lts", SPE_BUILTIN_EVSEL_CMPLTS }, { 0, CODE_FOR_spe_evcmpltu, "__builtin_spe_evsel_ltu", SPE_BUILTIN_EVSEL_CMPLTU }, { 0, CODE_FOR_spe_evcmpeq, "__builtin_spe_evsel_eq", SPE_BUILTIN_EVSEL_CMPEQ }, { 0, CODE_FOR_spe_evfscmpgt, "__builtin_spe_evsel_fsgt", SPE_BUILTIN_EVSEL_FSCMPGT }, { 0, CODE_FOR_spe_evfscmplt, "__builtin_spe_evsel_fslt", SPE_BUILTIN_EVSEL_FSCMPLT }, { 0, CODE_FOR_spe_evfscmpeq, "__builtin_spe_evsel_fseq", SPE_BUILTIN_EVSEL_FSCMPEQ }, { 0, CODE_FOR_spe_evfststgt, "__builtin_spe_evsel_fststgt", SPE_BUILTIN_EVSEL_FSTSTGT }, { 0, CODE_FOR_spe_evfststlt, "__builtin_spe_evsel_fststlt", SPE_BUILTIN_EVSEL_FSTSTLT }, /* Place-holder. Leave as last. */ { 0, CODE_FOR_spe_evfststeq, "__builtin_spe_evsel_fststeq", SPE_BUILTIN_EVSEL_FSTSTEQ }, }; /* ABS* opreations. */ static const struct builtin_description bdesc_abs[] = { { MASK_ALTIVEC, CODE_FOR_absv4si2, "__builtin_altivec_abs_v4si", ALTIVEC_BUILTIN_ABS_V4SI }, { MASK_ALTIVEC, CODE_FOR_absv8hi2, "__builtin_altivec_abs_v8hi", ALTIVEC_BUILTIN_ABS_V8HI }, { MASK_ALTIVEC, CODE_FOR_absv4sf2, "__builtin_altivec_abs_v4sf", ALTIVEC_BUILTIN_ABS_V4SF }, { MASK_ALTIVEC, CODE_FOR_absv16qi2, "__builtin_altivec_abs_v16qi", ALTIVEC_BUILTIN_ABS_V16QI }, { MASK_ALTIVEC, CODE_FOR_altivec_abss_v4si, "__builtin_altivec_abss_v4si", ALTIVEC_BUILTIN_ABSS_V4SI }, { MASK_ALTIVEC, CODE_FOR_altivec_abss_v8hi, "__builtin_altivec_abss_v8hi", ALTIVEC_BUILTIN_ABSS_V8HI }, { MASK_ALTIVEC, CODE_FOR_altivec_abss_v16qi, "__builtin_altivec_abss_v16qi", ALTIVEC_BUILTIN_ABSS_V16QI } }; /* Simple unary operations: VECb = foo (unsigned literal) or VECb = foo (VECa). */ static struct builtin_description bdesc_1arg[] = { { MASK_ALTIVEC, CODE_FOR_altivec_vexptefp, "__builtin_altivec_vexptefp", ALTIVEC_BUILTIN_VEXPTEFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vlogefp, "__builtin_altivec_vlogefp", ALTIVEC_BUILTIN_VLOGEFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vrefp, "__builtin_altivec_vrefp", ALTIVEC_BUILTIN_VREFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vrfim, "__builtin_altivec_vrfim", ALTIVEC_BUILTIN_VRFIM }, { MASK_ALTIVEC, CODE_FOR_altivec_vrfin, "__builtin_altivec_vrfin", ALTIVEC_BUILTIN_VRFIN }, { MASK_ALTIVEC, CODE_FOR_altivec_vrfip, "__builtin_altivec_vrfip", ALTIVEC_BUILTIN_VRFIP }, { MASK_ALTIVEC, CODE_FOR_ftruncv4sf2, "__builtin_altivec_vrfiz", ALTIVEC_BUILTIN_VRFIZ }, { MASK_ALTIVEC, CODE_FOR_altivec_vrsqrtefp, "__builtin_altivec_vrsqrtefp", ALTIVEC_BUILTIN_VRSQRTEFP }, { MASK_ALTIVEC, CODE_FOR_altivec_vspltisb, "__builtin_altivec_vspltisb", ALTIVEC_BUILTIN_VSPLTISB }, { MASK_ALTIVEC, CODE_FOR_altivec_vspltish, "__builtin_altivec_vspltish", ALTIVEC_BUILTIN_VSPLTISH }, { MASK_ALTIVEC, CODE_FOR_altivec_vspltisw, "__builtin_altivec_vspltisw", ALTIVEC_BUILTIN_VSPLTISW }, { MASK_ALTIVEC, CODE_FOR_altivec_vupkhsb, "__builtin_altivec_vupkhsb", ALTIVEC_BUILTIN_VUPKHSB }, { MASK_ALTIVEC, CODE_FOR_altivec_vupkhpx, "__builtin_altivec_vupkhpx", ALTIVEC_BUILTIN_VUPKHPX }, { MASK_ALTIVEC, CODE_FOR_altivec_vupkhsh, "__builtin_altivec_vupkhsh", ALTIVEC_BUILTIN_VUPKHSH }, { MASK_ALTIVEC, CODE_FOR_altivec_vupklsb, "__builtin_altivec_vupklsb", ALTIVEC_BUILTIN_VUPKLSB }, { MASK_ALTIVEC, CODE_FOR_altivec_vupklpx, "__builtin_altivec_vupklpx", ALTIVEC_BUILTIN_VUPKLPX }, { MASK_ALTIVEC, CODE_FOR_altivec_vupklsh, "__builtin_altivec_vupklsh", ALTIVEC_BUILTIN_VUPKLSH }, /* The SPE unary builtins must start with SPE_BUILTIN_EVABS and end with SPE_BUILTIN_EVSUBFUSIAAW. */ { 0, CODE_FOR_spe_evabs, "__builtin_spe_evabs", SPE_BUILTIN_EVABS }, { 0, CODE_FOR_spe_evaddsmiaaw, "__builtin_spe_evaddsmiaaw", SPE_BUILTIN_EVADDSMIAAW }, { 0, CODE_FOR_spe_evaddssiaaw, "__builtin_spe_evaddssiaaw", SPE_BUILTIN_EVADDSSIAAW }, { 0, CODE_FOR_spe_evaddumiaaw, "__builtin_spe_evaddumiaaw", SPE_BUILTIN_EVADDUMIAAW }, { 0, CODE_FOR_spe_evaddusiaaw, "__builtin_spe_evaddusiaaw", SPE_BUILTIN_EVADDUSIAAW }, { 0, CODE_FOR_spe_evcntlsw, "__builtin_spe_evcntlsw", SPE_BUILTIN_EVCNTLSW }, { 0, CODE_FOR_spe_evcntlzw, "__builtin_spe_evcntlzw", SPE_BUILTIN_EVCNTLZW }, { 0, CODE_FOR_spe_evextsb, "__builtin_spe_evextsb", SPE_BUILTIN_EVEXTSB }, { 0, CODE_FOR_spe_evextsh, "__builtin_spe_evextsh", SPE_BUILTIN_EVEXTSH }, { 0, CODE_FOR_spe_evfsabs, "__builtin_spe_evfsabs", SPE_BUILTIN_EVFSABS }, { 0, CODE_FOR_spe_evfscfsf, "__builtin_spe_evfscfsf", SPE_BUILTIN_EVFSCFSF }, { 0, CODE_FOR_spe_evfscfsi, "__builtin_spe_evfscfsi", SPE_BUILTIN_EVFSCFSI }, { 0, CODE_FOR_spe_evfscfuf, "__builtin_spe_evfscfuf", SPE_BUILTIN_EVFSCFUF }, { 0, CODE_FOR_spe_evfscfui, "__builtin_spe_evfscfui", SPE_BUILTIN_EVFSCFUI }, { 0, CODE_FOR_spe_evfsctsf, "__builtin_spe_evfsctsf", SPE_BUILTIN_EVFSCTSF }, { 0, CODE_FOR_spe_evfsctsi, "__builtin_spe_evfsctsi", SPE_BUILTIN_EVFSCTSI }, { 0, CODE_FOR_spe_evfsctsiz, "__builtin_spe_evfsctsiz", SPE_BUILTIN_EVFSCTSIZ }, { 0, CODE_FOR_spe_evfsctuf, "__builtin_spe_evfsctuf", SPE_BUILTIN_EVFSCTUF }, { 0, CODE_FOR_spe_evfsctui, "__builtin_spe_evfsctui", SPE_BUILTIN_EVFSCTUI }, { 0, CODE_FOR_spe_evfsctuiz, "__builtin_spe_evfsctuiz", SPE_BUILTIN_EVFSCTUIZ }, { 0, CODE_FOR_spe_evfsnabs, "__builtin_spe_evfsnabs", SPE_BUILTIN_EVFSNABS }, { 0, CODE_FOR_spe_evfsneg, "__builtin_spe_evfsneg", SPE_BUILTIN_EVFSNEG }, { 0, CODE_FOR_spe_evmra, "__builtin_spe_evmra", SPE_BUILTIN_EVMRA }, { 0, CODE_FOR_spe_evneg, "__builtin_spe_evneg", SPE_BUILTIN_EVNEG }, { 0, CODE_FOR_spe_evrndw, "__builtin_spe_evrndw", SPE_BUILTIN_EVRNDW }, { 0, CODE_FOR_spe_evsubfsmiaaw, "__builtin_spe_evsubfsmiaaw", SPE_BUILTIN_EVSUBFSMIAAW }, { 0, CODE_FOR_spe_evsubfssiaaw, "__builtin_spe_evsubfssiaaw", SPE_BUILTIN_EVSUBFSSIAAW }, { 0, CODE_FOR_spe_evsubfumiaaw, "__builtin_spe_evsubfumiaaw", SPE_BUILTIN_EVSUBFUMIAAW }, { 0, CODE_FOR_spe_evsplatfi, "__builtin_spe_evsplatfi", SPE_BUILTIN_EVSPLATFI }, { 0, CODE_FOR_spe_evsplati, "__builtin_spe_evsplati", SPE_BUILTIN_EVSPLATI }, /* Place-holder. Leave as last unary SPE builtin. */ { 0, CODE_FOR_spe_evsubfusiaaw, "__builtin_spe_evsubfusiaaw", SPE_BUILTIN_EVSUBFUSIAAW }, }; static rtx rs6000_expand_unop_builtin (icode, arglist, target) enum insn_code icode; tree arglist; rtx target; { rtx pat; tree arg0 = TREE_VALUE (arglist); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; if (icode == CODE_FOR_nothing) /* Builtin not supported on this processor. */ return 0; /* If we got invalid arguments bail out before generating bad rtl. */ if (arg0 == error_mark_node) return const0_rtx; if (icode == CODE_FOR_altivec_vspltisb || icode == CODE_FOR_altivec_vspltish || icode == CODE_FOR_altivec_vspltisw || icode == CODE_FOR_spe_evsplatfi || icode == CODE_FOR_spe_evsplati) { /* Only allow 5-bit *signed* literals. */ if (GET_CODE (op0) != CONST_INT || INTVAL (op0) > 0x1f || INTVAL (op0) < -0x1f) { error ("argument 1 must be a 5-bit signed literal"); return const0_rtx; } } if (target == 0 || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); pat = GEN_FCN (icode) (target, op0); if (! pat) return 0; emit_insn (pat); return target; } static rtx altivec_expand_abs_builtin (icode, arglist, target) enum insn_code icode; tree arglist; rtx target; { rtx pat, scratch1, scratch2; tree arg0 = TREE_VALUE (arglist); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; /* If we have invalid arguments, bail out before generating bad rtl. */ if (arg0 == error_mark_node) return const0_rtx; if (target == 0 || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); scratch1 = gen_reg_rtx (mode0); scratch2 = gen_reg_rtx (mode0); pat = GEN_FCN (icode) (target, op0, scratch1, scratch2); if (! pat) return 0; emit_insn (pat); return target; } static rtx rs6000_expand_binop_builtin (icode, arglist, target) enum insn_code icode; tree arglist; rtx target; { rtx pat; tree arg0 = TREE_VALUE (arglist); tree arg1 = TREE_VALUE (TREE_CHAIN (arglist)); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; enum machine_mode mode1 = insn_data[icode].operand[2].mode; if (icode == CODE_FOR_nothing) /* Builtin not supported on this processor. */ return 0; /* If we got invalid arguments bail out before generating bad rtl. */ if (arg0 == error_mark_node || arg1 == error_mark_node) return const0_rtx; if (icode == CODE_FOR_altivec_vcfux || icode == CODE_FOR_altivec_vcfsx || icode == CODE_FOR_altivec_vctsxs || icode == CODE_FOR_altivec_vctuxs || icode == CODE_FOR_altivec_vspltb || icode == CODE_FOR_altivec_vsplth || icode == CODE_FOR_altivec_vspltw || icode == CODE_FOR_spe_evaddiw || icode == CODE_FOR_spe_evldd || icode == CODE_FOR_spe_evldh || icode == CODE_FOR_spe_evldw || icode == CODE_FOR_spe_evlhhesplat || icode == CODE_FOR_spe_evlhhossplat || icode == CODE_FOR_spe_evlhhousplat || icode == CODE_FOR_spe_evlwhe || icode == CODE_FOR_spe_evlwhos || icode == CODE_FOR_spe_evlwhou || icode == CODE_FOR_spe_evlwhsplat || icode == CODE_FOR_spe_evlwwsplat || icode == CODE_FOR_spe_evrlwi || icode == CODE_FOR_spe_evslwi || icode == CODE_FOR_spe_evsrwis || icode == CODE_FOR_spe_evsrwiu) { /* Only allow 5-bit unsigned literals. */ if (TREE_CODE (arg1) != INTEGER_CST || TREE_INT_CST_LOW (arg1) & ~0x1f) { error ("argument 2 must be a 5-bit unsigned literal"); return const0_rtx; } } if (target == 0 || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (! (*insn_data[icode].operand[2].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return 0; emit_insn (pat); return target; } static rtx altivec_expand_predicate_builtin (icode, opcode, arglist, target) enum insn_code icode; const char *opcode; tree arglist; rtx target; { rtx pat, scratch; tree cr6_form = TREE_VALUE (arglist); tree arg0 = TREE_VALUE (TREE_CHAIN (arglist)); tree arg1 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); enum machine_mode tmode = SImode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; enum machine_mode mode1 = insn_data[icode].operand[2].mode; int cr6_form_int; if (TREE_CODE (cr6_form) != INTEGER_CST) { error ("argument 1 of __builtin_altivec_predicate must be a constant"); return const0_rtx; } else cr6_form_int = TREE_INT_CST_LOW (cr6_form); if (mode0 != mode1) abort (); /* If we have invalid arguments, bail out before generating bad rtl. */ if (arg0 == error_mark_node || arg1 == error_mark_node) return const0_rtx; if (target == 0 || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (! (*insn_data[icode].operand[2].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); scratch = gen_reg_rtx (mode0); pat = GEN_FCN (icode) (scratch, op0, op1, gen_rtx (SYMBOL_REF, Pmode, opcode)); if (! pat) return 0; emit_insn (pat); /* The vec_any* and vec_all* predicates use the same opcodes for two different operations, but the bits in CR6 will be different depending on what information we want. So we have to play tricks with CR6 to get the right bits out. If you think this is disgusting, look at the specs for the AltiVec predicates. */ switch (cr6_form_int) { case 0: emit_insn (gen_cr6_test_for_zero (target)); break; case 1: emit_insn (gen_cr6_test_for_zero_reverse (target)); break; case 2: emit_insn (gen_cr6_test_for_lt (target)); break; case 3: emit_insn (gen_cr6_test_for_lt_reverse (target)); break; default: error ("argument 1 of __builtin_altivec_predicate is out of range"); break; } return target; } static rtx altivec_expand_stv_builtin (icode, arglist) enum insn_code icode; tree arglist; { tree arg0 = TREE_VALUE (arglist); tree arg1 = TREE_VALUE (TREE_CHAIN (arglist)); tree arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); rtx op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0); rtx pat; enum machine_mode mode0 = insn_data[icode].operand[0].mode; enum machine_mode mode1 = insn_data[icode].operand[1].mode; enum machine_mode mode2 = insn_data[icode].operand[2].mode; /* Invalid arguments. Bail before doing anything stoopid! */ if (arg0 == error_mark_node || arg1 == error_mark_node || arg2 == error_mark_node) return const0_rtx; if (! (*insn_data[icode].operand[2].predicate) (op0, mode2)) op0 = copy_to_mode_reg (mode2, op0); if (! (*insn_data[icode].operand[0].predicate) (op1, mode0)) op1 = copy_to_mode_reg (mode0, op1); if (! (*insn_data[icode].operand[1].predicate) (op2, mode1)) op2 = copy_to_mode_reg (mode1, op2); pat = GEN_FCN (icode) (op1, op2, op0); if (pat) emit_insn (pat); return NULL_RTX; } static rtx rs6000_expand_ternop_builtin (icode, arglist, target) enum insn_code icode; tree arglist; rtx target; { rtx pat; tree arg0 = TREE_VALUE (arglist); tree arg1 = TREE_VALUE (TREE_CHAIN (arglist)); tree arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); rtx op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; enum machine_mode mode1 = insn_data[icode].operand[2].mode; enum machine_mode mode2 = insn_data[icode].operand[3].mode; if (icode == CODE_FOR_nothing) /* Builtin not supported on this processor. */ return 0; /* If we got invalid arguments bail out before generating bad rtl. */ if (arg0 == error_mark_node || arg1 == error_mark_node || arg2 == error_mark_node) return const0_rtx; if (icode == CODE_FOR_altivec_vsldoi_4sf || icode == CODE_FOR_altivec_vsldoi_4si || icode == CODE_FOR_altivec_vsldoi_8hi || icode == CODE_FOR_altivec_vsldoi_16qi) { /* Only allow 4-bit unsigned literals. */ if (TREE_CODE (arg2) != INTEGER_CST || TREE_INT_CST_LOW (arg2) & ~0xf) { error ("argument 3 must be a 4-bit unsigned literal"); return const0_rtx; } } if (target == 0 || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (! (*insn_data[icode].operand[2].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); if (! (*insn_data[icode].operand[3].predicate) (op2, mode2)) op2 = copy_to_mode_reg (mode2, op2); pat = GEN_FCN (icode) (target, op0, op1, op2); if (! pat) return 0; emit_insn (pat); return target; } /* Expand the lvx builtins. */ static rtx altivec_expand_ld_builtin (exp, target, expandedp) tree exp; rtx target; bool *expandedp; { tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); unsigned int fcode = DECL_FUNCTION_CODE (fndecl); tree arg0; enum machine_mode tmode, mode0; rtx pat, op0; enum insn_code icode; switch (fcode) { case ALTIVEC_BUILTIN_LD_INTERNAL_16qi: icode = CODE_FOR_altivec_lvx_16qi; break; case ALTIVEC_BUILTIN_LD_INTERNAL_8hi: icode = CODE_FOR_altivec_lvx_8hi; break; case ALTIVEC_BUILTIN_LD_INTERNAL_4si: icode = CODE_FOR_altivec_lvx_4si; break; case ALTIVEC_BUILTIN_LD_INTERNAL_4sf: icode = CODE_FOR_altivec_lvx_4sf; break; default: *expandedp = false; return NULL_RTX; } *expandedp = true; arg0 = TREE_VALUE (arglist); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); tmode = insn_data[icode].operand[0].mode; mode0 = insn_data[icode].operand[1].mode; if (target == 0 || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0)); pat = GEN_FCN (icode) (target, op0); if (! pat) return 0; emit_insn (pat); return target; } /* Expand the stvx builtins. */ static rtx altivec_expand_st_builtin (exp, target, expandedp) tree exp; rtx target ATTRIBUTE_UNUSED; bool *expandedp; { tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); unsigned int fcode = DECL_FUNCTION_CODE (fndecl); tree arg0, arg1; enum machine_mode mode0, mode1; rtx pat, op0, op1; enum insn_code icode; switch (fcode) { case ALTIVEC_BUILTIN_ST_INTERNAL_16qi: icode = CODE_FOR_altivec_stvx_16qi; break; case ALTIVEC_BUILTIN_ST_INTERNAL_8hi: icode = CODE_FOR_altivec_stvx_8hi; break; case ALTIVEC_BUILTIN_ST_INTERNAL_4si: icode = CODE_FOR_altivec_stvx_4si; break; case ALTIVEC_BUILTIN_ST_INTERNAL_4sf: icode = CODE_FOR_altivec_stvx_4sf; break; default: *expandedp = false; return NULL_RTX; } arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); mode0 = insn_data[icode].operand[0].mode; mode1 = insn_data[icode].operand[1].mode; if (! (*insn_data[icode].operand[0].predicate) (op0, mode0)) op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0)); if (! (*insn_data[icode].operand[1].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); pat = GEN_FCN (icode) (op0, op1); if (pat) emit_insn (pat); *expandedp = true; return NULL_RTX; } /* Expand the dst builtins. */ static rtx altivec_expand_dst_builtin (exp, target, expandedp) tree exp; rtx target ATTRIBUTE_UNUSED; bool *expandedp; { tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); unsigned int fcode = DECL_FUNCTION_CODE (fndecl); tree arg0, arg1, arg2; enum machine_mode mode0, mode1, mode2; rtx pat, op0, op1, op2; struct builtin_description *d; size_t i; *expandedp = false; /* Handle DST variants. */ d = (struct builtin_description *) bdesc_dst; for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++) if (d->code == fcode) { arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0); mode0 = insn_data[d->icode].operand[0].mode; mode1 = insn_data[d->icode].operand[1].mode; mode2 = insn_data[d->icode].operand[2].mode; /* Invalid arguments, bail out before generating bad rtl. */ if (arg0 == error_mark_node || arg1 == error_mark_node || arg2 == error_mark_node) return const0_rtx; if (TREE_CODE (arg2) != INTEGER_CST || TREE_INT_CST_LOW (arg2) & ~0x3) { error ("argument to `%s' must be a 2-bit unsigned literal", d->name); return const0_rtx; } if (! (*insn_data[d->icode].operand[0].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (! (*insn_data[d->icode].operand[1].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); pat = GEN_FCN (d->icode) (op0, op1, op2); if (pat != 0) emit_insn (pat); *expandedp = true; return NULL_RTX; } return NULL_RTX; } /* Expand the builtin in EXP and store the result in TARGET. Store true in *EXPANDEDP if we found a builtin to expand. */ static rtx altivec_expand_builtin (exp, target, expandedp) tree exp; rtx target; bool *expandedp; { struct builtin_description *d; struct builtin_description_predicates *dp; size_t i; enum insn_code icode; tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); tree arg0; rtx op0, pat; enum machine_mode tmode, mode0; unsigned int fcode = DECL_FUNCTION_CODE (fndecl); target = altivec_expand_ld_builtin (exp, target, expandedp); if (*expandedp) return target; target = altivec_expand_st_builtin (exp, target, expandedp); if (*expandedp) return target; target = altivec_expand_dst_builtin (exp, target, expandedp); if (*expandedp) return target; *expandedp = true; switch (fcode) { case ALTIVEC_BUILTIN_STVX: return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx, arglist); case ALTIVEC_BUILTIN_STVEBX: return altivec_expand_stv_builtin (CODE_FOR_altivec_stvebx, arglist); case ALTIVEC_BUILTIN_STVEHX: return altivec_expand_stv_builtin (CODE_FOR_altivec_stvehx, arglist); case ALTIVEC_BUILTIN_STVEWX: return altivec_expand_stv_builtin (CODE_FOR_altivec_stvewx, arglist); case ALTIVEC_BUILTIN_STVXL: return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl, arglist); case ALTIVEC_BUILTIN_MFVSCR: icode = CODE_FOR_altivec_mfvscr; tmode = insn_data[icode].operand[0].mode; if (target == 0 || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); pat = GEN_FCN (icode) (target); if (! pat) return 0; emit_insn (pat); return target; case ALTIVEC_BUILTIN_MTVSCR: icode = CODE_FOR_altivec_mtvscr; arg0 = TREE_VALUE (arglist); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); mode0 = insn_data[icode].operand[0].mode; /* If we got invalid arguments bail out before generating bad rtl. */ if (arg0 == error_mark_node) return const0_rtx; if (! (*insn_data[icode].operand[0].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); pat = GEN_FCN (icode) (op0); if (pat) emit_insn (pat); return NULL_RTX; case ALTIVEC_BUILTIN_DSSALL: emit_insn (gen_altivec_dssall ()); return NULL_RTX; case ALTIVEC_BUILTIN_DSS: icode = CODE_FOR_altivec_dss; arg0 = TREE_VALUE (arglist); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); mode0 = insn_data[icode].operand[0].mode; /* If we got invalid arguments bail out before generating bad rtl. */ if (arg0 == error_mark_node) return const0_rtx; if (TREE_CODE (arg0) != INTEGER_CST || TREE_INT_CST_LOW (arg0) & ~0x3) { error ("argument to dss must be a 2-bit unsigned literal"); return const0_rtx; } if (! (*insn_data[icode].operand[0].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); emit_insn (gen_altivec_dss (op0)); return NULL_RTX; } /* Expand abs* operations. */ d = (struct builtin_description *) bdesc_abs; for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++) if (d->code == fcode) return altivec_expand_abs_builtin (d->icode, arglist, target); /* Expand the AltiVec predicates. */ dp = (struct builtin_description_predicates *) bdesc_altivec_preds; for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, dp++) if (dp->code == fcode) return altivec_expand_predicate_builtin (dp->icode, dp->opcode, arglist, target); /* LV* are funky. We initialized them differently. */ switch (fcode) { case ALTIVEC_BUILTIN_LVSL: return rs6000_expand_binop_builtin (CODE_FOR_altivec_lvsl, arglist, target); case ALTIVEC_BUILTIN_LVSR: return rs6000_expand_binop_builtin (CODE_FOR_altivec_lvsr, arglist, target); case ALTIVEC_BUILTIN_LVEBX: return rs6000_expand_binop_builtin (CODE_FOR_altivec_lvebx, arglist, target); case ALTIVEC_BUILTIN_LVEHX: return rs6000_expand_binop_builtin (CODE_FOR_altivec_lvehx, arglist, target); case ALTIVEC_BUILTIN_LVEWX: return rs6000_expand_binop_builtin (CODE_FOR_altivec_lvewx, arglist, target); case ALTIVEC_BUILTIN_LVXL: return rs6000_expand_binop_builtin (CODE_FOR_altivec_lvxl, arglist, target); case ALTIVEC_BUILTIN_LVX: return rs6000_expand_binop_builtin (CODE_FOR_altivec_lvx, arglist, target); default: break; /* Fall through. */ } *expandedp = false; return NULL_RTX; } /* Binops that need to be initialized manually, but can be expanded automagically by rs6000_expand_binop_builtin. */ static struct builtin_description bdesc_2arg_spe[] = { { 0, CODE_FOR_spe_evlddx, "__builtin_spe_evlddx", SPE_BUILTIN_EVLDDX }, { 0, CODE_FOR_spe_evldwx, "__builtin_spe_evldwx", SPE_BUILTIN_EVLDWX }, { 0, CODE_FOR_spe_evldhx, "__builtin_spe_evldhx", SPE_BUILTIN_EVLDHX }, { 0, CODE_FOR_spe_evlwhex, "__builtin_spe_evlwhex", SPE_BUILTIN_EVLWHEX }, { 0, CODE_FOR_spe_evlwhoux, "__builtin_spe_evlwhoux", SPE_BUILTIN_EVLWHOUX }, { 0, CODE_FOR_spe_evlwhosx, "__builtin_spe_evlwhosx", SPE_BUILTIN_EVLWHOSX }, { 0, CODE_FOR_spe_evlwwsplatx, "__builtin_spe_evlwwsplatx", SPE_BUILTIN_EVLWWSPLATX }, { 0, CODE_FOR_spe_evlwhsplatx, "__builtin_spe_evlwhsplatx", SPE_BUILTIN_EVLWHSPLATX }, { 0, CODE_FOR_spe_evlhhesplatx, "__builtin_spe_evlhhesplatx", SPE_BUILTIN_EVLHHESPLATX }, { 0, CODE_FOR_spe_evlhhousplatx, "__builtin_spe_evlhhousplatx", SPE_BUILTIN_EVLHHOUSPLATX }, { 0, CODE_FOR_spe_evlhhossplatx, "__builtin_spe_evlhhossplatx", SPE_BUILTIN_EVLHHOSSPLATX }, { 0, CODE_FOR_spe_evldd, "__builtin_spe_evldd", SPE_BUILTIN_EVLDD }, { 0, CODE_FOR_spe_evldw, "__builtin_spe_evldw", SPE_BUILTIN_EVLDW }, { 0, CODE_FOR_spe_evldh, "__builtin_spe_evldh", SPE_BUILTIN_EVLDH }, { 0, CODE_FOR_spe_evlwhe, "__builtin_spe_evlwhe", SPE_BUILTIN_EVLWHE }, { 0, CODE_FOR_spe_evlwhou, "__builtin_spe_evlwhou", SPE_BUILTIN_EVLWHOU }, { 0, CODE_FOR_spe_evlwhos, "__builtin_spe_evlwhos", SPE_BUILTIN_EVLWHOS }, { 0, CODE_FOR_spe_evlwwsplat, "__builtin_spe_evlwwsplat", SPE_BUILTIN_EVLWWSPLAT }, { 0, CODE_FOR_spe_evlwhsplat, "__builtin_spe_evlwhsplat", SPE_BUILTIN_EVLWHSPLAT }, { 0, CODE_FOR_spe_evlhhesplat, "__builtin_spe_evlhhesplat", SPE_BUILTIN_EVLHHESPLAT }, { 0, CODE_FOR_spe_evlhhousplat, "__builtin_spe_evlhhousplat", SPE_BUILTIN_EVLHHOUSPLAT }, { 0, CODE_FOR_spe_evlhhossplat, "__builtin_spe_evlhhossplat", SPE_BUILTIN_EVLHHOSSPLAT } }; /* Expand the builtin in EXP and store the result in TARGET. Store true in *EXPANDEDP if we found a builtin to expand. This expands the SPE builtins that are not simple unary and binary operations. */ static rtx spe_expand_builtin (exp, target, expandedp) tree exp; rtx target; bool *expandedp; { tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); tree arg1, arg0; unsigned int fcode = DECL_FUNCTION_CODE (fndecl); enum insn_code icode; enum machine_mode tmode, mode0; rtx pat, op0; struct builtin_description *d; size_t i; *expandedp = true; /* Syntax check for a 5-bit unsigned immediate. */ switch (fcode) { case SPE_BUILTIN_EVSTDD: case SPE_BUILTIN_EVSTDH: case SPE_BUILTIN_EVSTDW: case SPE_BUILTIN_EVSTWHE: case SPE_BUILTIN_EVSTWHO: case SPE_BUILTIN_EVSTWWE: case SPE_BUILTIN_EVSTWWO: arg1 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); if (TREE_CODE (arg1) != INTEGER_CST || TREE_INT_CST_LOW (arg1) & ~0x1f) { error ("argument 2 must be a 5-bit unsigned literal"); return const0_rtx; } break; default: break; } d = (struct builtin_description *) bdesc_2arg_spe; for (i = 0; i < ARRAY_SIZE (bdesc_2arg_spe); ++i, ++d) if (d->code == fcode) return rs6000_expand_binop_builtin (d->icode, arglist, target); d = (struct builtin_description *) bdesc_spe_predicates; for (i = 0; i < ARRAY_SIZE (bdesc_spe_predicates); ++i, ++d) if (d->code == fcode) return spe_expand_predicate_builtin (d->icode, arglist, target); d = (struct builtin_description *) bdesc_spe_evsel; for (i = 0; i < ARRAY_SIZE (bdesc_spe_evsel); ++i, ++d) if (d->code == fcode) return spe_expand_evsel_builtin (d->icode, arglist, target); switch (fcode) { case SPE_BUILTIN_EVSTDDX: return altivec_expand_stv_builtin (CODE_FOR_spe_evstddx, arglist); case SPE_BUILTIN_EVSTDHX: return altivec_expand_stv_builtin (CODE_FOR_spe_evstdhx, arglist); case SPE_BUILTIN_EVSTDWX: return altivec_expand_stv_builtin (CODE_FOR_spe_evstdwx, arglist); case SPE_BUILTIN_EVSTWHEX: return altivec_expand_stv_builtin (CODE_FOR_spe_evstwhex, arglist); case SPE_BUILTIN_EVSTWHOX: return altivec_expand_stv_builtin (CODE_FOR_spe_evstwhox, arglist); case SPE_BUILTIN_EVSTWWEX: return altivec_expand_stv_builtin (CODE_FOR_spe_evstwwex, arglist); case SPE_BUILTIN_EVSTWWOX: return altivec_expand_stv_builtin (CODE_FOR_spe_evstwwox, arglist); case SPE_BUILTIN_EVSTDD: return altivec_expand_stv_builtin (CODE_FOR_spe_evstdd, arglist); case SPE_BUILTIN_EVSTDH: return altivec_expand_stv_builtin (CODE_FOR_spe_evstdh, arglist); case SPE_BUILTIN_EVSTDW: return altivec_expand_stv_builtin (CODE_FOR_spe_evstdw, arglist); case SPE_BUILTIN_EVSTWHE: return altivec_expand_stv_builtin (CODE_FOR_spe_evstwhe, arglist); case SPE_BUILTIN_EVSTWHO: return altivec_expand_stv_builtin (CODE_FOR_spe_evstwho, arglist); case SPE_BUILTIN_EVSTWWE: return altivec_expand_stv_builtin (CODE_FOR_spe_evstwwe, arglist); case SPE_BUILTIN_EVSTWWO: return altivec_expand_stv_builtin (CODE_FOR_spe_evstwwo, arglist); case SPE_BUILTIN_MFSPEFSCR: icode = CODE_FOR_spe_mfspefscr; tmode = insn_data[icode].operand[0].mode; if (target == 0 || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); pat = GEN_FCN (icode) (target); if (! pat) return 0; emit_insn (pat); return target; case SPE_BUILTIN_MTSPEFSCR: icode = CODE_FOR_spe_mtspefscr; arg0 = TREE_VALUE (arglist); op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); mode0 = insn_data[icode].operand[0].mode; if (arg0 == error_mark_node) return const0_rtx; if (! (*insn_data[icode].operand[0].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); pat = GEN_FCN (icode) (op0); if (pat) emit_insn (pat); return NULL_RTX; default: break; } *expandedp = false; return NULL_RTX; } static rtx spe_expand_predicate_builtin (icode, arglist, target) enum insn_code icode; tree arglist; rtx target; { rtx pat, scratch, tmp; tree form = TREE_VALUE (arglist); tree arg0 = TREE_VALUE (TREE_CHAIN (arglist)); tree arg1 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); enum machine_mode mode0 = insn_data[icode].operand[1].mode; enum machine_mode mode1 = insn_data[icode].operand[2].mode; int form_int; enum rtx_code code; if (TREE_CODE (form) != INTEGER_CST) { error ("argument 1 of __builtin_spe_predicate must be a constant"); return const0_rtx; } else form_int = TREE_INT_CST_LOW (form); if (mode0 != mode1) abort (); if (arg0 == error_mark_node || arg1 == error_mark_node) return const0_rtx; if (target == 0 || GET_MODE (target) != SImode || ! (*insn_data[icode].operand[0].predicate) (target, SImode)) target = gen_reg_rtx (SImode); if (! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (! (*insn_data[icode].operand[2].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); scratch = gen_reg_rtx (CCmode); pat = GEN_FCN (icode) (scratch, op0, op1); if (! pat) return const0_rtx; emit_insn (pat); /* There are 4 variants for each predicate: _any_, _all_, _upper_, _lower_. We use one compare, but look in different bits of the CR for each variant. There are 2 elements in each SPE simd type (upper/lower). The CR bits are set as follows: BIT0 | BIT 1 | BIT 2 | BIT 3 U | L | (U | L) | (U & L) So, for an "all" relationship, BIT 3 would be set. For an "any" relationship, BIT 2 would be set. Etc. Following traditional nomenclature, these bits map to: BIT0 | BIT 1 | BIT 2 | BIT 3 LT | GT | EQ | OV Later, we will generate rtl to look in the LT/EQ/EQ/OV bits. */ switch (form_int) { /* All variant. OV bit. */ case 0: /* We need to get to the OV bit, which is the ORDERED bit. We could generate (ordered:SI (reg:CC xx) (const_int 0)), but that's ugly and will trigger a validate_condition_mode abort. So let's just use another pattern. */ emit_insn (gen_move_from_CR_ov_bit (target, scratch)); return target; /* Any variant. EQ bit. */ case 1: code = EQ; break; /* Upper variant. LT bit. */ case 2: code = LT; break; /* Lower variant. GT bit. */ case 3: code = GT; break; default: error ("argument 1 of __builtin_spe_predicate is out of range"); return const0_rtx; } tmp = gen_rtx_fmt_ee (code, SImode, scratch, const0_rtx); emit_move_insn (target, tmp); return target; } /* The evsel builtins look like this: e = __builtin_spe_evsel_OP (a, b, c, d); and work like this: e[upper] = a[upper] *OP* b[upper] ? c[upper] : d[upper]; e[lower] = a[lower] *OP* b[lower] ? c[lower] : d[lower]; */ static rtx spe_expand_evsel_builtin (icode, arglist, target) enum insn_code icode; tree arglist; rtx target; { rtx pat, scratch; tree arg0 = TREE_VALUE (arglist); tree arg1 = TREE_VALUE (TREE_CHAIN (arglist)); tree arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); tree arg3 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist)))); rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); rtx op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0); rtx op3 = expand_expr (arg3, NULL_RTX, VOIDmode, 0); enum machine_mode mode0 = insn_data[icode].operand[1].mode; enum machine_mode mode1 = insn_data[icode].operand[2].mode; if (mode0 != mode1) abort (); if (arg0 == error_mark_node || arg1 == error_mark_node || arg2 == error_mark_node || arg3 == error_mark_node) return const0_rtx; if (target == 0 || GET_MODE (target) != mode0 || ! (*insn_data[icode].operand[0].predicate) (target, mode0)) target = gen_reg_rtx (mode0); if (! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (! (*insn_data[icode].operand[1].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode0, op1); if (! (*insn_data[icode].operand[1].predicate) (op2, mode1)) op2 = copy_to_mode_reg (mode0, op2); if (! (*insn_data[icode].operand[1].predicate) (op3, mode1)) op3 = copy_to_mode_reg (mode0, op3); /* Generate the compare. */ scratch = gen_reg_rtx (CCmode); pat = GEN_FCN (icode) (scratch, op0, op1); if (! pat) return const0_rtx; emit_insn (pat); if (mode0 == V2SImode) emit_insn (gen_spe_evsel (target, op2, op3, scratch)); else emit_insn (gen_spe_evsel_fs (target, op2, op3, scratch)); return target; } /* Expand an expression EXP that calls a built-in function, with result going to TARGET if that's convenient (and in mode MODE if that's convenient). SUBTARGET may be used as the target for computing one of EXP's operands. IGNORE is nonzero if the value is to be ignored. */ static rtx rs6000_expand_builtin (exp, target, subtarget, mode, ignore) tree exp; rtx target; rtx subtarget ATTRIBUTE_UNUSED; enum machine_mode mode ATTRIBUTE_UNUSED; int ignore ATTRIBUTE_UNUSED; { tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); unsigned int fcode = DECL_FUNCTION_CODE (fndecl); struct builtin_description *d; size_t i; rtx ret; bool success; if (TARGET_ALTIVEC) { ret = altivec_expand_builtin (exp, target, &success); if (success) return ret; } if (TARGET_SPE) { ret = spe_expand_builtin (exp, target, &success); if (success) return ret; } if (TARGET_ALTIVEC || TARGET_SPE) { /* Handle simple unary operations. */ d = (struct builtin_description *) bdesc_1arg; for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++) if (d->code == fcode) return rs6000_expand_unop_builtin (d->icode, arglist, target); /* Handle simple binary operations. */ d = (struct builtin_description *) bdesc_2arg; for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++) if (d->code == fcode) return rs6000_expand_binop_builtin (d->icode, arglist, target); /* Handle simple ternary operations. */ d = (struct builtin_description *) bdesc_3arg; for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++) if (d->code == fcode) return rs6000_expand_ternop_builtin (d->icode, arglist, target); } abort (); return NULL_RTX; } static void rs6000_init_builtins () { if (TARGET_SPE) spe_init_builtins (); if (TARGET_ALTIVEC) altivec_init_builtins (); if (TARGET_ALTIVEC || TARGET_SPE) rs6000_common_init_builtins (); } /* Search through a set of builtins and enable the mask bits. DESC is an array of builtins. SIZE is the totaly number of builtins. START is the builtin enum at which to start. END is the builtin enum at which to end. */ static void enable_mask_for_builtins (desc, size, start, end) struct builtin_description *desc; int size; enum rs6000_builtins start, end; { int i; for (i = 0; i < size; ++i) if (desc[i].code == start) break; if (i == size) return; for (; i < size; ++i) { /* Flip all the bits on. */ desc[i].mask = target_flags; if (desc[i].code == end) break; } } static void spe_init_builtins () { tree endlink = void_list_node; tree puint_type_node = build_pointer_type (unsigned_type_node); tree pushort_type_node = build_pointer_type (short_unsigned_type_node); tree pv2si_type_node = build_pointer_type (V2SI_type_node); struct builtin_description *d; size_t i; tree v2si_ftype_4_v2si = build_function_type (V2SI_type_node, tree_cons (NULL_TREE, V2SI_type_node, tree_cons (NULL_TREE, V2SI_type_node, tree_cons (NULL_TREE, V2SI_type_node, tree_cons (NULL_TREE, V2SI_type_node, endlink))))); tree v2sf_ftype_4_v2sf = build_function_type (V2SF_type_node, tree_cons (NULL_TREE, V2SF_type_node, tree_cons (NULL_TREE, V2SF_type_node, tree_cons (NULL_TREE, V2SF_type_node, tree_cons (NULL_TREE, V2SF_type_node, endlink))))); tree int_ftype_int_v2si_v2si = build_function_type (integer_type_node, tree_cons (NULL_TREE, integer_type_node, tree_cons (NULL_TREE, V2SI_type_node, tree_cons (NULL_TREE, V2SI_type_node, endlink)))); tree int_ftype_int_v2sf_v2sf = build_function_type (integer_type_node, tree_cons (NULL_TREE, integer_type_node, tree_cons (NULL_TREE, V2SF_type_node, tree_cons (NULL_TREE, V2SF_type_node, endlink)))); tree void_ftype_v2si_puint_int = build_function_type (void_type_node, tree_cons (NULL_TREE, V2SI_type_node, tree_cons (NULL_TREE, puint_type_node, tree_cons (NULL_TREE, integer_type_node, endlink)))); tree void_ftype_v2si_puint_char = build_function_type (void_type_node, tree_cons (NULL_TREE, V2SI_type_node, tree_cons (NULL_TREE, puint_type_node, tree_cons (NULL_TREE, char_type_node, endlink)))); tree void_ftype_v2si_pv2si_int = build_function_type (void_type_node, tree_cons (NULL_TREE, V2SI_type_node, tree_cons (NULL_TREE, pv2si_type_node, tree_cons (NULL_TREE, integer_type_node, endlink)))); tree void_ftype_v2si_pv2si_char = build_function_type (void_type_node, tree_cons (NULL_TREE, V2SI_type_node, tree_cons (NULL_TREE, pv2si_type_node, tree_cons (NULL_TREE, char_type_node, endlink)))); tree void_ftype_int = build_function_type (void_type_node, tree_cons (NULL_TREE, integer_type_node, endlink)); tree int_ftype_void = build_function_type (integer_type_node, tree_cons (NULL_TREE, void_type_node, endlink)); tree v2si_ftype_pv2si_int = build_function_type (V2SI_type_node, tree_cons (NULL_TREE, pv2si_type_node, tree_cons (NULL_TREE, integer_type_node, endlink))); tree v2si_ftype_puint_int = build_function_type (V2SI_type_node, tree_cons (NULL_TREE, puint_type_node, tree_cons (NULL_TREE, integer_type_node, endlink))); tree v2si_ftype_pushort_int = build_function_type (V2SI_type_node, tree_cons (NULL_TREE, pushort_type_node, tree_cons (NULL_TREE, integer_type_node, endlink))); /* The initialization of the simple binary and unary builtins is done in rs6000_common_init_builtins, but we have to enable the mask bits here manually because we have run out of `target_flags' bits. We really need to redesign this mask business. */ enable_mask_for_builtins ((struct builtin_description *) bdesc_2arg, ARRAY_SIZE (bdesc_2arg), SPE_BUILTIN_EVADDW, SPE_BUILTIN_EVXOR); enable_mask_for_builtins ((struct builtin_description *) bdesc_1arg, ARRAY_SIZE (bdesc_1arg), SPE_BUILTIN_EVABS, SPE_BUILTIN_EVSUBFUSIAAW); enable_mask_for_builtins ((struct builtin_description *) bdesc_spe_predicates, ARRAY_SIZE (bdesc_spe_predicates), SPE_BUILTIN_EVCMPEQ, SPE_BUILTIN_EVFSTSTLT); enable_mask_for_builtins ((struct builtin_description *) bdesc_spe_evsel, ARRAY_SIZE (bdesc_spe_evsel), SPE_BUILTIN_EVSEL_CMPGTS, SPE_BUILTIN_EVSEL_FSTSTEQ); /* Initialize irregular SPE builtins. */ def_builtin (target_flags, "__builtin_spe_mtspefscr", void_ftype_int, SPE_BUILTIN_MTSPEFSCR); def_builtin (target_flags, "__builtin_spe_mfspefscr", int_ftype_void, SPE_BUILTIN_MFSPEFSCR); def_builtin (target_flags, "__builtin_spe_evstddx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDDX); def_builtin (target_flags, "__builtin_spe_evstdhx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDHX); def_builtin (target_flags, "__builtin_spe_evstdwx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDWX); def_builtin (target_flags, "__builtin_spe_evstwhex", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWHEX); def_builtin (target_flags, "__builtin_spe_evstwhox", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWHOX); def_builtin (target_flags, "__builtin_spe_evstwwex", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWWEX); def_builtin (target_flags, "__builtin_spe_evstwwox", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWWOX); def_builtin (target_flags, "__builtin_spe_evstdd", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDD); def_builtin (target_flags, "__builtin_spe_evstdh", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDH); def_builtin (target_flags, "__builtin_spe_evstdw", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDW); def_builtin (target_flags, "__builtin_spe_evstwhe", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWHE); def_builtin (target_flags, "__builtin_spe_evstwho", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWHO); def_builtin (target_flags, "__builtin_spe_evstwwe", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWWE); def_builtin (target_flags, "__builtin_spe_evstwwo", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWWO); /* Loads. */ def_builtin (target_flags, "__builtin_spe_evlddx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDDX); def_builtin (target_flags, "__builtin_spe_evldwx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDWX); def_builtin (target_flags, "__builtin_spe_evldhx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDHX); def_builtin (target_flags, "__builtin_spe_evlwhex", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHEX); def_builtin (target_flags, "__builtin_spe_evlwhoux", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOUX); def_builtin (target_flags, "__builtin_spe_evlwhosx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOSX); def_builtin (target_flags, "__builtin_spe_evlwwsplatx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWWSPLATX); def_builtin (target_flags, "__builtin_spe_evlwhsplatx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHSPLATX); def_builtin (target_flags, "__builtin_spe_evlhhesplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHESPLATX); def_builtin (target_flags, "__builtin_spe_evlhhousplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOUSPLATX); def_builtin (target_flags, "__builtin_spe_evlhhossplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOSSPLATX); def_builtin (target_flags, "__builtin_spe_evldd", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDD); def_builtin (target_flags, "__builtin_spe_evldw", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDW); def_builtin (target_flags, "__builtin_spe_evldh", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDH); def_builtin (target_flags, "__builtin_spe_evlhhesplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHESPLAT); def_builtin (target_flags, "__builtin_spe_evlhhossplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOSSPLAT); def_builtin (target_flags, "__builtin_spe_evlhhousplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOUSPLAT); def_builtin (target_flags, "__builtin_spe_evlwhe", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHE); def_builtin (target_flags, "__builtin_spe_evlwhos", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOS); def_builtin (target_flags, "__builtin_spe_evlwhou", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOU); def_builtin (target_flags, "__builtin_spe_evlwhsplat", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHSPLAT); def_builtin (target_flags, "__builtin_spe_evlwwsplat", v2si_ftype_puint_int, SPE_BUILTIN_EVLWWSPLAT); /* Predicates. */ d = (struct builtin_description *) bdesc_spe_predicates; for (i = 0; i < ARRAY_SIZE (bdesc_spe_predicates); ++i, d++) { tree type; switch (insn_data[d->icode].operand[1].mode) { case V2SImode: type = int_ftype_int_v2si_v2si; break; case V2SFmode: type = int_ftype_int_v2sf_v2sf; break; default: abort (); } def_builtin (d->mask, d->name, type, d->code); } /* Evsel predicates. */ d = (struct builtin_description *) bdesc_spe_evsel; for (i = 0; i < ARRAY_SIZE (bdesc_spe_evsel); ++i, d++) { tree type; switch (insn_data[d->icode].operand[1].mode) { case V2SImode: type = v2si_ftype_4_v2si; break; case V2SFmode: type = v2sf_ftype_4_v2sf; break; default: abort (); } def_builtin (d->mask, d->name, type, d->code); } } static void altivec_init_builtins () { struct builtin_description *d; struct builtin_description_predicates *dp; size_t i; tree pfloat_type_node = build_pointer_type (float_type_node); tree pint_type_node = build_pointer_type (integer_type_node); tree pshort_type_node = build_pointer_type (short_integer_type_node); tree pchar_type_node = build_pointer_type (char_type_node); tree pvoid_type_node = build_pointer_type (void_type_node); tree pcfloat_type_node = build_pointer_type (build_qualified_type (float_type_node, TYPE_QUAL_CONST)); tree pcint_type_node = build_pointer_type (build_qualified_type (integer_type_node, TYPE_QUAL_CONST)); tree pcshort_type_node = build_pointer_type (build_qualified_type (short_integer_type_node, TYPE_QUAL_CONST)); tree pcchar_type_node = build_pointer_type (build_qualified_type (char_type_node, TYPE_QUAL_CONST)); tree pcvoid_type_node = build_pointer_type (build_qualified_type (void_type_node, TYPE_QUAL_CONST)); tree int_ftype_int_v4si_v4si = build_function_type_list (integer_type_node, integer_type_node, V4SI_type_node, V4SI_type_node, NULL_TREE); tree v4sf_ftype_pcfloat = build_function_type_list (V4SF_type_node, pcfloat_type_node, NULL_TREE); tree void_ftype_pfloat_v4sf = build_function_type_list (void_type_node, pfloat_type_node, V4SF_type_node, NULL_TREE); tree v4si_ftype_pcint = build_function_type_list (V4SI_type_node, pcint_type_node, NULL_TREE); tree void_ftype_pint_v4si = build_function_type_list (void_type_node, pint_type_node, V4SI_type_node, NULL_TREE); tree v8hi_ftype_pcshort = build_function_type_list (V8HI_type_node, pcshort_type_node, NULL_TREE); tree void_ftype_pshort_v8hi = build_function_type_list (void_type_node, pshort_type_node, V8HI_type_node, NULL_TREE); tree v16qi_ftype_pcchar = build_function_type_list (V16QI_type_node, pcchar_type_node, NULL_TREE); tree void_ftype_pchar_v16qi = build_function_type_list (void_type_node, pchar_type_node, V16QI_type_node, NULL_TREE); tree void_ftype_v4si = build_function_type_list (void_type_node, V4SI_type_node, NULL_TREE); tree v8hi_ftype_void = build_function_type (V8HI_type_node, void_list_node); tree void_ftype_void = build_function_type (void_type_node, void_list_node); tree void_ftype_qi = build_function_type_list (void_type_node, char_type_node, NULL_TREE); tree v16qi_ftype_int_pcvoid = build_function_type_list (V16QI_type_node, integer_type_node, pcvoid_type_node, NULL_TREE); tree v8hi_ftype_int_pcvoid = build_function_type_list (V8HI_type_node, integer_type_node, pcvoid_type_node, NULL_TREE); tree v4si_ftype_int_pcvoid = build_function_type_list (V4SI_type_node, integer_type_node, pcvoid_type_node, NULL_TREE); tree void_ftype_v4si_int_pvoid = build_function_type_list (void_type_node, V4SI_type_node, integer_type_node, pvoid_type_node, NULL_TREE); tree void_ftype_v16qi_int_pvoid = build_function_type_list (void_type_node, V16QI_type_node, integer_type_node, pvoid_type_node, NULL_TREE); tree void_ftype_v8hi_int_pvoid = build_function_type_list (void_type_node, V8HI_type_node, integer_type_node, pvoid_type_node, NULL_TREE); tree int_ftype_int_v8hi_v8hi = build_function_type_list (integer_type_node, integer_type_node, V8HI_type_node, V8HI_type_node, NULL_TREE); tree int_ftype_int_v16qi_v16qi = build_function_type_list (integer_type_node, integer_type_node, V16QI_type_node, V16QI_type_node, NULL_TREE); tree int_ftype_int_v4sf_v4sf = build_function_type_list (integer_type_node, integer_type_node, V4SF_type_node, V4SF_type_node, NULL_TREE); tree v4si_ftype_v4si = build_function_type_list (V4SI_type_node, V4SI_type_node, NULL_TREE); tree v8hi_ftype_v8hi = build_function_type_list (V8HI_type_node, V8HI_type_node, NULL_TREE); tree v16qi_ftype_v16qi = build_function_type_list (V16QI_type_node, V16QI_type_node, NULL_TREE); tree v4sf_ftype_v4sf = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE); tree void_ftype_pcvoid_int_char = build_function_type_list (void_type_node, pcvoid_type_node, integer_type_node, char_type_node, NULL_TREE); def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_4sf", v4sf_ftype_pcfloat, ALTIVEC_BUILTIN_LD_INTERNAL_4sf); def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_4sf", void_ftype_pfloat_v4sf, ALTIVEC_BUILTIN_ST_INTERNAL_4sf); def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_4si", v4si_ftype_pcint, ALTIVEC_BUILTIN_LD_INTERNAL_4si); def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_4si", void_ftype_pint_v4si, ALTIVEC_BUILTIN_ST_INTERNAL_4si); def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_8hi", v8hi_ftype_pcshort, ALTIVEC_BUILTIN_LD_INTERNAL_8hi); def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_8hi", void_ftype_pshort_v8hi, ALTIVEC_BUILTIN_ST_INTERNAL_8hi); def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_16qi", v16qi_ftype_pcchar, ALTIVEC_BUILTIN_LD_INTERNAL_16qi); def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_16qi", void_ftype_pchar_v16qi, ALTIVEC_BUILTIN_ST_INTERNAL_16qi); def_builtin (MASK_ALTIVEC, "__builtin_altivec_mtvscr", void_ftype_v4si, ALTIVEC_BUILTIN_MTVSCR); def_builtin (MASK_ALTIVEC, "__builtin_altivec_mfvscr", v8hi_ftype_void, ALTIVEC_BUILTIN_MFVSCR); def_builtin (MASK_ALTIVEC, "__builtin_altivec_dssall", void_ftype_void, ALTIVEC_BUILTIN_DSSALL); def_builtin (MASK_ALTIVEC, "__builtin_altivec_dss", void_ftype_qi, ALTIVEC_BUILTIN_DSS); def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvsl", v16qi_ftype_int_pcvoid, ALTIVEC_BUILTIN_LVSL); def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvsr", v16qi_ftype_int_pcvoid, ALTIVEC_BUILTIN_LVSR); def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvebx", v16qi_ftype_int_pcvoid, ALTIVEC_BUILTIN_LVEBX); def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvehx", v8hi_ftype_int_pcvoid, ALTIVEC_BUILTIN_LVEHX); def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvewx", v4si_ftype_int_pcvoid, ALTIVEC_BUILTIN_LVEWX); def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvxl", v4si_ftype_int_pcvoid, ALTIVEC_BUILTIN_LVXL); def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvx", v4si_ftype_int_pcvoid, ALTIVEC_BUILTIN_LVX); def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvx", void_ftype_v4si_int_pvoid, ALTIVEC_BUILTIN_STVX); def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvewx", void_ftype_v4si_int_pvoid, ALTIVEC_BUILTIN_STVEWX); def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvxl", void_ftype_v4si_int_pvoid, ALTIVEC_BUILTIN_STVXL); def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvebx", void_ftype_v16qi_int_pvoid, ALTIVEC_BUILTIN_STVEBX); def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvehx", void_ftype_v8hi_int_pvoid, ALTIVEC_BUILTIN_STVEHX); /* Add the DST variants. */ d = (struct builtin_description *) bdesc_dst; for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++) def_builtin (d->mask, d->name, void_ftype_pcvoid_int_char, d->code); /* Initialize the predicates. */ dp = (struct builtin_description_predicates *) bdesc_altivec_preds; for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, dp++) { enum machine_mode mode1; tree type; mode1 = insn_data[dp->icode].operand[1].mode; switch (mode1) { case V4SImode: type = int_ftype_int_v4si_v4si; break; case V8HImode: type = int_ftype_int_v8hi_v8hi; break; case V16QImode: type = int_ftype_int_v16qi_v16qi; break; case V4SFmode: type = int_ftype_int_v4sf_v4sf; break; default: abort (); } def_builtin (dp->mask, dp->name, type, dp->code); } /* Initialize the abs* operators. */ d = (struct builtin_description *) bdesc_abs; for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++) { enum machine_mode mode0; tree type; mode0 = insn_data[d->icode].operand[0].mode; switch (mode0) { case V4SImode: type = v4si_ftype_v4si; break; case V8HImode: type = v8hi_ftype_v8hi; break; case V16QImode: type = v16qi_ftype_v16qi; break; case V4SFmode: type = v4sf_ftype_v4sf; break; default: abort (); } def_builtin (d->mask, d->name, type, d->code); } } static void rs6000_common_init_builtins () { struct builtin_description *d; size_t i; tree v4sf_ftype_v4sf_v4sf_v16qi = build_function_type_list (V4SF_type_node, V4SF_type_node, V4SF_type_node, V16QI_type_node, NULL_TREE); tree v4si_ftype_v4si_v4si_v16qi = build_function_type_list (V4SI_type_node, V4SI_type_node, V4SI_type_node, V16QI_type_node, NULL_TREE); tree v8hi_ftype_v8hi_v8hi_v16qi = build_function_type_list (V8HI_type_node, V8HI_type_node, V8HI_type_node, V16QI_type_node, NULL_TREE); tree v16qi_ftype_v16qi_v16qi_v16qi = build_function_type_list (V16QI_type_node, V16QI_type_node, V16QI_type_node, V16QI_type_node, NULL_TREE); tree v4si_ftype_char = build_function_type_list (V4SI_type_node, char_type_node, NULL_TREE); tree v8hi_ftype_char = build_function_type_list (V8HI_type_node, char_type_node, NULL_TREE); tree v16qi_ftype_char = build_function_type_list (V16QI_type_node, char_type_node, NULL_TREE); tree v8hi_ftype_v16qi = build_function_type_list (V8HI_type_node, V16QI_type_node, NULL_TREE); tree v4sf_ftype_v4sf = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE); tree v2si_ftype_v2si_v2si = build_function_type_list (V2SI_type_node, V2SI_type_node, V2SI_type_node, NULL_TREE); tree v2sf_ftype_v2sf_v2sf = build_function_type_list (V2SF_type_node, V2SF_type_node, V2SF_type_node, NULL_TREE); tree v2si_ftype_int_int = build_function_type_list (V2SI_type_node, integer_type_node, integer_type_node, NULL_TREE); tree v2si_ftype_v2si = build_function_type_list (V2SI_type_node, V2SI_type_node, NULL_TREE); tree v2sf_ftype_v2sf = build_function_type_list (V2SF_type_node, V2SF_type_node, NULL_TREE); tree v2sf_ftype_v2si = build_function_type_list (V2SF_type_node, V2SI_type_node, NULL_TREE); tree v2si_ftype_v2sf = build_function_type_list (V2SI_type_node, V2SF_type_node, NULL_TREE); tree v2si_ftype_v2si_char = build_function_type_list (V2SI_type_node, V2SI_type_node, char_type_node, NULL_TREE); tree v2si_ftype_int_char = build_function_type_list (V2SI_type_node, integer_type_node, char_type_node, NULL_TREE); tree v2si_ftype_char = build_function_type_list (V2SI_type_node, char_type_node, NULL_TREE); tree int_ftype_int_int = build_function_type_list (integer_type_node, integer_type_node, integer_type_node, NULL_TREE); tree v4si_ftype_v4si_v4si = build_function_type_list (V4SI_type_node, V4SI_type_node, V4SI_type_node, NULL_TREE); tree v4sf_ftype_v4si_char = build_function_type_list (V4SF_type_node, V4SI_type_node, char_type_node, NULL_TREE); tree v4si_ftype_v4sf_char = build_function_type_list (V4SI_type_node, V4SF_type_node, char_type_node, NULL_TREE); tree v4si_ftype_v4si_char = build_function_type_list (V4SI_type_node, V4SI_type_node, char_type_node, NULL_TREE); tree v8hi_ftype_v8hi_char = build_function_type_list (V8HI_type_node, V8HI_type_node, char_type_node, NULL_TREE); tree v16qi_ftype_v16qi_char = build_function_type_list (V16QI_type_node, V16QI_type_node, char_type_node, NULL_TREE); tree v16qi_ftype_v16qi_v16qi_char = build_function_type_list (V16QI_type_node, V16QI_type_node, V16QI_type_node, char_type_node, NULL_TREE); tree v8hi_ftype_v8hi_v8hi_char = build_function_type_list (V8HI_type_node, V8HI_type_node, V8HI_type_node, char_type_node, NULL_TREE); tree v4si_ftype_v4si_v4si_char = build_function_type_list (V4SI_type_node, V4SI_type_node, V4SI_type_node, char_type_node, NULL_TREE); tree v4sf_ftype_v4sf_v4sf_char = build_function_type_list (V4SF_type_node, V4SF_type_node, V4SF_type_node, char_type_node, NULL_TREE); tree v4sf_ftype_v4sf_v4sf = build_function_type_list (V4SF_type_node, V4SF_type_node, V4SF_type_node, NULL_TREE); tree v4sf_ftype_v4sf_v4sf_v4si = build_function_type_list (V4SF_type_node, V4SF_type_node, V4SF_type_node, V4SI_type_node, NULL_TREE); tree v4sf_ftype_v4sf_v4sf_v4sf = build_function_type_list (V4SF_type_node, V4SF_type_node, V4SF_type_node, V4SF_type_node, NULL_TREE); tree v4si_ftype_v4si_v4si_v4si = build_function_type_list (V4SI_type_node, V4SI_type_node, V4SI_type_node, V4SI_type_node, NULL_TREE); tree v8hi_ftype_v8hi_v8hi = build_function_type_list (V8HI_type_node, V8HI_type_node, V8HI_type_node, NULL_TREE); tree v8hi_ftype_v8hi_v8hi_v8hi = build_function_type_list (V8HI_type_node, V8HI_type_node, V8HI_type_node, V8HI_type_node, NULL_TREE); tree v4si_ftype_v8hi_v8hi_v4si = build_function_type_list (V4SI_type_node, V8HI_type_node, V8HI_type_node, V4SI_type_node, NULL_TREE); tree v4si_ftype_v16qi_v16qi_v4si = build_function_type_list (V4SI_type_node, V16QI_type_node, V16QI_type_node, V4SI_type_node, NULL_TREE); tree v16qi_ftype_v16qi_v16qi = build_function_type_list (V16QI_type_node, V16QI_type_node, V16QI_type_node, NULL_TREE); tree v4si_ftype_v4sf_v4sf = build_function_type_list (V4SI_type_node, V4SF_type_node, V4SF_type_node, NULL_TREE); tree v8hi_ftype_v16qi_v16qi = build_function_type_list (V8HI_type_node, V16QI_type_node, V16QI_type_node, NULL_TREE); tree v4si_ftype_v8hi_v8hi = build_function_type_list (V4SI_type_node, V8HI_type_node, V8HI_type_node, NULL_TREE); tree v8hi_ftype_v4si_v4si = build_function_type_list (V8HI_type_node, V4SI_type_node, V4SI_type_node, NULL_TREE); tree v16qi_ftype_v8hi_v8hi = build_function_type_list (V16QI_type_node, V8HI_type_node, V8HI_type_node, NULL_TREE); tree v4si_ftype_v16qi_v4si = build_function_type_list (V4SI_type_node, V16QI_type_node, V4SI_type_node, NULL_TREE); tree v4si_ftype_v16qi_v16qi = build_function_type_list (V4SI_type_node, V16QI_type_node, V16QI_type_node, NULL_TREE); tree v4si_ftype_v8hi_v4si = build_function_type_list (V4SI_type_node, V8HI_type_node, V4SI_type_node, NULL_TREE); tree v4si_ftype_v8hi = build_function_type_list (V4SI_type_node, V8HI_type_node, NULL_TREE); tree int_ftype_v4si_v4si = build_function_type_list (integer_type_node, V4SI_type_node, V4SI_type_node, NULL_TREE); tree int_ftype_v4sf_v4sf = build_function_type_list (integer_type_node, V4SF_type_node, V4SF_type_node, NULL_TREE); tree int_ftype_v16qi_v16qi = build_function_type_list (integer_type_node, V16QI_type_node, V16QI_type_node, NULL_TREE); tree int_ftype_v8hi_v8hi = build_function_type_list (integer_type_node, V8HI_type_node, V8HI_type_node, NULL_TREE); /* Add the simple ternary operators. */ d = (struct builtin_description *) bdesc_3arg; for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++) { enum machine_mode mode0, mode1, mode2, mode3; tree type; if (d->name == 0 || d->icode == CODE_FOR_nothing) continue; mode0 = insn_data[d->icode].operand[0].mode; mode1 = insn_data[d->icode].operand[1].mode; mode2 = insn_data[d->icode].operand[2].mode; mode3 = insn_data[d->icode].operand[3].mode; /* When all four are of the same mode. */ if (mode0 == mode1 && mode1 == mode2 && mode2 == mode3) { switch (mode0) { case V4SImode: type = v4si_ftype_v4si_v4si_v4si; break; case V4SFmode: type = v4sf_ftype_v4sf_v4sf_v4sf; break; case V8HImode: type = v8hi_ftype_v8hi_v8hi_v8hi; break; case V16QImode: type = v16qi_ftype_v16qi_v16qi_v16qi; break; default: abort(); } } else if (mode0 == mode1 && mode1 == mode2 && mode3 == V16QImode) { switch (mode0) { case V4SImode: type = v4si_ftype_v4si_v4si_v16qi; break; case V4SFmode: type = v4sf_ftype_v4sf_v4sf_v16qi; break; case V8HImode: type = v8hi_ftype_v8hi_v8hi_v16qi; break; case V16QImode: type = v16qi_ftype_v16qi_v16qi_v16qi; break; default: abort(); } } else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V16QImode && mode3 == V4SImode) type = v4si_ftype_v16qi_v16qi_v4si; else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V8HImode && mode3 == V4SImode) type = v4si_ftype_v8hi_v8hi_v4si; else if (mode0 == V4SFmode && mode1 == V4SFmode && mode2 == V4SFmode && mode3 == V4SImode) type = v4sf_ftype_v4sf_v4sf_v4si; /* vchar, vchar, vchar, 4 bit literal. */ else if (mode0 == V16QImode && mode1 == mode0 && mode2 == mode0 && mode3 == QImode) type = v16qi_ftype_v16qi_v16qi_char; /* vshort, vshort, vshort, 4 bit literal. */ else if (mode0 == V8HImode && mode1 == mode0 && mode2 == mode0 && mode3 == QImode) type = v8hi_ftype_v8hi_v8hi_char; /* vint, vint, vint, 4 bit literal. */ else if (mode0 == V4SImode && mode1 == mode0 && mode2 == mode0 && mode3 == QImode) type = v4si_ftype_v4si_v4si_char; /* vfloat, vfloat, vfloat, 4 bit literal. */ else if (mode0 == V4SFmode && mode1 == mode0 && mode2 == mode0 && mode3 == QImode) type = v4sf_ftype_v4sf_v4sf_char; else abort (); def_builtin (d->mask, d->name, type, d->code); } /* Add the simple binary operators. */ d = (struct builtin_description *) bdesc_2arg; for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++) { enum machine_mode mode0, mode1, mode2; tree type; if (d->name == 0 || d->icode == CODE_FOR_nothing) continue; mode0 = insn_data[d->icode].operand[0].mode; mode1 = insn_data[d->icode].operand[1].mode; mode2 = insn_data[d->icode].operand[2].mode; /* When all three operands are of the same mode. */ if (mode0 == mode1 && mode1 == mode2) { switch (mode0) { case V4SFmode: type = v4sf_ftype_v4sf_v4sf; break; case V4SImode: type = v4si_ftype_v4si_v4si; break; case V16QImode: type = v16qi_ftype_v16qi_v16qi; break; case V8HImode: type = v8hi_ftype_v8hi_v8hi; break; case V2SImode: type = v2si_ftype_v2si_v2si; break; case V2SFmode: type = v2sf_ftype_v2sf_v2sf; break; case SImode: type = int_ftype_int_int; break; default: abort (); } } /* A few other combos we really don't want to do manually. */ /* vint, vfloat, vfloat. */ else if (mode0 == V4SImode && mode1 == V4SFmode && mode2 == V4SFmode) type = v4si_ftype_v4sf_v4sf; /* vshort, vchar, vchar. */ else if (mode0 == V8HImode && mode1 == V16QImode && mode2 == V16QImode) type = v8hi_ftype_v16qi_v16qi; /* vint, vshort, vshort. */ else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V8HImode) type = v4si_ftype_v8hi_v8hi; /* vshort, vint, vint. */ else if (mode0 == V8HImode && mode1 == V4SImode && mode2 == V4SImode) type = v8hi_ftype_v4si_v4si; /* vchar, vshort, vshort. */ else if (mode0 == V16QImode && mode1 == V8HImode && mode2 == V8HImode) type = v16qi_ftype_v8hi_v8hi; /* vint, vchar, vint. */ else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V4SImode) type = v4si_ftype_v16qi_v4si; /* vint, vchar, vchar. */ else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V16QImode) type = v4si_ftype_v16qi_v16qi; /* vint, vshort, vint. */ else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V4SImode) type = v4si_ftype_v8hi_v4si; /* vint, vint, 5 bit literal. */ else if (mode0 == V4SImode && mode1 == V4SImode && mode2 == QImode) type = v4si_ftype_v4si_char; /* vshort, vshort, 5 bit literal. */ else if (mode0 == V8HImode && mode1 == V8HImode && mode2 == QImode) type = v8hi_ftype_v8hi_char; /* vchar, vchar, 5 bit literal. */ else if (mode0 == V16QImode && mode1 == V16QImode && mode2 == QImode) type = v16qi_ftype_v16qi_char; /* vfloat, vint, 5 bit literal. */ else if (mode0 == V4SFmode && mode1 == V4SImode && mode2 == QImode) type = v4sf_ftype_v4si_char; /* vint, vfloat, 5 bit literal. */ else if (mode0 == V4SImode && mode1 == V4SFmode && mode2 == QImode) type = v4si_ftype_v4sf_char; else if (mode0 == V2SImode && mode1 == SImode && mode2 == SImode) type = v2si_ftype_int_int; else if (mode0 == V2SImode && mode1 == V2SImode && mode2 == QImode) type = v2si_ftype_v2si_char; else if (mode0 == V2SImode && mode1 == SImode && mode2 == QImode) type = v2si_ftype_int_char; /* int, x, x. */ else if (mode0 == SImode) { switch (mode1) { case V4SImode: type = int_ftype_v4si_v4si; break; case V4SFmode: type = int_ftype_v4sf_v4sf; break; case V16QImode: type = int_ftype_v16qi_v16qi; break; case V8HImode: type = int_ftype_v8hi_v8hi; break; default: abort (); } } else abort (); def_builtin (d->mask, d->name, type, d->code); } /* Add the simple unary operators. */ d = (struct builtin_description *) bdesc_1arg; for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++) { enum machine_mode mode0, mode1; tree type; if (d->name == 0 || d->icode == CODE_FOR_nothing) continue; mode0 = insn_data[d->icode].operand[0].mode; mode1 = insn_data[d->icode].operand[1].mode; if (mode0 == V4SImode && mode1 == QImode) type = v4si_ftype_char; else if (mode0 == V8HImode && mode1 == QImode) type = v8hi_ftype_char; else if (mode0 == V16QImode && mode1 == QImode) type = v16qi_ftype_char; else if (mode0 == V4SFmode && mode1 == V4SFmode) type = v4sf_ftype_v4sf; else if (mode0 == V8HImode && mode1 == V16QImode) type = v8hi_ftype_v16qi; else if (mode0 == V4SImode && mode1 == V8HImode) type = v4si_ftype_v8hi; else if (mode0 == V2SImode && mode1 == V2SImode) type = v2si_ftype_v2si; else if (mode0 == V2SFmode && mode1 == V2SFmode) type = v2sf_ftype_v2sf; else if (mode0 == V2SFmode && mode1 == V2SImode) type = v2sf_ftype_v2si; else if (mode0 == V2SImode && mode1 == V2SFmode) type = v2si_ftype_v2sf; else if (mode0 == V2SImode && mode1 == QImode) type = v2si_ftype_char; else abort (); def_builtin (d->mask, d->name, type, d->code); } } /* Expand a block move operation, and return 1 if successful. Return 0 if we should let the compiler generate normal code. operands[0] is the destination operands[1] is the source operands[2] is the length operands[3] is the alignment */ #define MAX_MOVE_REG 4 int expand_block_move (operands) rtx operands[]; { rtx orig_dest = operands[0]; rtx orig_src = operands[1]; rtx bytes_rtx = operands[2]; rtx align_rtx = operands[3]; int constp = (GET_CODE (bytes_rtx) == CONST_INT); int align; int bytes; int offset; int move_bytes; /* If this is not a fixed size move, just call memcpy */ if (! constp) return 0; /* If this is not a fixed size alignment, abort */ if (GET_CODE (align_rtx) != CONST_INT) abort (); align = INTVAL (align_rtx); /* Anything to move? */ bytes = INTVAL (bytes_rtx); if (bytes <= 0) return 1; /* store_one_arg depends on expand_block_move to handle at least the size of reg_parm_stack_space. */ if (bytes > (TARGET_POWERPC64 ? 64 : 32)) return 0; if (TARGET_STRING) /* string instructions are available */ { for (offset = 0; bytes > 0; offset += move_bytes, bytes -= move_bytes) { union { rtx (*movstrsi) PARAMS ((rtx, rtx, rtx, rtx)); rtx (*mov) PARAMS ((rtx, rtx)); } gen_func; enum machine_mode mode = BLKmode; rtx src, dest; if (bytes > 24 /* move up to 32 bytes at a time */ && ! fixed_regs[5] && ! fixed_regs[6] && ! fixed_regs[7] && ! fixed_regs[8] && ! fixed_regs[9] && ! fixed_regs[10] && ! fixed_regs[11] && ! fixed_regs[12]) { move_bytes = (bytes > 32) ? 32 : bytes; gen_func.movstrsi = gen_movstrsi_8reg; } else if (bytes > 16 /* move up to 24 bytes at a time */ && ! fixed_regs[5] && ! fixed_regs[6] && ! fixed_regs[7] && ! fixed_regs[8] && ! fixed_regs[9] && ! fixed_regs[10]) { move_bytes = (bytes > 24) ? 24 : bytes; gen_func.movstrsi = gen_movstrsi_6reg; } else if (bytes > 8 /* move up to 16 bytes at a time */ && ! fixed_regs[5] && ! fixed_regs[6] && ! fixed_regs[7] && ! fixed_regs[8]) { move_bytes = (bytes > 16) ? 16 : bytes; gen_func.movstrsi = gen_movstrsi_4reg; } else if (bytes >= 8 && TARGET_POWERPC64 /* 64-bit loads and stores require word-aligned displacements. */ && (align >= 8 || (! STRICT_ALIGNMENT && align >= 4))) { move_bytes = 8; mode = DImode; gen_func.mov = gen_movdi; } else if (bytes > 4 && !TARGET_POWERPC64) { /* move up to 8 bytes at a time */ move_bytes = (bytes > 8) ? 8 : bytes; gen_func.movstrsi = gen_movstrsi_2reg; } else if (bytes >= 4 && (align >= 4 || ! STRICT_ALIGNMENT)) { /* move 4 bytes */ move_bytes = 4; mode = SImode; gen_func.mov = gen_movsi; } else if (bytes == 2 && (align >= 2 || ! STRICT_ALIGNMENT)) { /* move 2 bytes */ move_bytes = 2; mode = HImode; gen_func.mov = gen_movhi; } else if (bytes == 1) /* move 1 byte */ { move_bytes = 1; mode = QImode; gen_func.mov = gen_movqi; } else { /* move up to 4 bytes at a time */ move_bytes = (bytes > 4) ? 4 : bytes; gen_func.movstrsi = gen_movstrsi_1reg; } src = adjust_address (orig_src, mode, offset); dest = adjust_address (orig_dest, mode, offset); if (mode == BLKmode) { /* Move the address into scratch registers. The movstrsi patterns require zero offset. */ if (!REG_P (XEXP (src, 0))) { rtx src_reg = copy_addr_to_reg (XEXP (src, 0)); src = replace_equiv_address (src, src_reg); } set_mem_size (src, GEN_INT (move_bytes)); if (!REG_P (XEXP (dest, 0))) { rtx dest_reg = copy_addr_to_reg (XEXP (dest, 0)); dest = replace_equiv_address (dest, dest_reg); } set_mem_size (dest, GEN_INT (move_bytes)); emit_insn ((*gen_func.movstrsi) (dest, src, GEN_INT (move_bytes & 31), align_rtx)); } else { rtx tmp_reg = gen_reg_rtx (mode); emit_insn ((*gen_func.mov) (tmp_reg, src)); emit_insn ((*gen_func.mov) (dest, tmp_reg)); } } } else /* string instructions not available */ { rtx stores[MAX_MOVE_REG]; int num_reg = 0; int i; for (offset = 0; bytes > 0; offset += move_bytes, bytes -= move_bytes) { rtx (*gen_mov_func) PARAMS ((rtx, rtx)); enum machine_mode mode; rtx src, dest, tmp_reg; /* Generate the appropriate load and store, saving the stores for later. */ if (bytes >= 8 && TARGET_POWERPC64 /* 64-bit loads and stores require word-aligned displacements. */ && (align >= 8 || (! STRICT_ALIGNMENT && align >= 4))) { move_bytes = 8; mode = DImode; gen_mov_func = gen_movdi; } else if (bytes >= 4 && (align >= 4 || ! STRICT_ALIGNMENT)) { move_bytes = 4; mode = SImode; gen_mov_func = gen_movsi; } else if (bytes >= 2 && (align >= 2 || ! STRICT_ALIGNMENT)) { move_bytes = 2; mode = HImode; gen_mov_func = gen_movhi; } else { move_bytes = 1; mode = QImode; gen_mov_func = gen_movqi; } src = adjust_address (orig_src, mode, offset); dest = adjust_address (orig_dest, mode, offset); tmp_reg = gen_reg_rtx (mode); emit_insn ((*gen_mov_func) (tmp_reg, src)); stores[num_reg++] = (*gen_mov_func) (dest, tmp_reg); if (num_reg >= MAX_MOVE_REG) { for (i = 0; i < num_reg; i++) emit_insn (stores[i]); num_reg = 0; } } for (i = 0; i < num_reg; i++) emit_insn (stores[i]); } return 1; } /* Return 1 if OP is a load multiple operation. It is known to be a PARALLEL and the first section will be tested. */ int load_multiple_operation (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { int count = XVECLEN (op, 0); unsigned int dest_regno; rtx src_addr; int i; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM) return 0; dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0))); src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0); for (i = 1; i < count; i++) { rtx elt = XVECEXP (op, 0, i); if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != SImode || REGNO (SET_DEST (elt)) != dest_regno + i || GET_CODE (SET_SRC (elt)) != MEM || GET_MODE (SET_SRC (elt)) != SImode || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr) || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4) return 0; } return 1; } /* Similar, but tests for store multiple. Here, the second vector element is a CLOBBER. It will be tested later. */ int store_multiple_operation (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { int count = XVECLEN (op, 0) - 1; unsigned int src_regno; rtx dest_addr; int i; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG) return 0; src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0))); dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0); for (i = 1; i < count; i++) { rtx elt = XVECEXP (op, 0, i + 1); if (GET_CODE (elt) != SET || GET_CODE (SET_SRC (elt)) != REG || GET_MODE (SET_SRC (elt)) != SImode || REGNO (SET_SRC (elt)) != src_regno + i || GET_CODE (SET_DEST (elt)) != MEM || GET_MODE (SET_DEST (elt)) != SImode || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr) || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4) return 0; } return 1; } /* Return a string to perform a load_multiple operation. operands[0] is the vector. operands[1] is the source address. operands[2] is the first destination register. */ const char * rs6000_output_load_multiple (operands) rtx operands[3]; { /* We have to handle the case where the pseudo used to contain the address is assigned to one of the output registers. */ int i, j; int words = XVECLEN (operands[0], 0); rtx xop[10]; if (XVECLEN (operands[0], 0) == 1) return "{l|lwz} %2,0(%1)"; for (i = 0; i < words; i++) if (refers_to_regno_p (REGNO (operands[2]) + i, REGNO (operands[2]) + i + 1, operands[1], 0)) { if (i == words-1) { xop[0] = GEN_INT (4 * (words-1)); xop[1] = operands[1]; xop[2] = operands[2]; output_asm_insn ("{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,%0(%1)", xop); return ""; } else if (i == 0) { xop[0] = GEN_INT (4 * (words-1)); xop[1] = operands[1]; xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + 1); output_asm_insn ("{cal %1,4(%1)|addi %1,%1,4}\n\t{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,-4(%1)", xop); return ""; } else { for (j = 0; j < words; j++) if (j != i) { xop[0] = GEN_INT (j * 4); xop[1] = operands[1]; xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + j); output_asm_insn ("{l|lwz} %2,%0(%1)", xop); } xop[0] = GEN_INT (i * 4); xop[1] = operands[1]; output_asm_insn ("{l|lwz} %1,%0(%1)", xop); return ""; } } return "{lsi|lswi} %2,%1,%N0"; } /* Return 1 for a parallel vrsave operation. */ int vrsave_operation (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { int count = XVECLEN (op, 0); unsigned int dest_regno, src_regno; int i; if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC_VOLATILE) return 0; dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0))); src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0))); if (dest_regno != VRSAVE_REGNO && src_regno != VRSAVE_REGNO) return 0; for (i = 1; i < count; i++) { rtx elt = XVECEXP (op, 0, i); if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != SET) return 0; } return 1; } /* Return 1 for an PARALLEL suitable for mtcrf. */ int mtcrf_operation (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { int count = XVECLEN (op, 0); int i; rtx src_reg; /* Perform a quick check so we don't blow up below. */ if (count < 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2) return 0; src_reg = XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 0); if (GET_CODE (src_reg) != REG || GET_MODE (src_reg) != SImode || ! INT_REGNO_P (REGNO (src_reg))) return 0; for (i = 0; i < count; i++) { rtx exp = XVECEXP (op, 0, i); rtx unspec; int maskval; if (GET_CODE (exp) != SET || GET_CODE (SET_DEST (exp)) != REG || GET_MODE (SET_DEST (exp)) != CCmode || ! CR_REGNO_P (REGNO (SET_DEST (exp)))) return 0; unspec = SET_SRC (exp); maskval = 1 << (MAX_CR_REGNO - REGNO (SET_DEST (exp))); if (GET_CODE (unspec) != UNSPEC || XINT (unspec, 1) != 20 || XVECLEN (unspec, 0) != 2 || XVECEXP (unspec, 0, 0) != src_reg || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT || INTVAL (XVECEXP (unspec, 0, 1)) != maskval) return 0; } return 1; } /* Return 1 for an PARALLEL suitable for lmw. */ int lmw_operation (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { int count = XVECLEN (op, 0); unsigned int dest_regno; rtx src_addr; unsigned int base_regno; HOST_WIDE_INT offset; int i; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM) return 0; dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0))); src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0); if (dest_regno > 31 || count != 32 - (int) dest_regno) return 0; if (LEGITIMATE_INDIRECT_ADDRESS_P (src_addr, 0)) { offset = 0; base_regno = REGNO (src_addr); if (base_regno == 0) return 0; } else if (LEGITIMATE_OFFSET_ADDRESS_P (SImode, src_addr, 0)) { offset = INTVAL (XEXP (src_addr, 1)); base_regno = REGNO (XEXP (src_addr, 0)); } else return 0; for (i = 0; i < count; i++) { rtx elt = XVECEXP (op, 0, i); rtx newaddr; rtx addr_reg; HOST_WIDE_INT newoffset; if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != SImode || REGNO (SET_DEST (elt)) != dest_regno + i || GET_CODE (SET_SRC (elt)) != MEM || GET_MODE (SET_SRC (elt)) != SImode) return 0; newaddr = XEXP (SET_SRC (elt), 0); if (LEGITIMATE_INDIRECT_ADDRESS_P (newaddr, 0)) { newoffset = 0; addr_reg = newaddr; } else if (LEGITIMATE_OFFSET_ADDRESS_P (SImode, newaddr, 0)) { addr_reg = XEXP (newaddr, 0); newoffset = INTVAL (XEXP (newaddr, 1)); } else return 0; if (REGNO (addr_reg) != base_regno || newoffset != offset + 4 * i) return 0; } return 1; } /* Return 1 for an PARALLEL suitable for stmw. */ int stmw_operation (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { int count = XVECLEN (op, 0); unsigned int src_regno; rtx dest_addr; unsigned int base_regno; HOST_WIDE_INT offset; int i; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG) return 0; src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0))); dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0); if (src_regno > 31 || count != 32 - (int) src_regno) return 0; if (LEGITIMATE_INDIRECT_ADDRESS_P (dest_addr, 0)) { offset = 0; base_regno = REGNO (dest_addr); if (base_regno == 0) return 0; } else if (LEGITIMATE_OFFSET_ADDRESS_P (SImode, dest_addr, 0)) { offset = INTVAL (XEXP (dest_addr, 1)); base_regno = REGNO (XEXP (dest_addr, 0)); } else return 0; for (i = 0; i < count; i++) { rtx elt = XVECEXP (op, 0, i); rtx newaddr; rtx addr_reg; HOST_WIDE_INT newoffset; if (GET_CODE (elt) != SET || GET_CODE (SET_SRC (elt)) != REG || GET_MODE (SET_SRC (elt)) != SImode || REGNO (SET_SRC (elt)) != src_regno + i || GET_CODE (SET_DEST (elt)) != MEM || GET_MODE (SET_DEST (elt)) != SImode) return 0; newaddr = XEXP (SET_DEST (elt), 0); if (LEGITIMATE_INDIRECT_ADDRESS_P (newaddr, 0)) { newoffset = 0; addr_reg = newaddr; } else if (LEGITIMATE_OFFSET_ADDRESS_P (SImode, newaddr, 0)) { addr_reg = XEXP (newaddr, 0); newoffset = INTVAL (XEXP (newaddr, 1)); } else return 0; if (REGNO (addr_reg) != base_regno || newoffset != offset + 4 * i) return 0; } return 1; } /* A validation routine: say whether CODE, a condition code, and MODE match. The other alternatives either don't make sense or should never be generated. */ static void validate_condition_mode (code, mode) enum rtx_code code; enum machine_mode mode; { if (GET_RTX_CLASS (code) != '<' || GET_MODE_CLASS (mode) != MODE_CC) abort (); /* These don't make sense. */ if ((code == GT || code == LT || code == GE || code == LE) && mode == CCUNSmode) abort (); if ((code == GTU || code == LTU || code == GEU || code == LEU) && mode != CCUNSmode) abort (); if (mode != CCFPmode && (code == ORDERED || code == UNORDERED || code == UNEQ || code == LTGT || code == UNGT || code == UNLT || code == UNGE || code == UNLE)) abort (); /* These should never be generated except for flag_unsafe_math_optimizations and flag_finite_math_only. */ if (mode == CCFPmode && ! flag_unsafe_math_optimizations && ! flag_finite_math_only && (code == LE || code == GE || code == UNEQ || code == LTGT || code == UNGT || code == UNLT)) abort (); /* These are invalid; the information is not there. */ if (mode == CCEQmode && code != EQ && code != NE) abort (); } /* Return 1 if OP is a comparison operation that is valid for a branch insn. We only check the opcode against the mode of the CC value here. */ int branch_comparison_operator (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); enum machine_mode cc_mode; if (GET_RTX_CLASS (code) != '<') return 0; cc_mode = GET_MODE (XEXP (op, 0)); if (GET_MODE_CLASS (cc_mode) != MODE_CC) return 0; validate_condition_mode (code, cc_mode); return 1; } /* Return 1 if OP is a comparison operation that is valid for a branch insn and which is true if the corresponding bit in the CC register is set. */ int branch_positive_comparison_operator (op, mode) rtx op; enum machine_mode mode; { enum rtx_code code; if (! branch_comparison_operator (op, mode)) return 0; code = GET_CODE (op); return (code == EQ || code == LT || code == GT || (TARGET_SPE && TARGET_HARD_FLOAT && !TARGET_FPRS && code == NE) || code == LTU || code == GTU || code == UNORDERED); } /* Return 1 if OP is a comparison operation that is valid for an scc insn. We check the opcode against the mode of the CC value and disallow EQ or NE comparisons for integers. */ int scc_comparison_operator (op, mode) rtx op; enum machine_mode mode; { enum rtx_code code = GET_CODE (op); enum machine_mode cc_mode; if (GET_MODE (op) != mode && mode != VOIDmode) return 0; if (GET_RTX_CLASS (code) != '<') return 0; cc_mode = GET_MODE (XEXP (op, 0)); if (GET_MODE_CLASS (cc_mode) != MODE_CC) return 0; validate_condition_mode (code, cc_mode); if (code == NE && cc_mode != CCFPmode) return 0; return 1; } int trap_comparison_operator (op, mode) rtx op; enum machine_mode mode; { if (mode != VOIDmode && mode != GET_MODE (op)) return 0; return GET_RTX_CLASS (GET_CODE (op)) == '<'; } int boolean_operator (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); return (code == AND || code == IOR || code == XOR); } int boolean_or_operator (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); return (code == IOR || code == XOR); } int min_max_operator (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); return (code == SMIN || code == SMAX || code == UMIN || code == UMAX); } /* Return 1 if ANDOP is a mask that has no bits on that are not in the mask required to convert the result of a rotate insn into a shift left insn of SHIFTOP bits. Both are known to be SImode CONST_INT. */ int includes_lshift_p (shiftop, andop) rtx shiftop; rtx andop; { unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0; shift_mask <<= INTVAL (shiftop); return (INTVAL (andop) & 0xffffffff & ~shift_mask) == 0; } /* Similar, but for right shift. */ int includes_rshift_p (shiftop, andop) rtx shiftop; rtx andop; { unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0; shift_mask >>= INTVAL (shiftop); return (INTVAL (andop) & 0xffffffff & ~shift_mask) == 0; } /* Return 1 if ANDOP is a mask suitable for use with an rldic insn to perform a left shift. It must have exactly SHIFTOP least signifigant 0's, then one or more 1's, then zero or more 0's. */ int includes_rldic_lshift_p (shiftop, andop) rtx shiftop; rtx andop; { if (GET_CODE (andop) == CONST_INT) { HOST_WIDE_INT c, lsb, shift_mask; c = INTVAL (andop); if (c == 0 || c == ~0) return 0; shift_mask = ~0; shift_mask <<= INTVAL (shiftop); /* Find the least signifigant one bit. */ lsb = c & -c; /* It must coincide with the LSB of the shift mask. */ if (-lsb != shift_mask) return 0; /* Invert to look for the next transition (if any). */ c = ~c; /* Remove the low group of ones (originally low group of zeros). */ c &= -lsb; /* Again find the lsb, and check we have all 1's above. */ lsb = c & -c; return c == -lsb; } else if (GET_CODE (andop) == CONST_DOUBLE && (GET_MODE (andop) == VOIDmode || GET_MODE (andop) == DImode)) { HOST_WIDE_INT low, high, lsb; HOST_WIDE_INT shift_mask_low, shift_mask_high; low = CONST_DOUBLE_LOW (andop); if (HOST_BITS_PER_WIDE_INT < 64) high = CONST_DOUBLE_HIGH (andop); if ((low == 0 && (HOST_BITS_PER_WIDE_INT >= 64 || high == 0)) || (low == ~0 && (HOST_BITS_PER_WIDE_INT >= 64 || high == ~0))) return 0; if (HOST_BITS_PER_WIDE_INT < 64 && low == 0) { shift_mask_high = ~0; if (INTVAL (shiftop) > 32) shift_mask_high <<= INTVAL (shiftop) - 32; lsb = high & -high; if (-lsb != shift_mask_high || INTVAL (shiftop) < 32) return 0; high = ~high; high &= -lsb; lsb = high & -high; return high == -lsb; } shift_mask_low = ~0; shift_mask_low <<= INTVAL (shiftop); lsb = low & -low; if (-lsb != shift_mask_low) return 0; if (HOST_BITS_PER_WIDE_INT < 64) high = ~high; low = ~low; low &= -lsb; if (HOST_BITS_PER_WIDE_INT < 64 && low == 0) { lsb = high & -high; return high == -lsb; } lsb = low & -low; return low == -lsb && (HOST_BITS_PER_WIDE_INT >= 64 || high == ~0); } else return 0; } /* Return 1 if ANDOP is a mask suitable for use with an rldicr insn to perform a left shift. It must have SHIFTOP or more least signifigant 0's, with the remainder of the word 1's. */ int includes_rldicr_lshift_p (shiftop, andop) rtx shiftop; rtx andop; { if (GET_CODE (andop) == CONST_INT) { HOST_WIDE_INT c, lsb, shift_mask; shift_mask = ~0; shift_mask <<= INTVAL (shiftop); c = INTVAL (andop); /* Find the least signifigant one bit. */ lsb = c & -c; /* It must be covered by the shift mask. This test also rejects c == 0. */ if ((lsb & shift_mask) == 0) return 0; /* Check we have all 1's above the transition, and reject all 1's. */ return c == -lsb && lsb != 1; } else if (GET_CODE (andop) == CONST_DOUBLE && (GET_MODE (andop) == VOIDmode || GET_MODE (andop) == DImode)) { HOST_WIDE_INT low, lsb, shift_mask_low; low = CONST_DOUBLE_LOW (andop); if (HOST_BITS_PER_WIDE_INT < 64) { HOST_WIDE_INT high, shift_mask_high; high = CONST_DOUBLE_HIGH (andop); if (low == 0) { shift_mask_high = ~0; if (INTVAL (shiftop) > 32) shift_mask_high <<= INTVAL (shiftop) - 32; lsb = high & -high; if ((lsb & shift_mask_high) == 0) return 0; return high == -lsb; } if (high != ~0) return 0; } shift_mask_low = ~0; shift_mask_low <<= INTVAL (shiftop); lsb = low & -low; if ((lsb & shift_mask_low) == 0) return 0; return low == -lsb && lsb != 1; } else return 0; } /* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates for lfq and stfq insns. Note reg1 and reg2 *must* be hard registers. To be sure we will abort if we are passed pseudo registers. */ int registers_ok_for_quad_peep (reg1, reg2) rtx reg1, reg2; { /* We might have been passed a SUBREG. */ if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) return 0; return (REGNO (reg1) == REGNO (reg2) - 1); } /* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn. addr1 and addr2 must be in consecutive memory locations (addr2 == addr1 + 8). */ int addrs_ok_for_quad_peep (addr1, addr2) rtx addr1; rtx addr2; { unsigned int reg1; int offset1; /* Extract an offset (if used) from the first addr. */ if (GET_CODE (addr1) == PLUS) { /* If not a REG, return zero. */ if (GET_CODE (XEXP (addr1, 0)) != REG) return 0; else { reg1 = REGNO (XEXP (addr1, 0)); /* The offset must be constant! */ if (GET_CODE (XEXP (addr1, 1)) != CONST_INT) return 0; offset1 = INTVAL (XEXP (addr1, 1)); } } else if (GET_CODE (addr1) != REG) return 0; else { reg1 = REGNO (addr1); /* This was a simple (mem (reg)) expression. Offset is 0. */ offset1 = 0; } /* Make sure the second address is a (mem (plus (reg) (const_int))). */ if (GET_CODE (addr2) != PLUS) return 0; if (GET_CODE (XEXP (addr2, 0)) != REG || GET_CODE (XEXP (addr2, 1)) != CONST_INT) return 0; if (reg1 != REGNO (XEXP (addr2, 0))) return 0; /* The offset for the second addr must be 8 more than the first addr. */ if (INTVAL (XEXP (addr2, 1)) != offset1 + 8) return 0; /* All the tests passed. addr1 and addr2 are valid for lfq or stfq instructions. */ return 1; } /* Return the register class of a scratch register needed to copy IN into or out of a register in CLASS in MODE. If it can be done directly, NO_REGS is returned. */ enum reg_class secondary_reload_class (class, mode, in) enum reg_class class; enum machine_mode mode ATTRIBUTE_UNUSED; rtx in; { int regno; if (TARGET_ELF || (DEFAULT_ABI == ABI_DARWIN && flag_pic)) { /* We cannot copy a symbolic operand directly into anything other than BASE_REGS for TARGET_ELF. So indicate that a register from BASE_REGS is needed as an intermediate register. On Darwin, pic addresses require a load from memory, which needs a base register. */ if (class != BASE_REGS && (GET_CODE (in) == SYMBOL_REF || GET_CODE (in) == HIGH || GET_CODE (in) == LABEL_REF || GET_CODE (in) == CONST)) return BASE_REGS; } if (GET_CODE (in) == REG) { regno = REGNO (in); if (regno >= FIRST_PSEUDO_REGISTER) { regno = true_regnum (in); if (regno >= FIRST_PSEUDO_REGISTER) regno = -1; } } else if (GET_CODE (in) == SUBREG) { regno = true_regnum (in); if (regno >= FIRST_PSEUDO_REGISTER) regno = -1; } else regno = -1; /* We can place anything into GENERAL_REGS and can put GENERAL_REGS into anything. */ if (class == GENERAL_REGS || class == BASE_REGS || (regno >= 0 && INT_REGNO_P (regno))) return NO_REGS; /* Constants, memory, and FP registers can go into FP registers. */ if ((regno == -1 || FP_REGNO_P (regno)) && (class == FLOAT_REGS || class == NON_SPECIAL_REGS)) return NO_REGS; /* Memory, and AltiVec registers can go into AltiVec registers. */ if ((regno == -1 || ALTIVEC_REGNO_P (regno)) && class == ALTIVEC_REGS) return NO_REGS; /* We can copy among the CR registers. */ if ((class == CR_REGS || class == CR0_REGS) && regno >= 0 && CR_REGNO_P (regno)) return NO_REGS; /* Otherwise, we need GENERAL_REGS. */ return GENERAL_REGS; } /* Given a comparison operation, return the bit number in CCR to test. We know this is a valid comparison. SCC_P is 1 if this is for an scc. That means that %D will have been used instead of %C, so the bits will be in different places. Return -1 if OP isn't a valid comparison for some reason. */ int ccr_bit (op, scc_p) rtx op; int scc_p; { enum rtx_code code = GET_CODE (op); enum machine_mode cc_mode; int cc_regnum; int base_bit; rtx reg; if (GET_RTX_CLASS (code) != '<') return -1; reg = XEXP (op, 0); if (GET_CODE (reg) != REG || ! CR_REGNO_P (REGNO (reg))) abort (); cc_mode = GET_MODE (reg); cc_regnum = REGNO (reg); base_bit = 4 * (cc_regnum - CR0_REGNO); validate_condition_mode (code, cc_mode); switch (code) { case NE: if (TARGET_SPE && TARGET_HARD_FLOAT && cc_mode == CCFPmode) return base_bit + 1; return scc_p ? base_bit + 3 : base_bit + 2; case EQ: if (TARGET_SPE && TARGET_HARD_FLOAT && cc_mode == CCFPmode) return base_bit + 1; return base_bit + 2; case GT: case GTU: case UNLE: return base_bit + 1; case LT: case LTU: case UNGE: return base_bit; case ORDERED: case UNORDERED: return base_bit + 3; case GE: case GEU: /* If scc, we will have done a cror to put the bit in the unordered position. So test that bit. For integer, this is ! LT unless this is an scc insn. */ return scc_p ? base_bit + 3 : base_bit; case LE: case LEU: return scc_p ? base_bit + 3 : base_bit + 1; default: abort (); } } /* Return the GOT register. */ struct rtx_def * rs6000_got_register (value) rtx value ATTRIBUTE_UNUSED; { /* The second flow pass currently (June 1999) can't update regs_ever_live without disturbing other parts of the compiler, so update it here to make the prolog/epilogue code happy. */ if (no_new_pseudos && ! regs_ever_live[RS6000_PIC_OFFSET_TABLE_REGNUM]) regs_ever_live[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; current_function_uses_pic_offset_table = 1; return pic_offset_table_rtx; } /* Function to init struct machine_function. This will be called, via a pointer variable, from push_function_context. */ static struct machine_function * rs6000_init_machine_status () { return ggc_alloc_cleared (sizeof (machine_function)); } /* These macros test for integers and extract the low-order bits. */ #define INT_P(X) \ ((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE) \ && GET_MODE (X) == VOIDmode) #define INT_LOWPART(X) \ (GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X)) int extract_MB (op) rtx op; { int i; unsigned long val = INT_LOWPART (op); /* If the high bit is zero, the value is the first 1 bit we find from the left. */ if ((val & 0x80000000) == 0) { if ((val & 0xffffffff) == 0) abort (); i = 1; while (((val <<= 1) & 0x80000000) == 0) ++i; return i; } /* If the high bit is set and the low bit is not, or the mask is all 1's, the value is zero. */ if ((val & 1) == 0 || (val & 0xffffffff) == 0xffffffff) return 0; /* Otherwise we have a wrap-around mask. Look for the first 0 bit from the right. */ i = 31; while (((val >>= 1) & 1) != 0) --i; return i; } int extract_ME (op) rtx op; { int i; unsigned long val = INT_LOWPART (op); /* If the low bit is zero, the value is the first 1 bit we find from the right. */ if ((val & 1) == 0) { if ((val & 0xffffffff) == 0) abort (); i = 30; while (((val >>= 1) & 1) == 0) --i; return i; } /* If the low bit is set and the high bit is not, or the mask is all 1's, the value is 31. */ if ((val & 0x80000000) == 0 || (val & 0xffffffff) == 0xffffffff) return 31; /* Otherwise we have a wrap-around mask. Look for the first 0 bit from the left. */ i = 0; while (((val <<= 1) & 0x80000000) != 0) ++i; return i; } /* Print an operand. Recognize special options, documented below. */ #if TARGET_ELF #define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel") #define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13) #else #define SMALL_DATA_RELOC "sda21" #define SMALL_DATA_REG 0 #endif void print_operand (file, x, code) FILE *file; rtx x; int code; { int i; HOST_WIDE_INT val; unsigned HOST_WIDE_INT uval; switch (code) { case '.': /* Write out an instruction after the call which may be replaced with glue code by the loader. This depends on the AIX version. */ asm_fprintf (file, RS6000_CALL_GLUE); return; /* %a is output_address. */ case 'A': /* If X is a constant integer whose low-order 5 bits are zero, write 'l'. Otherwise, write 'r'. This is a kludge to fix a bug in the AIX assembler where "sri" with a zero shift count writes a trash instruction. */ if (GET_CODE (x) == CONST_INT && (INTVAL (x) & 31) == 0) putc ('l', file); else putc ('r', file); return; case 'b': /* If constant, low-order 16 bits of constant, unsigned. Otherwise, write normally. */ if (INT_P (x)) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 0xffff); else print_operand (file, x, 0); return; case 'B': /* If the low-order bit is zero, write 'r'; otherwise, write 'l' for 64-bit mask direction. */ putc (((INT_LOWPART(x) & 1) == 0 ? 'r' : 'l'), file); return; /* %c is output_addr_const if a CONSTANT_ADDRESS_P, otherwise output_operand. */ case 'D': /* There used to be a comment for 'C' reading "This is an optional cror needed for certain floating-point comparisons. Otherwise write nothing." */ /* Similar, except that this is for an scc, so we must be able to encode the test in a single bit that is one. We do the above for any LE, GE, GEU, or LEU and invert the bit for NE. */ if (GET_CODE (x) == LE || GET_CODE (x) == GE || GET_CODE (x) == LEU || GET_CODE (x) == GEU) { int base_bit = 4 * (REGNO (XEXP (x, 0)) - CR0_REGNO); fprintf (file, "cror %d,%d,%d\n\t", base_bit + 3, base_bit + 2, base_bit + (GET_CODE (x) == GE || GET_CODE (x) == GEU)); } else if (GET_CODE (x) == NE) { int base_bit = 4 * (REGNO (XEXP (x, 0)) - CR0_REGNO); fprintf (file, "crnor %d,%d,%d\n\t", base_bit + 3, base_bit + 2, base_bit + 2); } else if (TARGET_SPE && TARGET_HARD_FLOAT && GET_CODE (x) == EQ && GET_MODE (XEXP (x, 0)) == CCFPmode) { int base_bit = 4 * (REGNO (XEXP (x, 0)) - CR0_REGNO); fprintf (file, "crnor %d,%d,%d\n\t", base_bit + 1, base_bit + 1, base_bit + 1); } return; case 'E': /* X is a CR register. Print the number of the EQ bit of the CR */ if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x))) output_operand_lossage ("invalid %%E value"); else fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 2); return; case 'f': /* X is a CR register. Print the shift count needed to move it to the high-order four bits. */ if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x))) output_operand_lossage ("invalid %%f value"); else fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO)); return; case 'F': /* Similar, but print the count for the rotate in the opposite direction. */ if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x))) output_operand_lossage ("invalid %%F value"); else fprintf (file, "%d", 32 - 4 * (REGNO (x) - CR0_REGNO)); return; case 'G': /* X is a constant integer. If it is negative, print "m", otherwise print "z". This is to make an aze or ame insn. */ if (GET_CODE (x) != CONST_INT) output_operand_lossage ("invalid %%G value"); else if (INTVAL (x) >= 0) putc ('z', file); else putc ('m', file); return; case 'h': /* If constant, output low-order five bits. Otherwise, write normally. */ if (INT_P (x)) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 31); else print_operand (file, x, 0); return; case 'H': /* If constant, output low-order six bits. Otherwise, write normally. */ if (INT_P (x)) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 63); else print_operand (file, x, 0); return; case 'I': /* Print `i' if this is a constant, else nothing. */ if (INT_P (x)) putc ('i', file); return; case 'j': /* Write the bit number in CCR for jump. */ i = ccr_bit (x, 0); if (i == -1) output_operand_lossage ("invalid %%j code"); else fprintf (file, "%d", i); return; case 'J': /* Similar, but add one for shift count in rlinm for scc and pass scc flag to `ccr_bit'. */ i = ccr_bit (x, 1); if (i == -1) output_operand_lossage ("invalid %%J code"); else /* If we want bit 31, write a shift count of zero, not 32. */ fprintf (file, "%d", i == 31 ? 0 : i + 1); return; case 'k': /* X must be a constant. Write the 1's complement of the constant. */ if (! INT_P (x)) output_operand_lossage ("invalid %%k value"); else fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INT_LOWPART (x)); return; case 'K': /* X must be a symbolic constant on ELF. Write an expression suitable for an 'addi' that adds in the low 16 bits of the MEM. */ if (GET_CODE (x) != CONST) { print_operand_address (file, x); fputs ("@l", file); } else { if (GET_CODE (XEXP (x, 0)) != PLUS || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF) || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT) output_operand_lossage ("invalid %%K value"); print_operand_address (file, XEXP (XEXP (x, 0), 0)); fputs ("@l", file); /* For GNU as, there must be a non-alphanumeric character between 'l' and the number. The '-' is added by print_operand() already. */ if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0) fputs ("+", file); print_operand (file, XEXP (XEXP (x, 0), 1), 0); } return; /* %l is output_asm_label. */ case 'L': /* Write second word of DImode or DFmode reference. Works on register or non-indexed memory only. */ if (GET_CODE (x) == REG) fprintf (file, "%s", reg_names[REGNO (x) + 1]); else if (GET_CODE (x) == MEM) { /* Handle possible auto-increment. Since it is pre-increment and we have already done it, we can just use an offset of word. */ if (GET_CODE (XEXP (x, 0)) == PRE_INC || GET_CODE (XEXP (x, 0)) == PRE_DEC) output_address (plus_constant (XEXP (XEXP (x, 0), 0), UNITS_PER_WORD)); else output_address (XEXP (adjust_address_nv (x, SImode, UNITS_PER_WORD), 0)); if (small_data_operand (x, GET_MODE (x))) fprintf (file, "@%s(%s)", SMALL_DATA_RELOC, reg_names[SMALL_DATA_REG]); } return; case 'm': /* MB value for a mask operand. */ if (! mask_operand (x, SImode)) output_operand_lossage ("invalid %%m value"); fprintf (file, "%d", extract_MB (x)); return; case 'M': /* ME value for a mask operand. */ if (! mask_operand (x, SImode)) output_operand_lossage ("invalid %%M value"); fprintf (file, "%d", extract_ME (x)); return; /* %n outputs the negative of its operand. */ case 'N': /* Write the number of elements in the vector times 4. */ if (GET_CODE (x) != PARALLEL) output_operand_lossage ("invalid %%N value"); else fprintf (file, "%d", XVECLEN (x, 0) * 4); return; case 'O': /* Similar, but subtract 1 first. */ if (GET_CODE (x) != PARALLEL) output_operand_lossage ("invalid %%O value"); else fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4); return; case 'p': /* X is a CONST_INT that is a power of two. Output the logarithm. */ if (! INT_P (x) || INT_LOWPART (x) < 0 || (i = exact_log2 (INT_LOWPART (x))) < 0) output_operand_lossage ("invalid %%p value"); else fprintf (file, "%d", i); return; case 'P': /* The operand must be an indirect memory reference. The result is the register number. */ if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG || REGNO (XEXP (x, 0)) >= 32) output_operand_lossage ("invalid %%P value"); else fprintf (file, "%d", REGNO (XEXP (x, 0))); return; case 'q': /* This outputs the logical code corresponding to a boolean expression. The expression may have one or both operands negated (if one, only the first one). For condition register logical operations, it will also treat the negated CR codes as NOTs, but not handle NOTs of them. */ { const char *const *t = 0; const char *s; enum rtx_code code = GET_CODE (x); static const char * const tbl[3][3] = { { "and", "andc", "nor" }, { "or", "orc", "nand" }, { "xor", "eqv", "xor" } }; if (code == AND) t = tbl[0]; else if (code == IOR) t = tbl[1]; else if (code == XOR) t = tbl[2]; else output_operand_lossage ("invalid %%q value"); if (GET_CODE (XEXP (x, 0)) != NOT) s = t[0]; else { if (GET_CODE (XEXP (x, 1)) == NOT) s = t[2]; else s = t[1]; } fputs (s, file); } return; case 'R': /* X is a CR register. Print the mask for `mtcrf'. */ if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x))) output_operand_lossage ("invalid %%R value"); else fprintf (file, "%d", 128 >> (REGNO (x) - CR0_REGNO)); return; case 's': /* Low 5 bits of 32 - value */ if (! INT_P (x)) output_operand_lossage ("invalid %%s value"); else fprintf (file, HOST_WIDE_INT_PRINT_DEC, (32 - INT_LOWPART (x)) & 31); return; case 'S': /* PowerPC64 mask position. All 0's is excluded. CONST_INT 32-bit mask is considered sign-extended so any transition must occur within the CONST_INT, not on the boundary. */ if (! mask64_operand (x, DImode)) output_operand_lossage ("invalid %%S value"); uval = INT_LOWPART (x); if (uval & 1) /* Clear Left */ { uval &= ((unsigned HOST_WIDE_INT) 1 << 63 << 1) - 1; i = 64; } else /* Clear Right */ { uval = ~uval; uval &= ((unsigned HOST_WIDE_INT) 1 << 63 << 1) - 1; i = 63; } while (uval != 0) --i, uval >>= 1; if (i < 0) abort (); fprintf (file, "%d", i); return; case 't': /* Like 'J' but get to the OVERFLOW/UNORDERED bit. */ if (GET_CODE (x) != REG || GET_MODE (x) != CCmode) abort (); /* Bit 3 is OV bit. */ i = 4 * (REGNO (x) - CR0_REGNO) + 3; /* If we want bit 31, write a shift count of zero, not 32. */ fprintf (file, "%d", i == 31 ? 0 : i + 1); return; case 'T': /* Print the symbolic name of a branch target register. */ if (GET_CODE (x) != REG || (REGNO (x) != LINK_REGISTER_REGNUM && REGNO (x) != COUNT_REGISTER_REGNUM)) output_operand_lossage ("invalid %%T value"); else if (REGNO (x) == LINK_REGISTER_REGNUM) fputs (TARGET_NEW_MNEMONICS ? "lr" : "r", file); else fputs ("ctr", file); return; case 'u': /* High-order 16 bits of constant for use in unsigned operand. */ if (! INT_P (x)) output_operand_lossage ("invalid %%u value"); else fprintf (file, HOST_WIDE_INT_PRINT_HEX, (INT_LOWPART (x) >> 16) & 0xffff); return; case 'v': /* High-order 16 bits of constant for use in signed operand. */ if (! INT_P (x)) output_operand_lossage ("invalid %%v value"); else fprintf (file, HOST_WIDE_INT_PRINT_HEX, (INT_LOWPART (x) >> 16) & 0xffff); return; case 'U': /* Print `u' if this has an auto-increment or auto-decrement. */ if (GET_CODE (x) == MEM && (GET_CODE (XEXP (x, 0)) == PRE_INC || GET_CODE (XEXP (x, 0)) == PRE_DEC)) putc ('u', file); return; case 'V': /* Print the trap code for this operand. */ switch (GET_CODE (x)) { case EQ: fputs ("eq", file); /* 4 */ break; case NE: fputs ("ne", file); /* 24 */ break; case LT: fputs ("lt", file); /* 16 */ break; case LE: fputs ("le", file); /* 20 */ break; case GT: fputs ("gt", file); /* 8 */ break; case GE: fputs ("ge", file); /* 12 */ break; case LTU: fputs ("llt", file); /* 2 */ break; case LEU: fputs ("lle", file); /* 6 */ break; case GTU: fputs ("lgt", file); /* 1 */ break; case GEU: fputs ("lge", file); /* 5 */ break; default: abort (); } break; case 'w': /* If constant, low-order 16 bits of constant, signed. Otherwise, write normally. */ if (INT_P (x)) fprintf (file, HOST_WIDE_INT_PRINT_DEC, ((INT_LOWPART (x) & 0xffff) ^ 0x8000) - 0x8000); else print_operand (file, x, 0); return; case 'W': /* MB value for a PowerPC64 rldic operand. */ val = (GET_CODE (x) == CONST_INT ? INTVAL (x) : CONST_DOUBLE_HIGH (x)); if (val < 0) i = -1; else for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++) if ((val <<= 1) < 0) break; #if HOST_BITS_PER_WIDE_INT == 32 if (GET_CODE (x) == CONST_INT && i >= 0) i += 32; /* zero-extend high-part was all 0's */ else if (GET_CODE (x) == CONST_DOUBLE && i == 32) { val = CONST_DOUBLE_LOW (x); if (val == 0) abort (); else if (val < 0) --i; else for ( ; i < 64; i++) if ((val <<= 1) < 0) break; } #endif fprintf (file, "%d", i + 1); return; case 'X': if (GET_CODE (x) == MEM && LEGITIMATE_INDEXED_ADDRESS_P (XEXP (x, 0), 0)) putc ('x', file); return; case 'Y': /* Like 'L', for third word of TImode */ if (GET_CODE (x) == REG) fprintf (file, "%s", reg_names[REGNO (x) + 2]); else if (GET_CODE (x) == MEM) { if (GET_CODE (XEXP (x, 0)) == PRE_INC || GET_CODE (XEXP (x, 0)) == PRE_DEC) output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8)); else output_address (XEXP (adjust_address_nv (x, SImode, 8), 0)); if (small_data_operand (x, GET_MODE (x))) fprintf (file, "@%s(%s)", SMALL_DATA_RELOC, reg_names[SMALL_DATA_REG]); } return; case 'z': /* X is a SYMBOL_REF. Write out the name preceded by a period and without any trailing data in brackets. Used for function names. If we are configured for System V (or the embedded ABI) on the PowerPC, do not emit the period, since those systems do not use TOCs and the like. */ if (GET_CODE (x) != SYMBOL_REF) abort (); if (XSTR (x, 0)[0] != '.') { switch (DEFAULT_ABI) { default: abort (); case ABI_AIX: putc ('.', file); break; case ABI_V4: case ABI_AIX_NODESC: case ABI_DARWIN: break; } } #if TARGET_AIX RS6000_OUTPUT_BASENAME (file, XSTR (x, 0)); #else assemble_name (file, XSTR (x, 0)); #endif return; case 'Z': /* Like 'L', for last word of TImode. */ if (GET_CODE (x) == REG) fprintf (file, "%s", reg_names[REGNO (x) + 3]); else if (GET_CODE (x) == MEM) { if (GET_CODE (XEXP (x, 0)) == PRE_INC || GET_CODE (XEXP (x, 0)) == PRE_DEC) output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12)); else output_address (XEXP (adjust_address_nv (x, SImode, 12), 0)); if (small_data_operand (x, GET_MODE (x))) fprintf (file, "@%s(%s)", SMALL_DATA_RELOC, reg_names[SMALL_DATA_REG]); } return; /* Print AltiVec or SPE memory operand. */ case 'y': { rtx tmp; if (GET_CODE (x) != MEM) abort (); tmp = XEXP (x, 0); if (TARGET_SPE) { /* Handle [reg]. */ if (GET_CODE (tmp) == REG) { fprintf (file, "0(%s)", reg_names[REGNO (tmp)]); break; } /* Handle [reg+UIMM]. */ else if (GET_CODE (tmp) == PLUS && GET_CODE (XEXP (tmp, 1)) == CONST_INT) { int x; if (GET_CODE (XEXP (tmp, 0)) != REG) abort (); x = INTVAL (XEXP (tmp, 1)); fprintf (file, "%d(%s)", x, reg_names[REGNO (XEXP (tmp, 0))]); break; } /* Fall through. Must be [reg+reg]. */ } if (GET_CODE (tmp) == REG) fprintf (file, "0,%s", reg_names[REGNO (tmp)]); else if (GET_CODE (tmp) == PLUS && GET_CODE (XEXP (tmp, 1)) == REG) { if (REGNO (XEXP (tmp, 0)) == 0) fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 1)) ], reg_names[ REGNO (XEXP (tmp, 0)) ]); else fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 0)) ], reg_names[ REGNO (XEXP (tmp, 1)) ]); } else abort (); break; } case 0: if (GET_CODE (x) == REG) fprintf (file, "%s", reg_names[REGNO (x)]); else if (GET_CODE (x) == MEM) { /* We need to handle PRE_INC and PRE_DEC here, since we need to know the width from the mode. */ if (GET_CODE (XEXP (x, 0)) == PRE_INC) fprintf (file, "%d(%s)", GET_MODE_SIZE (GET_MODE (x)), reg_names[REGNO (XEXP (XEXP (x, 0), 0))]); else if (GET_CODE (XEXP (x, 0)) == PRE_DEC) fprintf (file, "%d(%s)", - GET_MODE_SIZE (GET_MODE (x)), reg_names[REGNO (XEXP (XEXP (x, 0), 0))]); else output_address (XEXP (x, 0)); } else output_addr_const (file, x); return; default: output_operand_lossage ("invalid %%xn code"); } } /* Print the address of an operand. */ void print_operand_address (file, x) FILE *file; rtx x; { if (GET_CODE (x) == REG) fprintf (file, "0(%s)", reg_names[ REGNO (x) ]); else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST || GET_CODE (x) == LABEL_REF) { output_addr_const (file, x); if (small_data_operand (x, GET_MODE (x))) fprintf (file, "@%s(%s)", SMALL_DATA_RELOC, reg_names[SMALL_DATA_REG]); else if (TARGET_TOC) abort (); } else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG) { if (REGNO (XEXP (x, 0)) == 0) fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ], reg_names[ REGNO (XEXP (x, 0)) ]); else fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ], reg_names[ REGNO (XEXP (x, 1)) ]); } else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT) { fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (XEXP (x, 1))); fprintf (file, "(%s)", reg_names[ REGNO (XEXP (x, 0)) ]); } #if TARGET_ELF else if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == REG && CONSTANT_P (XEXP (x, 1))) { output_addr_const (file, XEXP (x, 1)); fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]); } #endif #if TARGET_MACHO else if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == REG && CONSTANT_P (XEXP (x, 1))) { fprintf (file, "lo16("); output_addr_const (file, XEXP (x, 1)); fprintf (file, ")(%s)", reg_names[ REGNO (XEXP (x, 0)) ]); } #endif else if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (x)) { if (TARGET_AIX && (!TARGET_ELF || !TARGET_MINIMAL_TOC)) { rtx contains_minus = XEXP (x, 1); rtx minus, symref; const char *name; /* Find the (minus (sym) (toc)) buried in X, and temporarily turn it into (sym) for output_addr_const. */ while (GET_CODE (XEXP (contains_minus, 0)) != MINUS) contains_minus = XEXP (contains_minus, 0); minus = XEXP (contains_minus, 0); symref = XEXP (minus, 0); XEXP (contains_minus, 0) = symref; if (TARGET_ELF) { char *newname; name = XSTR (symref, 0); newname = alloca (strlen (name) + sizeof ("@toc")); strcpy (newname, name); strcat (newname, "@toc"); XSTR (symref, 0) = newname; } output_addr_const (file, XEXP (x, 1)); if (TARGET_ELF) XSTR (symref, 0) = name; XEXP (contains_minus, 0) = minus; } else output_addr_const (file, XEXP (x, 1)); fprintf (file, "(%s)", reg_names[REGNO (XEXP (x, 0))]); } else abort (); } /* Target hook for assembling integer objects. The PowerPC version has to handle fixup entries for relocatable code if RELOCATABLE_NEEDS_FIXUP is defined. It also needs to handle DI-mode objects on 64-bit targets. */ static bool rs6000_assemble_integer (x, size, aligned_p) rtx x; unsigned int size; int aligned_p; { #ifdef RELOCATABLE_NEEDS_FIXUP /* Special handling for SI values. */ if (size == 4 && aligned_p) { extern int in_toc_section PARAMS ((void)); static int recurse = 0; /* For -mrelocatable, we mark all addresses that need to be fixed up in the .fixup section. */ if (TARGET_RELOCATABLE && !in_toc_section () && !in_text_section () && !recurse && GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_DOUBLE && CONSTANT_P (x)) { char buf[256]; recurse = 1; ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", fixuplabelno); fixuplabelno++; ASM_OUTPUT_LABEL (asm_out_file, buf); fprintf (asm_out_file, "\t.long\t("); output_addr_const (asm_out_file, x); fprintf (asm_out_file, ")@fixup\n"); fprintf (asm_out_file, "\t.section\t\".fixup\",\"aw\"\n"); ASM_OUTPUT_ALIGN (asm_out_file, 2); fprintf (asm_out_file, "\t.long\t"); assemble_name (asm_out_file, buf); fprintf (asm_out_file, "\n\t.previous\n"); recurse = 0; return true; } /* Remove initial .'s to turn a -mcall-aixdesc function address into the address of the descriptor, not the function itself. */ else if (GET_CODE (x) == SYMBOL_REF && XSTR (x, 0)[0] == '.' && DEFAULT_ABI == ABI_AIX) { const char *name = XSTR (x, 0); while (*name == '.') name++; fprintf (asm_out_file, "\t.long\t%s\n", name); return true; } } #endif /* RELOCATABLE_NEEDS_FIXUP */ return default_assemble_integer (x, size, aligned_p); } #ifdef HAVE_GAS_HIDDEN /* Emit an assembler directive to set symbol visibility for DECL to VISIBILITY_TYPE. */ static void rs6000_assemble_visibility (decl, vis) tree decl; int vis; { /* Functions need to have their entry point symbol visibility set as well as their descriptor symbol visibility. */ if (DEFAULT_ABI == ABI_AIX && TREE_CODE (decl) == FUNCTION_DECL) { static const char * const visibility_types[] = { NULL, "internal", "hidden", "protected" }; const char *name, *type; name = ((* targetm.strip_name_encoding) (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)))); type = visibility_types[vis]; fprintf (asm_out_file, "\t.%s\t%s\n", type, name); fprintf (asm_out_file, "\t.%s\t.%s\n", type, name); } else default_assemble_visibility (decl, vis); } #endif enum rtx_code rs6000_reverse_condition (mode, code) enum machine_mode mode; enum rtx_code code; { /* Reversal of FP compares takes care -- an ordered compare becomes an unordered compare and vice versa. */ if (mode == CCFPmode && !flag_unsafe_math_optimizations) return reverse_condition_maybe_unordered (code); else return reverse_condition (code); } /* Generate a compare for CODE. Return a brand-new rtx that represents the result of the compare. */ static rtx rs6000_generate_compare (code) enum rtx_code code; { enum machine_mode comp_mode; rtx compare_result; if (rs6000_compare_fp_p) comp_mode = CCFPmode; else if (code == GTU || code == LTU || code == GEU || code == LEU) comp_mode = CCUNSmode; else comp_mode = CCmode; /* First, the compare. */ compare_result = gen_reg_rtx (comp_mode); /* SPE FP compare instructions on the GPRs. Yuck! */ if ((TARGET_SPE && TARGET_HARD_FLOAT) && rs6000_compare_fp_p) { rtx cmp, or1, or2, or_result, compare_result2; switch (code) { case EQ: case UNEQ: case NE: case LTGT: cmp = flag_unsafe_math_optimizations ? gen_tstsfeq_gpr (compare_result, rs6000_compare_op0, rs6000_compare_op1) : gen_cmpsfeq_gpr (compare_result, rs6000_compare_op0, rs6000_compare_op1); break; case GT: case GTU: case UNGT: case UNGE: case GE: case GEU: cmp = flag_unsafe_math_optimizations ? gen_tstsfgt_gpr (compare_result, rs6000_compare_op0, rs6000_compare_op1) : gen_cmpsfgt_gpr (compare_result, rs6000_compare_op0, rs6000_compare_op1); break; case LT: case LTU: case UNLT: case UNLE: case LE: case LEU: cmp = flag_unsafe_math_optimizations ? gen_tstsflt_gpr (compare_result, rs6000_compare_op0, rs6000_compare_op1) : gen_cmpsflt_gpr (compare_result, rs6000_compare_op0, rs6000_compare_op1); break; default: abort (); } /* Synthesize LE and GE from LT/GT || EQ. */ if (code == LE || code == GE || code == LEU || code == GEU) { /* Synthesize GE/LE frome GT/LT || EQ. */ emit_insn (cmp); switch (code) { case LE: code = LT; break; case GE: code = GT; break; case LEU: code = LT; break; case GEU: code = GT; break; default: abort (); } or1 = gen_reg_rtx (SImode); or2 = gen_reg_rtx (SImode); or_result = gen_reg_rtx (CCEQmode); compare_result2 = gen_reg_rtx (CCFPmode); /* Do the EQ. */ cmp = flag_unsafe_math_optimizations ? gen_tstsfeq_gpr (compare_result2, rs6000_compare_op0, rs6000_compare_op1) : gen_cmpsfeq_gpr (compare_result2, rs6000_compare_op0, rs6000_compare_op1); emit_insn (cmp); /* The MC8540 FP compare instructions set the CR bits differently than other PPC compare instructions. For that matter, there is no generic test instruction, but a testgt, testlt, and testeq. For a true condition, bit 2 is set (x1xx) in the CR. Following the traditional CR values: LT GT EQ OV bit3 bit2 bit1 bit0 ... bit 2 would be a GT CR alias, so later on we look in the GT bits for the branch instructins. However, we must be careful to emit correct RTL in the meantime, so optimizations don't get confused. */ or1 = gen_rtx (NE, SImode, compare_result, const0_rtx); or2 = gen_rtx (NE, SImode, compare_result2, const0_rtx); /* OR them together. */ cmp = gen_rtx_SET (VOIDmode, or_result, gen_rtx_COMPARE (CCEQmode, gen_rtx_IOR (SImode, or1, or2), const_true_rtx)); compare_result = or_result; code = EQ; } else { /* We only care about 1 bit (x1xx), so map everything to NE to maintain rtl sanity. We'll get to the right bit (x1xx) at code output time. */ if (code == NE || code == LTGT) /* Do the inverse here because we have no cmpne instruction. We use the cmpeq instruction and expect to get a 0 instead. */ code = EQ; else code = NE; } emit_insn (cmp); } else emit_insn (gen_rtx_SET (VOIDmode, compare_result, gen_rtx_COMPARE (comp_mode, rs6000_compare_op0, rs6000_compare_op1))); /* Some kinds of FP comparisons need an OR operation; except for flag_unsafe_math_optimizations we don't bother. */ if (rs6000_compare_fp_p && ! flag_unsafe_math_optimizations && ! (TARGET_HARD_FLOAT && TARGET_SPE) && (code == LE || code == GE || code == UNEQ || code == LTGT || code == UNGT || code == UNLT)) { enum rtx_code or1, or2; rtx or1_rtx, or2_rtx, compare2_rtx; rtx or_result = gen_reg_rtx (CCEQmode); switch (code) { case LE: or1 = LT; or2 = EQ; break; case GE: or1 = GT; or2 = EQ; break; case UNEQ: or1 = UNORDERED; or2 = EQ; break; case LTGT: or1 = LT; or2 = GT; break; case UNGT: or1 = UNORDERED; or2 = GT; break; case UNLT: or1 = UNORDERED; or2 = LT; break; default: abort (); } validate_condition_mode (or1, comp_mode); validate_condition_mode (or2, comp_mode); or1_rtx = gen_rtx (or1, SImode, compare_result, const0_rtx); or2_rtx = gen_rtx (or2, SImode, compare_result, const0_rtx); compare2_rtx = gen_rtx_COMPARE (CCEQmode, gen_rtx_IOR (SImode, or1_rtx, or2_rtx), const_true_rtx); emit_insn (gen_rtx_SET (VOIDmode, or_result, compare2_rtx)); compare_result = or_result; code = EQ; } validate_condition_mode (code, GET_MODE (compare_result)); return gen_rtx (code, VOIDmode, compare_result, const0_rtx); } /* Emit the RTL for an sCOND pattern. */ void rs6000_emit_sCOND (code, result) enum rtx_code code; rtx result; { rtx condition_rtx; enum machine_mode op_mode; condition_rtx = rs6000_generate_compare (code); op_mode = GET_MODE (rs6000_compare_op0); if (op_mode == VOIDmode) op_mode = GET_MODE (rs6000_compare_op1); if (TARGET_POWERPC64 && (op_mode == DImode || rs6000_compare_fp_p)) { PUT_MODE (condition_rtx, DImode); convert_move (result, condition_rtx, 0); } else { PUT_MODE (condition_rtx, SImode); emit_insn (gen_rtx_SET (VOIDmode, result, condition_rtx)); } } /* Emit a branch of kind CODE to location LOC. */ void rs6000_emit_cbranch (code, loc) enum rtx_code code; rtx loc; { rtx condition_rtx, loc_ref; condition_rtx = rs6000_generate_compare (code); loc_ref = gen_rtx_LABEL_REF (VOIDmode, loc); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx, loc_ref, pc_rtx))); } /* Return the string to output a conditional branch to LABEL, which is the operand number of the label, or -1 if the branch is really a conditional return. OP is the conditional expression. XEXP (OP, 0) is assumed to be a condition code register and its mode specifies what kind of comparison we made. REVERSED is nonzero if we should reverse the sense of the comparison. INSN is the insn. */ char * output_cbranch (op, label, reversed, insn) rtx op; const char * label; int reversed; rtx insn; { static char string[64]; enum rtx_code code = GET_CODE (op); rtx cc_reg = XEXP (op, 0); enum machine_mode mode = GET_MODE (cc_reg); int cc_regno = REGNO (cc_reg) - CR0_REGNO; int need_longbranch = label != NULL && get_attr_length (insn) == 8; int really_reversed = reversed ^ need_longbranch; char *s = string; const char *ccode; const char *pred; rtx note; validate_condition_mode (code, mode); /* Work out which way this really branches. We could use reverse_condition_maybe_unordered here always but this makes the resulting assembler clearer. */ if (really_reversed) { /* Reversal of FP compares takes care -- an ordered compare becomes an unordered compare and vice versa. */ if (mode == CCFPmode) code = reverse_condition_maybe_unordered (code); else code = reverse_condition (code); } if ((TARGET_SPE && TARGET_HARD_FLOAT) && mode == CCFPmode) { /* The efscmp/tst* instructions twiddle bit 2, which maps nicely to the GT bit. */ if (code == EQ) /* Opposite of GT. */ code = UNLE; else if (code == NE) code = GT; else abort (); } switch (code) { /* Not all of these are actually distinct opcodes, but we distinguish them for clarity of the resulting assembler. */ case NE: case LTGT: ccode = "ne"; break; case EQ: case UNEQ: ccode = "eq"; break; case GE: case GEU: ccode = "ge"; break; case GT: case GTU: case UNGT: ccode = "gt"; break; case LE: case LEU: ccode = "le"; break; case LT: case LTU: case UNLT: ccode = "lt"; break; case UNORDERED: ccode = "un"; break; case ORDERED: ccode = "nu"; break; case UNGE: ccode = "nl"; break; case UNLE: ccode = "ng"; break; default: abort (); } /* Maybe we have a guess as to how likely the branch is. The old mnemonics don't have a way to specify this information. */ pred = ""; note = find_reg_note (insn, REG_BR_PROB, NULL_RTX); if (note != NULL_RTX) { /* PROB is the difference from 50%. */ int prob = INTVAL (XEXP (note, 0)) - REG_BR_PROB_BASE / 2; bool always_hint = rs6000_cpu != PROCESSOR_POWER4; /* Only hint for highly probable/improbable branches on newer cpus as static prediction overrides processor dynamic prediction. For older cpus we may as well always hint, but assume not taken for branches that are very close to 50% as a mispredicted taken branch is more expensive than a mispredicted not-taken branch. */ if (always_hint || abs (prob) > REG_BR_PROB_BASE / 100 * 48) { if (abs (prob) > REG_BR_PROB_BASE / 20 && ((prob > 0) ^ need_longbranch)) pred = "+"; else pred = "-"; } } if (label == NULL) s += sprintf (s, "{b%sr|b%slr%s} ", ccode, ccode, pred); else s += sprintf (s, "{b%s|b%s%s} ", ccode, ccode, pred); /* We need to escape any '%' characters in the reg_names string. Assume they'd only be the first character... */ if (reg_names[cc_regno + CR0_REGNO][0] == '%') *s++ = '%'; s += sprintf (s, "%s", reg_names[cc_regno + CR0_REGNO]); if (label != NULL) { /* If the branch distance was too far, we may have to use an unconditional branch to go the distance. */ if (need_longbranch) s += sprintf (s, ",$+8\n\tb %s", label); else s += sprintf (s, ",%s", label); } return string; } /* Emit a conditional move: move TRUE_COND to DEST if OP of the operands of the last comparison is nonzero/true, FALSE_COND if it is zero/false. Return 0 if the hardware has no such operation. */ int rs6000_emit_cmove (dest, op, true_cond, false_cond) rtx dest; rtx op; rtx true_cond; rtx false_cond; { enum rtx_code code = GET_CODE (op); rtx op0 = rs6000_compare_op0; rtx op1 = rs6000_compare_op1; REAL_VALUE_TYPE c1; enum machine_mode compare_mode = GET_MODE (op0); enum machine_mode result_mode = GET_MODE (dest); rtx temp; /* These modes should always match. */ if (GET_MODE (op1) != compare_mode /* In the isel case however, we can use a compare immediate, so op1 may be a small constant. */ && (!TARGET_ISEL || !short_cint_operand (op1, VOIDmode))) return 0; if (GET_MODE (true_cond) != result_mode) return 0; if (GET_MODE (false_cond) != result_mode) return 0; /* First, work out if the hardware can do this at all, or if it's too slow... */ if (! rs6000_compare_fp_p) { if (TARGET_ISEL) return rs6000_emit_int_cmove (dest, op, true_cond, false_cond); return 0; } /* Eliminate half of the comparisons by switching operands, this makes the remaining code simpler. */ if (code == UNLT || code == UNGT || code == UNORDERED || code == NE || code == LTGT || code == LT) { code = reverse_condition_maybe_unordered (code); temp = true_cond; true_cond = false_cond; false_cond = temp; } /* UNEQ and LTGT take four instructions for a comparison with zero, it'll probably be faster to use a branch here too. */ if (code == UNEQ) return 0; if (GET_CODE (op1) == CONST_DOUBLE) REAL_VALUE_FROM_CONST_DOUBLE (c1, op1); /* We're going to try to implement comparions by performing a subtract, then comparing against zero. Unfortunately, Inf - Inf is NaN which is not zero, and so if we don't know that the operand is finite and the comparison would treat EQ different to UNORDERED, we can't do it. */ if (! flag_unsafe_math_optimizations && code != GT && code != UNGE && (GET_CODE (op1) != CONST_DOUBLE || real_isinf (&c1)) /* Constructs of the form (a OP b ? a : b) are safe. */ && ((! rtx_equal_p (op0, false_cond) && ! rtx_equal_p (op1, false_cond)) || (! rtx_equal_p (op0, true_cond) && ! rtx_equal_p (op1, true_cond)))) return 0; /* At this point we know we can use fsel. */ /* Reduce the comparison to a comparison against zero. */ temp = gen_reg_rtx (compare_mode); emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_MINUS (compare_mode, op0, op1))); op0 = temp; op1 = CONST0_RTX (compare_mode); /* If we don't care about NaNs we can reduce some of the comparisons down to faster ones. */ if (flag_unsafe_math_optimizations) switch (code) { case GT: code = LE; temp = true_cond; true_cond = false_cond; false_cond = temp; break; case UNGE: code = GE; break; case UNEQ: code = EQ; break; default: break; } /* Now, reduce everything down to a GE. */ switch (code) { case GE: break; case LE: temp = gen_reg_rtx (compare_mode); emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0))); op0 = temp; break; case ORDERED: temp = gen_reg_rtx (compare_mode); emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_ABS (compare_mode, op0))); op0 = temp; break; case EQ: temp = gen_reg_rtx (compare_mode); emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, gen_rtx_ABS (compare_mode, op0)))); op0 = temp; break; case UNGE: temp = gen_reg_rtx (result_mode); emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_IF_THEN_ELSE (result_mode, gen_rtx_GE (VOIDmode, op0, op1), true_cond, false_cond))); false_cond = temp; true_cond = false_cond; temp = gen_reg_rtx (compare_mode); emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0))); op0 = temp; break; case GT: temp = gen_reg_rtx (result_mode); emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_IF_THEN_ELSE (result_mode, gen_rtx_GE (VOIDmode, op0, op1), true_cond, false_cond))); true_cond = temp; false_cond = true_cond; temp = gen_reg_rtx (compare_mode); emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0))); op0 = temp; break; default: abort (); } emit_insn (gen_rtx_SET (VOIDmode, dest, gen_rtx_IF_THEN_ELSE (result_mode, gen_rtx_GE (VOIDmode, op0, op1), true_cond, false_cond))); return 1; } /* Same as above, but for ints (isel). */ static int rs6000_emit_int_cmove (dest, op, true_cond, false_cond) rtx dest; rtx op; rtx true_cond; rtx false_cond; { rtx condition_rtx, cr; /* All isel implementations thus far are 32-bits. */ if (GET_MODE (rs6000_compare_op0) != SImode) return 0; /* We still have to do the compare, because isel doesn't do a compare, it just looks at the CRx bits set by a previous compare instruction. */ condition_rtx = rs6000_generate_compare (GET_CODE (op)); cr = XEXP (condition_rtx, 0); if (GET_MODE (cr) == CCmode) emit_insn (gen_isel_signed (dest, condition_rtx, true_cond, false_cond, cr)); else emit_insn (gen_isel_unsigned (dest, condition_rtx, true_cond, false_cond, cr)); return 1; } const char * output_isel (operands) rtx *operands; { enum rtx_code code; code = GET_CODE (operands[1]); if (code == GE || code == GEU || code == LE || code == LEU || code == NE) { PUT_CODE (operands[1], reverse_condition (code)); return "isel %0,%3,%2,%j1"; } else return "isel %0,%2,%3,%j1"; } void rs6000_emit_minmax (dest, code, op0, op1) rtx dest; enum rtx_code code; rtx op0; rtx op1; { enum machine_mode mode = GET_MODE (op0); enum rtx_code c; rtx target; if (code == SMAX || code == SMIN) c = GE; else c = GEU; if (code == SMAX || code == UMAX) target = emit_conditional_move (dest, c, op0, op1, mode, op0, op1, mode, 0); else target = emit_conditional_move (dest, c, op0, op1, mode, op1, op0, mode, 0); if (target == NULL_RTX) abort (); if (target != dest) emit_move_insn (dest, target); } /* This page contains routines that are used to determine what the function prologue and epilogue code will do and write them out. */ /* Return the first fixed-point register that is required to be saved. 32 if none. */ int first_reg_to_save () { int first_reg; /* Find lowest numbered live register. */ for (first_reg = 13; first_reg <= 31; first_reg++) if (regs_ever_live[first_reg] && (! call_used_regs[first_reg] || (first_reg == RS6000_PIC_OFFSET_TABLE_REGNUM && ((DEFAULT_ABI == ABI_V4 && flag_pic != 0) || (DEFAULT_ABI == ABI_DARWIN && flag_pic))))) break; #if TARGET_MACHO if (flag_pic && current_function_uses_pic_offset_table && first_reg > RS6000_PIC_OFFSET_TABLE_REGNUM) return RS6000_PIC_OFFSET_TABLE_REGNUM; #endif return first_reg; } /* Similar, for FP regs. */ int first_fp_reg_to_save () { int first_reg; /* Find lowest numbered live register. */ for (first_reg = 14 + 32; first_reg <= 63; first_reg++) if (regs_ever_live[first_reg]) break; return first_reg; } /* Similar, for AltiVec regs. */ static int first_altivec_reg_to_save () { int i; /* Stack frame remains as is unless we are in AltiVec ABI. */ if (! TARGET_ALTIVEC_ABI) return LAST_ALTIVEC_REGNO + 1; /* Find lowest numbered live register. */ for (i = FIRST_ALTIVEC_REGNO + 20; i <= LAST_ALTIVEC_REGNO; ++i) if (regs_ever_live[i]) break; return i; } /* Return a 32-bit mask of the AltiVec registers we need to set in VRSAVE. Bit n of the return value is 1 if Vn is live. The MSB in the 32-bit word is 0. */ static unsigned int compute_vrsave_mask () { unsigned int i, mask = 0; /* First, find out if we use _any_ altivec registers. */ for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) if (regs_ever_live[i]) mask |= ALTIVEC_REG_BIT (i); if (mask == 0) return mask; /* Next, add all registers that are call-clobbered. We do this because post-reload register optimizers such as regrename_optimize may choose to use them. They never change the register class chosen by reload, so cannot create new uses of altivec registers if there were none before, so the early exit above is safe. */ /* ??? Alternately, we could define HARD_REGNO_RENAME_OK to disallow altivec registers not saved in the mask, which might well make the adjustments below more effective in eliding the save/restore of VRSAVE in small functions. */ for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) if (call_used_regs[i]) mask |= ALTIVEC_REG_BIT (i); /* Next, remove the argument registers from the set. These must be in the VRSAVE mask set by the caller, so we don't need to add them in again. More importantly, the mask we compute here is used to generate CLOBBERs in the set_vrsave insn, and we do not wish the argument registers to die. */ for (i = cfun->args_info.vregno; i >= ALTIVEC_ARG_MIN_REG; --i) mask &= ~ALTIVEC_REG_BIT (i); /* Similarly, remove the return value from the set. */ { bool yes = false; diddle_return_value (is_altivec_return_reg, &yes); if (yes) mask &= ~ALTIVEC_REG_BIT (ALTIVEC_ARG_RETURN); } return mask; } static void is_altivec_return_reg (reg, xyes) rtx reg; void *xyes; { bool *yes = (bool *) xyes; if (REGNO (reg) == ALTIVEC_ARG_RETURN) *yes = true; } /* Calculate the stack information for the current function. This is complicated by having two separate calling sequences, the AIX calling sequence and the V.4 calling sequence. AIX (and Darwin/Mac OS X) stack frames look like: 32-bit 64-bit SP----> +---------------------------------------+ | back chain to caller | 0 0 +---------------------------------------+ | saved CR | 4 8 (8-11) +---------------------------------------+ | saved LR | 8 16 +---------------------------------------+ | reserved for compilers | 12 24 +---------------------------------------+ | reserved for binders | 16 32 +---------------------------------------+ | saved TOC pointer | 20 40 +---------------------------------------+ | Parameter save area (P) | 24 48 +---------------------------------------+ | Alloca space (A) | 24+P etc. +---------------------------------------+ | Local variable space (L) | 24+P+A +---------------------------------------+ | Float/int conversion temporary (X) | 24+P+A+L +---------------------------------------+ | Save area for AltiVec registers (W) | 24+P+A+L+X +---------------------------------------+ | AltiVec alignment padding (Y) | 24+P+A+L+X+W +---------------------------------------+ | Save area for VRSAVE register (Z) | 24+P+A+L+X+W+Y +---------------------------------------+ | Save area for GP registers (G) | 24+P+A+X+L+X+W+Y+Z +---------------------------------------+ | Save area for FP registers (F) | 24+P+A+X+L+X+W+Y+Z+G +---------------------------------------+ old SP->| back chain to caller's caller | +---------------------------------------+ The required alignment for AIX configurations is two words (i.e., 8 or 16 bytes). V.4 stack frames look like: SP----> +---------------------------------------+ | back chain to caller | 0 +---------------------------------------+ | caller's saved LR | 4 +---------------------------------------+ | Parameter save area (P) | 8 +---------------------------------------+ | Alloca space (A) | 8+P +---------------------------------------+ | Varargs save area (V) | 8+P+A +---------------------------------------+ | Local variable space (L) | 8+P+A+V +---------------------------------------+ | Float/int conversion temporary (X) | 8+P+A+V+L +---------------------------------------+ | Save area for AltiVec registers (W) | 8+P+A+V+L+X +---------------------------------------+ | AltiVec alignment padding (Y) | 8+P+A+V+L+X+W +---------------------------------------+ | Save area for VRSAVE register (Z) | 8+P+A+V+L+X+W+Y +---------------------------------------+ | SPE: area for 64-bit GP registers | +---------------------------------------+ | SPE alignment padding | +---------------------------------------+ | saved CR (C) | 8+P+A+V+L+X+W+Y+Z +---------------------------------------+ | Save area for GP registers (G) | 8+P+A+V+L+X+W+Y+Z+C +---------------------------------------+ | Save area for FP registers (F) | 8+P+A+V+L+X+W+Y+Z+C+G +---------------------------------------+ old SP->| back chain to caller's caller | +---------------------------------------+ The required alignment for V.4 is 16 bytes, or 8 bytes if -meabi is given. (But note below and in sysv4.h that we require only 8 and may round up the size of our stack frame anyways. The historical reason is early versions of powerpc-linux which didn't properly align the stack at program startup. A happy side-effect is that -mno-eabi libraries can be used with -meabi programs.) The EABI configuration defaults to the V.4 layout, unless -mcall-aix is used, in which case the AIX layout is used. However, the stack alignment requirements may differ. If -mno-eabi is not given, the required stack alignment is 8 bytes; if -mno-eabi is given, the required alignment is 16 bytes. (But see V.4 comment above.) */ #ifndef ABI_STACK_BOUNDARY #define ABI_STACK_BOUNDARY STACK_BOUNDARY #endif rs6000_stack_t * rs6000_stack_info () { static rs6000_stack_t info, zero_info; rs6000_stack_t *info_ptr = &info; int reg_size = TARGET_POWERPC64 ? 8 : 4; enum rs6000_abi abi; int ehrd_size; int total_raw_size; /* Zero all fields portably. */ info = zero_info; /* Select which calling sequence. */ info_ptr->abi = abi = DEFAULT_ABI; /* Calculate which registers need to be saved & save area size. */ info_ptr->first_gp_reg_save = first_reg_to_save (); /* Assume that we will have to save RS6000_PIC_OFFSET_TABLE_REGNUM, even if it currently looks like we won't. */ if (((TARGET_TOC && TARGET_MINIMAL_TOC) || (flag_pic == 1 && abi == ABI_V4) || (flag_pic && abi == ABI_DARWIN)) && info_ptr->first_gp_reg_save > RS6000_PIC_OFFSET_TABLE_REGNUM) info_ptr->gp_size = reg_size * (32 - RS6000_PIC_OFFSET_TABLE_REGNUM); else info_ptr->gp_size = reg_size * (32 - info_ptr->first_gp_reg_save); /* For the SPE, we have an additional upper 32-bits on each GPR. Ideally we should save the entire 64-bits only when the upper half is used in SIMD instructions. Since we only record registers live (not the size they are used in), this proves difficult because we'd have to traverse the instruction chain at the right time, taking reload into account. This is a real pain, so we opt to save the GPRs in 64-bits always. Anyone overly concerned with frame size can fix this. ;-). So... since we save all GPRs (except the SP) in 64-bits, the traditional GP save area will be empty. */ if (TARGET_SPE_ABI) info_ptr->gp_size = 0; info_ptr->first_fp_reg_save = first_fp_reg_to_save (); info_ptr->fp_size = 8 * (64 - info_ptr->first_fp_reg_save); info_ptr->first_altivec_reg_save = first_altivec_reg_to_save (); info_ptr->altivec_size = 16 * (LAST_ALTIVEC_REGNO + 1 - info_ptr->first_altivec_reg_save); /* Does this function call anything? */ info_ptr->calls_p = (! current_function_is_leaf || cfun->machine->ra_needs_full_frame); /* Determine if we need to save the link register. */ if (rs6000_ra_ever_killed () || (DEFAULT_ABI == ABI_AIX && current_function_profile) #ifdef TARGET_RELOCATABLE || (TARGET_RELOCATABLE && (get_pool_size () != 0)) #endif || (info_ptr->first_fp_reg_save != 64 && !FP_SAVE_INLINE (info_ptr->first_fp_reg_save)) || info_ptr->first_altivec_reg_save <= LAST_ALTIVEC_REGNO || (abi == ABI_V4 && current_function_calls_alloca) || (DEFAULT_ABI == ABI_DARWIN && flag_pic && current_function_uses_pic_offset_table) || info_ptr->calls_p) { info_ptr->lr_save_p = 1; regs_ever_live[LINK_REGISTER_REGNUM] = 1; } /* Determine if we need to save the condition code registers. */ if (regs_ever_live[CR2_REGNO] || regs_ever_live[CR3_REGNO] || regs_ever_live[CR4_REGNO]) { info_ptr->cr_save_p = 1; if (abi == ABI_V4) info_ptr->cr_size = reg_size; } /* If the current function calls __builtin_eh_return, then we need to allocate stack space for registers that will hold data for the exception handler. */ if (current_function_calls_eh_return) { unsigned int i; for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i) continue; /* SPE saves EH registers in 64-bits. */ ehrd_size = i * (TARGET_SPE_ABI ? UNITS_PER_SPE_WORD : UNITS_PER_WORD); } else ehrd_size = 0; /* Determine various sizes. */ info_ptr->reg_size = reg_size; info_ptr->fixed_size = RS6000_SAVE_AREA; info_ptr->varargs_size = RS6000_VARARGS_AREA; info_ptr->vars_size = RS6000_ALIGN (get_frame_size (), 8); info_ptr->parm_size = RS6000_ALIGN (current_function_outgoing_args_size, 8); if (TARGET_SPE_ABI) info_ptr->spe_gp_size = 8 * (32 - info_ptr->first_gp_reg_save); else info_ptr->spe_gp_size = 0; if (TARGET_ALTIVEC_ABI && TARGET_ALTIVEC_VRSAVE) { info_ptr->vrsave_mask = compute_vrsave_mask (); info_ptr->vrsave_size = info_ptr->vrsave_mask ? 4 : 0; } else { info_ptr->vrsave_mask = 0; info_ptr->vrsave_size = 0; } /* Calculate the offsets. */ switch (abi) { case ABI_NONE: default: abort (); case ABI_AIX: case ABI_AIX_NODESC: case ABI_DARWIN: info_ptr->fp_save_offset = - info_ptr->fp_size; info_ptr->gp_save_offset = info_ptr->fp_save_offset - info_ptr->gp_size; if (TARGET_ALTIVEC_ABI) { info_ptr->vrsave_save_offset = info_ptr->gp_save_offset - info_ptr->vrsave_size; /* Align stack so vector save area is on a quadword boundary. */ if (info_ptr->altivec_size != 0) info_ptr->altivec_padding_size = 16 - (-info_ptr->vrsave_save_offset % 16); else info_ptr->altivec_padding_size = 0; info_ptr->altivec_save_offset = info_ptr->vrsave_save_offset - info_ptr->altivec_padding_size - info_ptr->altivec_size; /* Adjust for AltiVec case. */ info_ptr->ehrd_offset = info_ptr->altivec_save_offset - ehrd_size; } else info_ptr->ehrd_offset = info_ptr->gp_save_offset - ehrd_size; info_ptr->cr_save_offset = reg_size; /* first word when 64-bit. */ info_ptr->lr_save_offset = 2*reg_size; break; case ABI_V4: info_ptr->fp_save_offset = - info_ptr->fp_size; info_ptr->gp_save_offset = info_ptr->fp_save_offset - info_ptr->gp_size; info_ptr->cr_save_offset = info_ptr->gp_save_offset - info_ptr->cr_size; if (TARGET_SPE_ABI) { /* Align stack so SPE GPR save area is aligned on a double-word boundary. */ if (info_ptr->spe_gp_size != 0) info_ptr->spe_padding_size = 8 - (-info_ptr->cr_save_offset % 8); else info_ptr->spe_padding_size = 0; info_ptr->spe_gp_save_offset = info_ptr->cr_save_offset - info_ptr->spe_padding_size - info_ptr->spe_gp_size; /* Adjust for SPE case. */ info_ptr->toc_save_offset = info_ptr->spe_gp_save_offset - info_ptr->toc_size; } else if (TARGET_ALTIVEC_ABI) { info_ptr->vrsave_save_offset = info_ptr->cr_save_offset - info_ptr->vrsave_size; /* Align stack so vector save area is on a quadword boundary. */ if (info_ptr->altivec_size != 0) info_ptr->altivec_padding_size = 16 - (-info_ptr->vrsave_save_offset % 16); else info_ptr->altivec_padding_size = 0; info_ptr->altivec_save_offset = info_ptr->vrsave_save_offset - info_ptr->altivec_padding_size - info_ptr->altivec_size; /* Adjust for AltiVec case. */ info_ptr->toc_save_offset = info_ptr->altivec_save_offset - info_ptr->toc_size; } else info_ptr->toc_save_offset = info_ptr->cr_save_offset - info_ptr->toc_size; info_ptr->ehrd_offset = info_ptr->toc_save_offset - ehrd_size; info_ptr->lr_save_offset = reg_size; break; } info_ptr->save_size = RS6000_ALIGN (info_ptr->fp_size + info_ptr->gp_size + info_ptr->altivec_size + info_ptr->altivec_padding_size + info_ptr->vrsave_size + info_ptr->spe_gp_size + info_ptr->spe_padding_size + ehrd_size + info_ptr->cr_size + info_ptr->lr_size + info_ptr->toc_size, (TARGET_ALTIVEC_ABI || ABI_DARWIN) ? 16 : 8); total_raw_size = (info_ptr->vars_size + info_ptr->parm_size + info_ptr->save_size + info_ptr->varargs_size + info_ptr->fixed_size); info_ptr->total_size = RS6000_ALIGN (total_raw_size, ABI_STACK_BOUNDARY / BITS_PER_UNIT); /* Determine if we need to allocate any stack frame: For AIX we need to push the stack if a frame pointer is needed (because the stack might be dynamically adjusted), if we are debugging, if we make calls, or if the sum of fp_save, gp_save, and local variables are more than the space needed to save all non-volatile registers: 32-bit: 18*8 + 19*4 = 220 or 64-bit: 18*8 + 18*8 = 288 (GPR13 reserved). For V.4 we don't have the stack cushion that AIX uses, but assume that the debugger can handle stackless frames. */ if (info_ptr->calls_p) info_ptr->push_p = 1; else if (abi == ABI_V4) info_ptr->push_p = total_raw_size > info_ptr->fixed_size; else info_ptr->push_p = (frame_pointer_needed || (abi != ABI_DARWIN && write_symbols != NO_DEBUG) || ((total_raw_size - info_ptr->fixed_size) > (TARGET_32BIT ? 220 : 288))); /* Zero offsets if we're not saving those registers. */ if (info_ptr->fp_size == 0) info_ptr->fp_save_offset = 0; if (info_ptr->gp_size == 0) info_ptr->gp_save_offset = 0; if (! TARGET_ALTIVEC_ABI || info_ptr->altivec_size == 0) info_ptr->altivec_save_offset = 0; if (! TARGET_ALTIVEC_ABI || info_ptr->vrsave_mask == 0) info_ptr->vrsave_save_offset = 0; if (! TARGET_SPE_ABI || info_ptr->spe_gp_size == 0) info_ptr->spe_gp_save_offset = 0; if (! info_ptr->lr_save_p) info_ptr->lr_save_offset = 0; if (! info_ptr->cr_save_p) info_ptr->cr_save_offset = 0; if (! info_ptr->toc_save_p) info_ptr->toc_save_offset = 0; return info_ptr; } void debug_stack_info (info) rs6000_stack_t *info; { const char *abi_string; if (! info) info = rs6000_stack_info (); fprintf (stderr, "\nStack information for function %s:\n", ((current_function_decl && DECL_NAME (current_function_decl)) ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl)) : "")); switch (info->abi) { default: abi_string = "Unknown"; break; case ABI_NONE: abi_string = "NONE"; break; case ABI_AIX: case ABI_AIX_NODESC: abi_string = "AIX"; break; case ABI_DARWIN: abi_string = "Darwin"; break; case ABI_V4: abi_string = "V.4"; break; } fprintf (stderr, "\tABI = %5s\n", abi_string); if (TARGET_ALTIVEC_ABI) fprintf (stderr, "\tALTIVEC ABI extensions enabled.\n"); if (TARGET_SPE_ABI) fprintf (stderr, "\tSPE ABI extensions enabled.\n"); if (info->first_gp_reg_save != 32) fprintf (stderr, "\tfirst_gp_reg_save = %5d\n", info->first_gp_reg_save); if (info->first_fp_reg_save != 64) fprintf (stderr, "\tfirst_fp_reg_save = %5d\n", info->first_fp_reg_save); if (info->first_altivec_reg_save <= LAST_ALTIVEC_REGNO) fprintf (stderr, "\tfirst_altivec_reg_save = %5d\n", info->first_altivec_reg_save); if (info->lr_save_p) fprintf (stderr, "\tlr_save_p = %5d\n", info->lr_save_p); if (info->cr_save_p) fprintf (stderr, "\tcr_save_p = %5d\n", info->cr_save_p); if (info->toc_save_p) fprintf (stderr, "\ttoc_save_p = %5d\n", info->toc_save_p); if (info->vrsave_mask) fprintf (stderr, "\tvrsave_mask = 0x%x\n", info->vrsave_mask); if (info->push_p) fprintf (stderr, "\tpush_p = %5d\n", info->push_p); if (info->calls_p) fprintf (stderr, "\tcalls_p = %5d\n", info->calls_p); if (info->gp_save_offset) fprintf (stderr, "\tgp_save_offset = %5d\n", info->gp_save_offset); if (info->fp_save_offset) fprintf (stderr, "\tfp_save_offset = %5d\n", info->fp_save_offset); if (info->altivec_save_offset) fprintf (stderr, "\taltivec_save_offset = %5d\n", info->altivec_save_offset); if (info->spe_gp_save_offset) fprintf (stderr, "\tspe_gp_save_offset = %5d\n", info->spe_gp_save_offset); if (info->vrsave_save_offset) fprintf (stderr, "\tvrsave_save_offset = %5d\n", info->vrsave_save_offset); if (info->lr_save_offset) fprintf (stderr, "\tlr_save_offset = %5d\n", info->lr_save_offset); if (info->cr_save_offset) fprintf (stderr, "\tcr_save_offset = %5d\n", info->cr_save_offset); if (info->toc_save_offset) fprintf (stderr, "\ttoc_save_offset = %5d\n", info->toc_save_offset); if (info->varargs_save_offset) fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset); if (info->total_size) fprintf (stderr, "\ttotal_size = %5d\n", info->total_size); if (info->varargs_size) fprintf (stderr, "\tvarargs_size = %5d\n", info->varargs_size); if (info->vars_size) fprintf (stderr, "\tvars_size = %5d\n", info->vars_size); if (info->parm_size) fprintf (stderr, "\tparm_size = %5d\n", info->parm_size); if (info->fixed_size) fprintf (stderr, "\tfixed_size = %5d\n", info->fixed_size); if (info->gp_size) fprintf (stderr, "\tgp_size = %5d\n", info->gp_size); if (info->spe_gp_size) fprintf (stderr, "\tspe_gp_size = %5d\n", info->spe_gp_size); if (info->fp_size) fprintf (stderr, "\tfp_size = %5d\n", info->fp_size); if (info->altivec_size) fprintf (stderr, "\taltivec_size = %5d\n", info->altivec_size); if (info->vrsave_size) fprintf (stderr, "\tvrsave_size = %5d\n", info->vrsave_size); if (info->altivec_padding_size) fprintf (stderr, "\taltivec_padding_size= %5d\n", info->altivec_padding_size); if (info->spe_padding_size) fprintf (stderr, "\tspe_padding_size = %5d\n", info->spe_padding_size); if (info->lr_size) fprintf (stderr, "\tlr_size = %5d\n", info->lr_size); if (info->cr_size) fprintf (stderr, "\tcr_size = %5d\n", info->cr_size); if (info->toc_size) fprintf (stderr, "\ttoc_size = %5d\n", info->toc_size); if (info->save_size) fprintf (stderr, "\tsave_size = %5d\n", info->save_size); if (info->reg_size != 4) fprintf (stderr, "\treg_size = %5d\n", info->reg_size); fprintf (stderr, "\n"); } rtx rs6000_return_addr (count, frame) int count; rtx frame; { /* Currently we don't optimize very well between prolog and body code and for PIC code the code can be actually quite bad, so don't try to be too clever here. */ if (count != 0 || flag_pic != 0) { cfun->machine->ra_needs_full_frame = 1; return gen_rtx_MEM (Pmode, memory_address (Pmode, plus_constant (copy_to_reg (gen_rtx_MEM (Pmode, memory_address (Pmode, frame))), RETURN_ADDRESS_OFFSET))); } return get_hard_reg_initial_val (Pmode, LINK_REGISTER_REGNUM); } /* Say whether a function is a candidate for sibcall handling or not. We do not allow indirect calls to be optimized into sibling calls. Also, we can't do it if there are any vector parameters; there's nowhere to put the VRsave code so it works; note that functions with vector parameters are required to have a prototype, so the argument type info must be available here. (The tail recursion case can work with vector parameters, but there's no way to distinguish here.) */ int function_ok_for_sibcall (fndecl) tree fndecl; { tree type; if (fndecl) { if (TARGET_ALTIVEC_VRSAVE) { for (type = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); type; type = TREE_CHAIN (type)) { if (TREE_CODE (TREE_VALUE (type)) == VECTOR_TYPE) return 0; } } if (DEFAULT_ABI == ABI_DARWIN || (*targetm.binds_local_p) (fndecl)) { tree attr_list = TYPE_ATTRIBUTES (TREE_TYPE (fndecl)); if (!lookup_attribute ("longcall", attr_list) || lookup_attribute ("shortcall", attr_list)) return 1; } } return 0; } static int rs6000_ra_ever_killed () { rtx top; rtx reg; rtx insn; /* Irritatingly, there are two kinds of thunks -- those created with TARGET_ASM_OUTPUT_MI_THUNK and those with DECL_THUNK_P that go through the regular part of the compiler. This is a very hacky way to tell them apart. */ if (current_function_is_thunk && !no_new_pseudos) return 0; /* regs_ever_live has LR marked as used if any sibcalls are present, but this should not force saving and restoring in the pro/epilogue. Likewise, reg_set_between_p thinks a sibcall clobbers LR, so that is inappropriate. */ /* Also, the prologue can generate a store into LR that doesn't really count, like this: move LR->R0 bcl to set PIC register move LR->R31 move R0->LR When we're called from the epilogue, we need to avoid counting this as a store. */ push_topmost_sequence (); top = get_insns (); pop_topmost_sequence (); reg = gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM); for (insn = NEXT_INSN (top); insn != NULL_RTX; insn = NEXT_INSN (insn)) { if (INSN_P (insn)) { if (FIND_REG_INC_NOTE (insn, reg)) return 1; else if (GET_CODE (insn) == CALL_INSN && !SIBLING_CALL_P (insn)) return 1; else if (set_of (reg, insn) != NULL_RTX && !prologue_epilogue_contains (insn)) return 1; } } return 0; } /* Add a REG_MAYBE_DEAD note to the insn. */ static void rs6000_maybe_dead (insn) rtx insn; { REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx, REG_NOTES (insn)); } /* Emit instructions needed to load the TOC register. This is only needed when TARGET_TOC, TARGET_MINIMAL_TOC, and there is a constant pool; or for SVR4 -fpic. */ void rs6000_emit_load_toc_table (fromprolog) int fromprolog; { rtx dest, insn; dest = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM); if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 1) { rtx temp = (fromprolog ? gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM) : gen_reg_rtx (Pmode)); insn = emit_insn (gen_load_toc_v4_pic_si (temp)); if (fromprolog) rs6000_maybe_dead (insn); insn = emit_move_insn (dest, temp); if (fromprolog) rs6000_maybe_dead (insn); } else if (TARGET_ELF && DEFAULT_ABI != ABI_AIX && flag_pic == 2) { char buf[30]; rtx tempLR = (fromprolog ? gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM) : gen_reg_rtx (Pmode)); rtx temp0 = (fromprolog ? gen_rtx_REG (Pmode, 0) : gen_reg_rtx (Pmode)); rtx symF; /* possibly create the toc section */ if (! toc_initialized) { toc_section (); function_section (current_function_decl); } if (fromprolog) { rtx symL; ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno); symF = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)); ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno); symL = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)); rs6000_maybe_dead (emit_insn (gen_load_toc_v4_PIC_1 (tempLR, symF))); rs6000_maybe_dead (emit_move_insn (dest, tempLR)); rs6000_maybe_dead (emit_insn (gen_load_toc_v4_PIC_2 (temp0, dest, symL, symF))); } else { rtx tocsym; static int reload_toc_labelno = 0; tocsym = gen_rtx_SYMBOL_REF (Pmode, toc_label_name); ASM_GENERATE_INTERNAL_LABEL (buf, "LCG", reload_toc_labelno++); symF = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)); emit_insn (gen_load_toc_v4_PIC_1b (tempLR, symF, tocsym)); emit_move_insn (dest, tempLR); emit_move_insn (temp0, gen_rtx_MEM (Pmode, dest)); } insn = emit_insn (gen_addsi3 (dest, temp0, dest)); if (fromprolog) rs6000_maybe_dead (insn); } else if (TARGET_ELF && !TARGET_AIX && flag_pic == 0 && TARGET_MINIMAL_TOC) { /* This is for AIX code running in non-PIC ELF32. */ char buf[30]; rtx realsym; ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1); realsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)); insn = emit_insn (gen_elf_high (dest, realsym)); if (fromprolog) rs6000_maybe_dead (insn); insn = emit_insn (gen_elf_low (dest, dest, realsym)); if (fromprolog) rs6000_maybe_dead (insn); } else if (DEFAULT_ABI == ABI_AIX) { if (TARGET_32BIT) insn = emit_insn (gen_load_toc_aix_si (dest)); else insn = emit_insn (gen_load_toc_aix_di (dest)); if (fromprolog) rs6000_maybe_dead (insn); } else abort (); } int get_TOC_alias_set () { static int set = -1; if (set == -1) set = new_alias_set (); return set; } /* This retuns nonzero if the current function uses the TOC. This is determined by the presence of (unspec ... 7), which is generated by the various load_toc_* patterns. */ int uses_TOC () { rtx insn; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (INSN_P (insn)) { rtx pat = PATTERN (insn); int i; if (GET_CODE (pat) == PARALLEL) for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == UNSPEC && XINT (XVECEXP (PATTERN (insn), 0, i), 1) == 7) return 1; } return 0; } rtx create_TOC_reference (symbol) rtx symbol; { return gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, TOC_REGISTER), gen_rtx_CONST (Pmode, gen_rtx_MINUS (Pmode, symbol, gen_rtx_SYMBOL_REF (Pmode, toc_label_name)))); } #if TARGET_AIX /* __throw will restore its own return address to be the same as the return address of the function that the throw is being made to. This is unfortunate, because we want to check the original return address to see if we need to restore the TOC. So we have to squirrel it away here. This is used only in compiling __throw and __rethrow. Most of this code should be removed by CSE. */ static rtx insn_after_throw; /* This does the saving... */ void rs6000_aix_emit_builtin_unwind_init () { rtx mem; rtx stack_top = gen_reg_rtx (Pmode); rtx opcode_addr = gen_reg_rtx (Pmode); insn_after_throw = gen_reg_rtx (SImode); mem = gen_rtx_MEM (Pmode, hard_frame_pointer_rtx); emit_move_insn (stack_top, mem); mem = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, stack_top, GEN_INT (2 * GET_MODE_SIZE (Pmode)))); emit_move_insn (opcode_addr, mem); emit_move_insn (insn_after_throw, gen_rtx_MEM (SImode, opcode_addr)); } /* Emit insns to _restore_ the TOC register, at runtime (specifically in _eh.o). Only used on AIX. The idea is that on AIX, function calls look like this: bl somefunction-trampoline lwz r2,20(sp) and later, somefunction-trampoline: stw r2,20(sp) ... load function address in the count register ... bctr or like this, if the linker determines that this is not a cross-module call and so the TOC need not be restored: bl somefunction nop or like this, if the compiler could determine that this is not a cross-module call: bl somefunction now, the tricky bit here is that register 2 is saved and restored by the _linker_, so we can't readily generate debugging information for it. So we need to go back up the call chain looking at the insns at return addresses to see which calls saved the TOC register and so see where it gets restored from. Oh, and all this gets done in RTL inside the eh_epilogue pattern, just before the actual epilogue. On the bright side, this incurs no space or time overhead unless an exception is thrown, except for the extra code in libgcc.a. The parameter STACKSIZE is a register containing (at runtime) the amount to be popped off the stack in addition to the stack frame of this routine (which will be __throw or __rethrow, and so is guaranteed to have a stack frame). */ void rs6000_emit_eh_toc_restore (stacksize) rtx stacksize; { rtx top_of_stack; rtx bottom_of_stack = gen_reg_rtx (Pmode); rtx tocompare = gen_reg_rtx (SImode); rtx opcode = gen_reg_rtx (SImode); rtx opcode_addr = gen_reg_rtx (Pmode); rtx mem; rtx loop_start = gen_label_rtx (); rtx no_toc_restore_needed = gen_label_rtx (); rtx loop_exit = gen_label_rtx (); mem = gen_rtx_MEM (Pmode, hard_frame_pointer_rtx); set_mem_alias_set (mem, rs6000_sr_alias_set); emit_move_insn (bottom_of_stack, mem); top_of_stack = expand_binop (Pmode, add_optab, bottom_of_stack, stacksize, NULL_RTX, 1, OPTAB_WIDEN); emit_move_insn (tocompare, gen_int_mode (TARGET_32BIT ? 0x80410014 : 0xE8410028, SImode)); if (insn_after_throw == NULL_RTX) abort (); emit_move_insn (opcode, insn_after_throw); emit_note (NULL, NOTE_INSN_LOOP_BEG); emit_label (loop_start); do_compare_rtx_and_jump (opcode, tocompare, NE, 1, SImode, NULL_RTX, NULL_RTX, no_toc_restore_needed); mem = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, bottom_of_stack, GEN_INT (5 * GET_MODE_SIZE (Pmode)))); emit_move_insn (gen_rtx_REG (Pmode, 2), mem); emit_label (no_toc_restore_needed); do_compare_rtx_and_jump (top_of_stack, bottom_of_stack, EQ, 1, Pmode, NULL_RTX, NULL_RTX, loop_exit); mem = gen_rtx_MEM (Pmode, bottom_of_stack); set_mem_alias_set (mem, rs6000_sr_alias_set); emit_move_insn (bottom_of_stack, mem); mem = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, bottom_of_stack, GEN_INT (2 * GET_MODE_SIZE (Pmode)))); emit_move_insn (opcode_addr, mem); emit_move_insn (opcode, gen_rtx_MEM (SImode, opcode_addr)); emit_note (NULL, NOTE_INSN_LOOP_CONT); emit_jump (loop_start); emit_note (NULL, NOTE_INSN_LOOP_END); emit_label (loop_exit); } #endif /* TARGET_AIX */ /* This ties together stack memory (MEM with an alias set of rs6000_sr_alias_set) and the change to the stack pointer. */ static void rs6000_emit_stack_tie () { rtx mem = gen_rtx_MEM (BLKmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM)); set_mem_alias_set (mem, rs6000_sr_alias_set); emit_insn (gen_stack_tie (mem)); } /* Emit the correct code for allocating stack space, as insns. If COPY_R12, make sure a copy of the old frame is left in r12. The generated code may use hard register 0 as a temporary. */ static void rs6000_emit_allocate_stack (size, copy_r12) HOST_WIDE_INT size; int copy_r12; { rtx insn; rtx stack_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM); rtx tmp_reg = gen_rtx_REG (Pmode, 0); rtx todec = GEN_INT (-size); if (current_function_limit_stack) { if (REG_P (stack_limit_rtx) && REGNO (stack_limit_rtx) > 1 && REGNO (stack_limit_rtx) <= 31) { emit_insn (Pmode == SImode ? gen_addsi3 (tmp_reg, stack_limit_rtx, GEN_INT (size)) : gen_adddi3 (tmp_reg, stack_limit_rtx, GEN_INT (size))); emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg, const0_rtx)); } else if (GET_CODE (stack_limit_rtx) == SYMBOL_REF && TARGET_32BIT && DEFAULT_ABI == ABI_V4) { rtx toload = gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (Pmode, stack_limit_rtx, GEN_INT (size))); emit_insn (gen_elf_high (tmp_reg, toload)); emit_insn (gen_elf_low (tmp_reg, tmp_reg, toload)); emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg, const0_rtx)); } else warning ("stack limit expression is not supported"); } if (copy_r12 || ! TARGET_UPDATE) emit_move_insn (gen_rtx_REG (Pmode, 12), stack_reg); if (TARGET_UPDATE) { if (size > 32767) { /* Need a note here so that try_split doesn't get confused. */ if (get_last_insn() == NULL_RTX) emit_note (0, NOTE_INSN_DELETED); insn = emit_move_insn (tmp_reg, todec); try_split (PATTERN (insn), insn, 0); todec = tmp_reg; } if (Pmode == SImode) insn = emit_insn (gen_movsi_update (stack_reg, stack_reg, todec, stack_reg)); else insn = emit_insn (gen_movdi_update (stack_reg, stack_reg, todec, stack_reg)); } else { if (Pmode == SImode) insn = emit_insn (gen_addsi3 (stack_reg, stack_reg, todec)); else insn = emit_insn (gen_adddi3 (stack_reg, stack_reg, todec)); emit_move_insn (gen_rtx_MEM (Pmode, stack_reg), gen_rtx_REG (Pmode, 12)); } RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, stack_reg, gen_rtx_PLUS (Pmode, stack_reg, GEN_INT (-size))), REG_NOTES (insn)); } /* Add a RTX_FRAME_RELATED note so that dwarf2out_frame_debug_expr knows that: (mem (plus (blah) (regXX))) is really: (mem (plus (blah) (const VALUE_OF_REGXX))). */ static void altivec_frame_fixup (insn, reg, val) rtx insn, reg; HOST_WIDE_INT val; { rtx real; real = copy_rtx (PATTERN (insn)); real = replace_rtx (real, reg, GEN_INT (val)); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, real, REG_NOTES (insn)); } /* Add to 'insn' a note which is PATTERN (INSN) but with REG replaced with (plus:P (reg 1) VAL), and with REG2 replaced with RREG if REG2 is not NULL. It would be nice if dwarf2out_frame_debug_expr could deduce these equivalences by itself so it wasn't necessary to hold its hand so much. */ static void rs6000_frame_related (insn, reg, val, reg2, rreg) rtx insn; rtx reg; HOST_WIDE_INT val; rtx reg2; rtx rreg; { rtx real, temp; /* copy_rtx will not make unique copies of registers, so we need to ensure we don't have unwanted sharing here. */ if (reg == reg2) reg = gen_raw_REG (GET_MODE (reg), REGNO (reg)); if (reg == rreg) reg = gen_raw_REG (GET_MODE (reg), REGNO (reg)); real = copy_rtx (PATTERN (insn)); if (reg2 != NULL_RTX) real = replace_rtx (real, reg2, rreg); real = replace_rtx (real, reg, gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM), GEN_INT (val))); /* We expect that 'real' is either a SET or a PARALLEL containing SETs (and possibly other stuff). In a PARALLEL, all the SETs are important so they all have to be marked RTX_FRAME_RELATED_P. */ if (GET_CODE (real) == SET) { rtx set = real; temp = simplify_rtx (SET_SRC (set)); if (temp) SET_SRC (set) = temp; temp = simplify_rtx (SET_DEST (set)); if (temp) SET_DEST (set) = temp; if (GET_CODE (SET_DEST (set)) == MEM) { temp = simplify_rtx (XEXP (SET_DEST (set), 0)); if (temp) XEXP (SET_DEST (set), 0) = temp; } } else if (GET_CODE (real) == PARALLEL) { int i; for (i = 0; i < XVECLEN (real, 0); i++) if (GET_CODE (XVECEXP (real, 0, i)) == SET) { rtx set = XVECEXP (real, 0, i); temp = simplify_rtx (SET_SRC (set)); if (temp) SET_SRC (set) = temp; temp = simplify_rtx (SET_DEST (set)); if (temp) SET_DEST (set) = temp; if (GET_CODE (SET_DEST (set)) == MEM) { temp = simplify_rtx (XEXP (SET_DEST (set), 0)); if (temp) XEXP (SET_DEST (set), 0) = temp; } RTX_FRAME_RELATED_P (set) = 1; } } else abort (); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, real, REG_NOTES (insn)); } /* Returns an insn that has a vrsave set operation with the appropriate CLOBBERs. */ static rtx generate_set_vrsave (reg, info, epiloguep) rtx reg; rs6000_stack_t *info; int epiloguep; { int nclobs, i; rtx insn, clobs[TOTAL_ALTIVEC_REGS + 1]; rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO); clobs[0] = gen_rtx_SET (VOIDmode, vrsave, gen_rtx_UNSPEC_VOLATILE (SImode, gen_rtvec (2, reg, vrsave), 30)); nclobs = 1; /* We need to clobber the registers in the mask so the scheduler does not move sets to VRSAVE before sets of AltiVec registers. However, if the function receives nonlocal gotos, reload will set all call saved registers live. We will end up with: (set (reg 999) (mem)) (parallel [ (set (reg vrsave) (unspec blah)) (clobber (reg 999))]) The clobber will cause the store into reg 999 to be dead, and flow will attempt to delete an epilogue insn. In this case, we need an unspec use/set of the register. */ for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) if (info->vrsave_mask != 0 && ALTIVEC_REG_BIT (i) != 0) { if (!epiloguep || call_used_regs [i]) clobs[nclobs++] = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (V4SImode, i)); else { rtx reg = gen_rtx_REG (V4SImode, i); clobs[nclobs++] = gen_rtx_SET (VOIDmode, reg, gen_rtx_UNSPEC (V4SImode, gen_rtvec (1, reg), 27)); } } insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nclobs)); for (i = 0; i < nclobs; ++i) XVECEXP (insn, 0, i) = clobs[i]; return insn; } /* Save a register into the frame, and emit RTX_FRAME_RELATED_P notes. Save REGNO into [FRAME_REG + OFFSET] in mode MODE. */ static void emit_frame_save (frame_reg, frame_ptr, mode, regno, offset, total_size) rtx frame_reg; rtx frame_ptr; enum machine_mode mode; unsigned int regno; int offset; int total_size; { rtx reg, offset_rtx, insn, mem, addr, int_rtx; rtx replacea, replaceb; int_rtx = GEN_INT (offset); /* Some cases that need register indexed addressing. */ if ((TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode)) || (TARGET_SPE_ABI && SPE_VECTOR_MODE (mode) && !SPE_CONST_OFFSET_OK (offset))) { /* Whomever calls us must make sure r11 is available in the flow path of instructions in the prologue. */ offset_rtx = gen_rtx_REG (Pmode, 11); emit_move_insn (offset_rtx, int_rtx); replacea = offset_rtx; replaceb = int_rtx; } else { offset_rtx = int_rtx; replacea = NULL_RTX; replaceb = NULL_RTX; } reg = gen_rtx_REG (mode, regno); addr = gen_rtx_PLUS (Pmode, frame_reg, offset_rtx); mem = gen_rtx_MEM (mode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); insn = emit_move_insn (mem, reg); rs6000_frame_related (insn, frame_ptr, total_size, replacea, replaceb); } /* Emit an offset memory reference suitable for a frame store, while converting to a valid addressing mode. */ static rtx gen_frame_mem_offset (mode, reg, offset) enum machine_mode mode; rtx reg; int offset; { rtx int_rtx, offset_rtx; int_rtx = GEN_INT (offset); if (TARGET_SPE_ABI && SPE_VECTOR_MODE (mode)) { offset_rtx = gen_rtx_REG (Pmode, FIXED_SCRATCH); emit_move_insn (offset_rtx, int_rtx); } else offset_rtx = int_rtx; return gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode, reg, offset_rtx)); } /* Emit function prologue as insns. */ void rs6000_emit_prologue () { rs6000_stack_t *info = rs6000_stack_info (); enum machine_mode reg_mode = TARGET_POWERPC64 ? DImode : SImode; int reg_size = TARGET_POWERPC64 ? 8 : 4; rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM); rtx frame_ptr_rtx = gen_rtx_REG (Pmode, 12); rtx frame_reg_rtx = sp_reg_rtx; rtx cr_save_rtx = NULL; rtx insn; int saving_FPRs_inline; int using_store_multiple; HOST_WIDE_INT sp_offset = 0; if (TARGET_SPE_ABI) { reg_mode = V2SImode; reg_size = 8; } using_store_multiple = (TARGET_MULTIPLE && ! TARGET_POWERPC64 && !TARGET_SPE_ABI && info->first_gp_reg_save < 31); saving_FPRs_inline = (info->first_fp_reg_save == 64 || FP_SAVE_INLINE (info->first_fp_reg_save)); /* For V.4, update stack before we do any saving and set back pointer. */ if (info->push_p && DEFAULT_ABI == ABI_V4) { if (info->total_size < 32767) sp_offset = info->total_size; else frame_reg_rtx = frame_ptr_rtx; rs6000_emit_allocate_stack (info->total_size, (frame_reg_rtx != sp_reg_rtx && (info->cr_save_p || info->lr_save_p || info->first_fp_reg_save < 64 || info->first_gp_reg_save < 32 ))); if (frame_reg_rtx != sp_reg_rtx) rs6000_emit_stack_tie (); } /* Save AltiVec registers if needed. */ if (TARGET_ALTIVEC_ABI && info->altivec_size != 0) { int i; /* There should be a non inline version of this, for when we are saving lots of vector registers. */ for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i) if (info->vrsave_mask & ALTIVEC_REG_BIT (i)) { rtx areg, savereg, mem; int offset; offset = info->altivec_save_offset + sp_offset + 16 * (i - info->first_altivec_reg_save); savereg = gen_rtx_REG (V4SImode, i); areg = gen_rtx_REG (Pmode, 0); emit_move_insn (areg, GEN_INT (offset)); /* AltiVec addressing mode is [reg+reg]. */ mem = gen_rtx_MEM (V4SImode, gen_rtx_PLUS (Pmode, frame_reg_rtx, areg)); set_mem_alias_set (mem, rs6000_sr_alias_set); insn = emit_move_insn (mem, savereg); altivec_frame_fixup (insn, areg, offset); } } /* VRSAVE is a bit vector representing which AltiVec registers are used. The OS uses this to determine which vector registers to save on a context switch. We need to save VRSAVE on the stack frame, add whatever AltiVec registers we used in this function, and do the corresponding magic in the epilogue. */ if (TARGET_ALTIVEC && info->vrsave_mask != 0) { rtx reg, mem, vrsave; int offset; /* Get VRSAVE onto a GPR. */ reg = gen_rtx_REG (SImode, 12); vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO); if (TARGET_MACHO) emit_insn (gen_get_vrsave_internal (reg)); else emit_insn (gen_rtx_SET (VOIDmode, reg, vrsave)); /* Save VRSAVE. */ offset = info->vrsave_save_offset + sp_offset; mem = gen_rtx_MEM (SImode, gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (offset))); set_mem_alias_set (mem, rs6000_sr_alias_set); insn = emit_move_insn (mem, reg); /* Include the registers in the mask. */ emit_insn (gen_iorsi3 (reg, reg, GEN_INT ((int) info->vrsave_mask))); insn = emit_insn (generate_set_vrsave (reg, info, 0)); } /* If we use the link register, get it into r0. */ if (info->lr_save_p) emit_move_insn (gen_rtx_REG (Pmode, 0), gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)); /* If we need to save CR, put it into r12. */ if (info->cr_save_p && frame_reg_rtx != frame_ptr_rtx) { cr_save_rtx = gen_rtx_REG (SImode, 12); emit_insn (gen_movesi_from_cr (cr_save_rtx)); } /* Do any required saving of fpr's. If only one or two to save, do it ourselves. Otherwise, call function. */ if (saving_FPRs_inline) { int i; for (i = 0; i < 64 - info->first_fp_reg_save; i++) if ((regs_ever_live[info->first_fp_reg_save+i] && ! call_used_regs[info->first_fp_reg_save+i])) emit_frame_save (frame_reg_rtx, frame_ptr_rtx, DFmode, info->first_fp_reg_save + i, info->fp_save_offset + sp_offset + 8 * i, info->total_size); } else if (info->first_fp_reg_save != 64) { int i; char rname[30]; const char *alloc_rname; rtvec p; p = rtvec_alloc (2 + 64 - info->first_fp_reg_save); RTVEC_ELT (p, 0) = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)); sprintf (rname, "%s%d%s", SAVE_FP_PREFIX, info->first_fp_reg_save - 32, SAVE_FP_SUFFIX); alloc_rname = ggc_strdup (rname); RTVEC_ELT (p, 1) = gen_rtx_USE (VOIDmode, gen_rtx_SYMBOL_REF (Pmode, alloc_rname)); for (i = 0; i < 64 - info->first_fp_reg_save; i++) { rtx addr, reg, mem; reg = gen_rtx_REG (DFmode, info->first_fp_reg_save + i); addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (info->fp_save_offset + sp_offset + 8*i)); mem = gen_rtx_MEM (DFmode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); RTVEC_ELT (p, i + 2) = gen_rtx_SET (VOIDmode, mem, reg); } insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p)); rs6000_frame_related (insn, frame_ptr_rtx, info->total_size, NULL_RTX, NULL_RTX); } /* Save GPRs. This is done as a PARALLEL if we are using the store-multiple instructions. */ if (using_store_multiple) { rtvec p; int i; p = rtvec_alloc (32 - info->first_gp_reg_save); for (i = 0; i < 32 - info->first_gp_reg_save; i++) { rtx addr, reg, mem; reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i); addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (info->gp_save_offset + sp_offset + reg_size * i)); mem = gen_rtx_MEM (reg_mode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); RTVEC_ELT (p, i) = gen_rtx_SET (VOIDmode, mem, reg); } insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p)); rs6000_frame_related (insn, frame_ptr_rtx, info->total_size, NULL_RTX, NULL_RTX); } else { int i; for (i = 0; i < 32 - info->first_gp_reg_save; i++) if ((regs_ever_live[info->first_gp_reg_save+i] && ! call_used_regs[info->first_gp_reg_save+i]) || (i+info->first_gp_reg_save == RS6000_PIC_OFFSET_TABLE_REGNUM && ((DEFAULT_ABI == ABI_V4 && flag_pic != 0) || (DEFAULT_ABI == ABI_DARWIN && flag_pic)))) { rtx addr, reg, mem; reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i); if (TARGET_SPE_ABI) { int offset = info->spe_gp_save_offset + sp_offset + 8 * i; rtx b; if (!SPE_CONST_OFFSET_OK (offset)) { b = gen_rtx_REG (Pmode, FIXED_SCRATCH); emit_move_insn (b, GEN_INT (offset)); } else b = GEN_INT (offset); addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, b); mem = gen_rtx_MEM (V2SImode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); insn = emit_move_insn (mem, reg); if (GET_CODE (b) == CONST_INT) rs6000_frame_related (insn, frame_ptr_rtx, info->total_size, NULL_RTX, NULL_RTX); else rs6000_frame_related (insn, frame_ptr_rtx, info->total_size, b, GEN_INT (offset)); } else { addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (info->gp_save_offset + sp_offset + reg_size * i)); mem = gen_rtx_MEM (reg_mode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); insn = emit_move_insn (mem, reg); rs6000_frame_related (insn, frame_ptr_rtx, info->total_size, NULL_RTX, NULL_RTX); } } } /* ??? There's no need to emit actual instructions here, but it's the easiest way to get the frame unwind information emitted. */ if (current_function_calls_eh_return) { unsigned int i, regno; for (i = 0; ; ++i) { regno = EH_RETURN_DATA_REGNO (i); if (regno == INVALID_REGNUM) break; emit_frame_save (frame_reg_rtx, frame_ptr_rtx, reg_mode, regno, info->ehrd_offset + sp_offset + reg_size * (int) i, info->total_size); } } /* Save lr if we used it. */ if (info->lr_save_p) { rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (info->lr_save_offset + sp_offset)); rtx reg = gen_rtx_REG (Pmode, 0); rtx mem = gen_rtx_MEM (Pmode, addr); /* This should not be of rs6000_sr_alias_set, because of __builtin_return_address. */ insn = emit_move_insn (mem, reg); rs6000_frame_related (insn, frame_ptr_rtx, info->total_size, reg, gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)); } /* Save CR if we use any that must be preserved. */ if (info->cr_save_p) { rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (info->cr_save_offset + sp_offset)); rtx mem = gen_rtx_MEM (SImode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); /* If r12 was used to hold the original sp, copy cr into r0 now that it's free. */ if (REGNO (frame_reg_rtx) == 12) { cr_save_rtx = gen_rtx_REG (SImode, 0); emit_insn (gen_movesi_from_cr (cr_save_rtx)); } insn = emit_move_insn (mem, cr_save_rtx); /* Now, there's no way that dwarf2out_frame_debug_expr is going to understand '(unspec:SI [(reg:CC 68) ...] 19)'. But that's OK. All we have to do is specify that _one_ condition code register is saved in this stack slot. The thrower's epilogue will then restore all the call-saved registers. We use CR2_REGNO (70) to be compatible with gcc-2.95 on Linux. */ rs6000_frame_related (insn, frame_ptr_rtx, info->total_size, cr_save_rtx, gen_rtx_REG (SImode, CR2_REGNO)); } /* Update stack and set back pointer unless this is V.4, for which it was done previously. */ if (info->push_p && DEFAULT_ABI != ABI_V4) rs6000_emit_allocate_stack (info->total_size, FALSE); /* Set frame pointer, if needed. */ if (frame_pointer_needed) { insn = emit_move_insn (gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM), sp_reg_rtx); RTX_FRAME_RELATED_P (insn) = 1; } /* If we are using RS6000_PIC_OFFSET_TABLE_REGNUM, we need to set it up. */ if ((TARGET_TOC && TARGET_MINIMAL_TOC && get_pool_size () != 0) || (DEFAULT_ABI == ABI_V4 && flag_pic == 1 && regs_ever_live[RS6000_PIC_OFFSET_TABLE_REGNUM])) { /* If emit_load_toc_table will use the link register, we need to save it. We use R11 for this purpose because emit_load_toc_table can use register 0. This allows us to use a plain 'blr' to return from the procedure more often. */ int save_LR_around_toc_setup = (TARGET_ELF && flag_pic != 0 && ! info->lr_save_p && EXIT_BLOCK_PTR->pred != NULL); if (save_LR_around_toc_setup) emit_move_insn (gen_rtx_REG (Pmode, 11), gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)); rs6000_emit_load_toc_table (TRUE); if (save_LR_around_toc_setup) emit_move_insn (gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM), gen_rtx_REG (Pmode, 11)); } #if TARGET_MACHO if (DEFAULT_ABI == ABI_DARWIN && flag_pic && current_function_uses_pic_offset_table) { rtx dest = gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM); char *picbase = machopic_function_base_name (); rtx src = gen_rtx_SYMBOL_REF (Pmode, ggc_alloc_string (picbase, -1)); rs6000_maybe_dead (emit_insn (gen_load_macho_picbase (dest, src))); rs6000_maybe_dead ( emit_move_insn (gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM), gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM))); } #endif } /* Write function prologue. */ static void rs6000_output_function_prologue (file, size) FILE *file; HOST_WIDE_INT size ATTRIBUTE_UNUSED; { rs6000_stack_t *info = rs6000_stack_info (); if (TARGET_DEBUG_STACK) debug_stack_info (info); /* Write .extern for any function we will call to save and restore fp values. */ if (info->first_fp_reg_save < 64 && !FP_SAVE_INLINE (info->first_fp_reg_save)) fprintf (file, "\t.extern %s%d%s\n\t.extern %s%d%s\n", SAVE_FP_PREFIX, info->first_fp_reg_save - 32, SAVE_FP_SUFFIX, RESTORE_FP_PREFIX, info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX); /* Write .extern for AIX common mode routines, if needed. */ if (! TARGET_POWER && ! TARGET_POWERPC && ! common_mode_defined) { fputs ("\t.extern __mulh\n", file); fputs ("\t.extern __mull\n", file); fputs ("\t.extern __divss\n", file); fputs ("\t.extern __divus\n", file); fputs ("\t.extern __quoss\n", file); fputs ("\t.extern __quous\n", file); common_mode_defined = 1; } if (! HAVE_prologue) { start_sequence (); /* A NOTE_INSN_DELETED is supposed to be at the start and end of the "toplevel" insn chain. */ emit_note (0, NOTE_INSN_DELETED); rs6000_emit_prologue (); emit_note (0, NOTE_INSN_DELETED); /* Expand INSN_ADDRESSES so final() doesn't crash. */ { rtx insn; unsigned addr = 0; for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn)) { INSN_ADDRESSES_NEW (insn, addr); addr += 4; } } if (TARGET_DEBUG_STACK) debug_rtx_list (get_insns (), 100); final (get_insns (), file, FALSE, FALSE); end_sequence (); } rs6000_pic_labelno++; } /* Emit function epilogue as insns. At present, dwarf2out_frame_debug_expr doesn't understand register restores, so we don't bother setting RTX_FRAME_RELATED_P anywhere in the epilogue. Most of the insns below would in any case need special notes to explain where r11 is in relation to the stack. */ void rs6000_emit_epilogue (sibcall) int sibcall; { rs6000_stack_t *info; int restoring_FPRs_inline; int using_load_multiple; int using_mfcr_multiple; int use_backchain_to_restore_sp; int sp_offset = 0; rtx sp_reg_rtx = gen_rtx_REG (Pmode, 1); rtx frame_reg_rtx = sp_reg_rtx; enum machine_mode reg_mode = TARGET_POWERPC64 ? DImode : SImode; int reg_size = TARGET_POWERPC64 ? 8 : 4; int i; if (TARGET_SPE_ABI) { reg_mode = V2SImode; reg_size = 8; } info = rs6000_stack_info (); using_load_multiple = (TARGET_MULTIPLE && ! TARGET_POWERPC64 && !TARGET_SPE_ABI && info->first_gp_reg_save < 31); restoring_FPRs_inline = (sibcall || current_function_calls_eh_return || info->first_fp_reg_save == 64 || FP_SAVE_INLINE (info->first_fp_reg_save)); use_backchain_to_restore_sp = (frame_pointer_needed || current_function_calls_alloca || info->total_size > 32767); using_mfcr_multiple = (rs6000_cpu == PROCESSOR_PPC601 || rs6000_cpu == PROCESSOR_PPC603 || rs6000_cpu == PROCESSOR_PPC750 || optimize_size); /* If we have a frame pointer, a call to alloca, or a large stack frame, restore the old stack pointer using the backchain. Otherwise, we know what size to update it with. */ if (use_backchain_to_restore_sp) { /* Under V.4, don't reset the stack pointer until after we're done loading the saved registers. */ if (DEFAULT_ABI == ABI_V4) frame_reg_rtx = gen_rtx_REG (Pmode, 11); emit_move_insn (frame_reg_rtx, gen_rtx_MEM (Pmode, sp_reg_rtx)); } else if (info->push_p) { if (DEFAULT_ABI == ABI_V4) sp_offset = info->total_size; else { emit_insn (TARGET_32BIT ? gen_addsi3 (sp_reg_rtx, sp_reg_rtx, GEN_INT (info->total_size)) : gen_adddi3 (sp_reg_rtx, sp_reg_rtx, GEN_INT (info->total_size))); } } /* Restore AltiVec registers if needed. */ if (TARGET_ALTIVEC_ABI && info->altivec_size != 0) { int i; for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i) if (info->vrsave_mask & ALTIVEC_REG_BIT (i)) { rtx addr, areg, mem; areg = gen_rtx_REG (Pmode, 0); emit_move_insn (areg, GEN_INT (info->altivec_save_offset + sp_offset + 16 * (i - info->first_altivec_reg_save))); /* AltiVec addressing mode is [reg+reg]. */ addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg); mem = gen_rtx_MEM (V4SImode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); emit_move_insn (gen_rtx_REG (V4SImode, i), mem); } } /* Restore VRSAVE if needed. */ if (TARGET_ALTIVEC_ABI && info->vrsave_mask != 0) { rtx addr, mem, reg; addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (info->vrsave_save_offset + sp_offset)); mem = gen_rtx_MEM (SImode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); reg = gen_rtx_REG (SImode, 12); emit_move_insn (reg, mem); emit_insn (generate_set_vrsave (reg, info, 1)); } /* Get the old lr if we saved it. */ if (info->lr_save_p) { rtx mem = gen_frame_mem_offset (Pmode, frame_reg_rtx, info->lr_save_offset + sp_offset); set_mem_alias_set (mem, rs6000_sr_alias_set); emit_move_insn (gen_rtx_REG (Pmode, 0), mem); } /* Get the old cr if we saved it. */ if (info->cr_save_p) { rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (info->cr_save_offset + sp_offset)); rtx mem = gen_rtx_MEM (SImode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); emit_move_insn (gen_rtx_REG (SImode, 12), mem); } /* Set LR here to try to overlap restores below. */ if (info->lr_save_p) emit_move_insn (gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM), gen_rtx_REG (Pmode, 0)); /* Load exception handler data registers, if needed. */ if (current_function_calls_eh_return) { unsigned int i, regno; for (i = 0; ; ++i) { rtx mem; regno = EH_RETURN_DATA_REGNO (i); if (regno == INVALID_REGNUM) break; mem = gen_frame_mem_offset (reg_mode, frame_reg_rtx, info->ehrd_offset + sp_offset + reg_size * (int) i); set_mem_alias_set (mem, rs6000_sr_alias_set); emit_move_insn (gen_rtx_REG (reg_mode, regno), mem); } } /* Restore GPRs. This is done as a PARALLEL if we are using the load-multiple instructions. */ if (using_load_multiple) { rtvec p; p = rtvec_alloc (32 - info->first_gp_reg_save); for (i = 0; i < 32 - info->first_gp_reg_save; i++) { rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (info->gp_save_offset + sp_offset + reg_size * i)); rtx mem = gen_rtx_MEM (reg_mode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); RTVEC_ELT (p, i) = gen_rtx_SET (VOIDmode, gen_rtx_REG (reg_mode, info->first_gp_reg_save + i), mem); } emit_insn (gen_rtx_PARALLEL (VOIDmode, p)); } else for (i = 0; i < 32 - info->first_gp_reg_save; i++) if ((regs_ever_live[info->first_gp_reg_save+i] && ! call_used_regs[info->first_gp_reg_save+i]) || (i+info->first_gp_reg_save == RS6000_PIC_OFFSET_TABLE_REGNUM && ((DEFAULT_ABI == ABI_V4 && flag_pic != 0) || (DEFAULT_ABI == ABI_DARWIN && flag_pic)))) { rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (info->gp_save_offset + sp_offset + reg_size * i)); rtx mem = gen_rtx_MEM (reg_mode, addr); /* Restore 64-bit quantities for SPE. */ if (TARGET_SPE_ABI) { int offset = info->spe_gp_save_offset + sp_offset + 8 * i; rtx b; if (!SPE_CONST_OFFSET_OK (offset)) { b = gen_rtx_REG (Pmode, FIXED_SCRATCH); emit_move_insn (b, GEN_INT (offset)); } else b = GEN_INT (offset); addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, b); mem = gen_rtx_MEM (V2SImode, addr); } set_mem_alias_set (mem, rs6000_sr_alias_set); emit_move_insn (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i), mem); } /* Restore fpr's if we need to do it without calling a function. */ if (restoring_FPRs_inline) for (i = 0; i < 64 - info->first_fp_reg_save; i++) if ((regs_ever_live[info->first_fp_reg_save+i] && ! call_used_regs[info->first_fp_reg_save+i])) { rtx addr, mem; addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, GEN_INT (info->fp_save_offset + sp_offset + 8 * i)); mem = gen_rtx_MEM (DFmode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); emit_move_insn (gen_rtx_REG (DFmode, info->first_fp_reg_save + i), mem); } /* If we saved cr, restore it here. Just those that were used. */ if (info->cr_save_p) { rtx r12_rtx = gen_rtx_REG (SImode, 12); int count = 0; if (using_mfcr_multiple) { for (i = 0; i < 8; i++) if (regs_ever_live[CR0_REGNO+i] && ! call_used_regs[CR0_REGNO+i]) count++; if (count == 0) abort (); } if (using_mfcr_multiple && count > 1) { rtvec p; int ndx; p = rtvec_alloc (count); ndx = 0; for (i = 0; i < 8; i++) if (regs_ever_live[CR0_REGNO+i] && ! call_used_regs[CR0_REGNO+i]) { rtvec r = rtvec_alloc (2); RTVEC_ELT (r, 0) = r12_rtx; RTVEC_ELT (r, 1) = GEN_INT (1 << (7-i)); RTVEC_ELT (p, ndx) = gen_rtx_SET (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO+i), gen_rtx_UNSPEC (CCmode, r, 20)); ndx++; } emit_insn (gen_rtx_PARALLEL (VOIDmode, p)); if (ndx != count) abort (); } else for (i = 0; i < 8; i++) if (regs_ever_live[CR0_REGNO+i] && ! call_used_regs[CR0_REGNO+i]) { emit_insn (gen_movsi_to_cr_one (gen_rtx_REG (CCmode, CR0_REGNO+i), r12_rtx)); } } /* If this is V.4, unwind the stack pointer after all of the loads have been done. We need to emit a block here so that sched doesn't decide to move the sp change before the register restores (which may not have any obvious dependency on the stack). This doesn't hurt performance, because there is no scheduling that can be done after this point. */ if (DEFAULT_ABI == ABI_V4) { if (frame_reg_rtx != sp_reg_rtx) rs6000_emit_stack_tie (); if (use_backchain_to_restore_sp) { emit_move_insn (sp_reg_rtx, frame_reg_rtx); } else if (sp_offset != 0) { emit_insn (Pmode == SImode ? gen_addsi3 (sp_reg_rtx, sp_reg_rtx, GEN_INT (sp_offset)) : gen_adddi3 (sp_reg_rtx, sp_reg_rtx, GEN_INT (sp_offset))); } } if (current_function_calls_eh_return) { rtx sa = EH_RETURN_STACKADJ_RTX; emit_insn (Pmode == SImode ? gen_addsi3 (sp_reg_rtx, sp_reg_rtx, sa) : gen_adddi3 (sp_reg_rtx, sp_reg_rtx, sa)); } if (!sibcall) { rtvec p; if (! restoring_FPRs_inline) p = rtvec_alloc (3 + 64 - info->first_fp_reg_save); else p = rtvec_alloc (2); RTVEC_ELT (p, 0) = gen_rtx_RETURN (VOIDmode); RTVEC_ELT (p, 1) = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)); /* If we have to restore more than two FP registers, branch to the restore function. It will return to our caller. */ if (! restoring_FPRs_inline) { int i; char rname[30]; const char *alloc_rname; sprintf (rname, "%s%d%s", RESTORE_FP_PREFIX, info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX); alloc_rname = ggc_strdup (rname); RTVEC_ELT (p, 2) = gen_rtx_USE (VOIDmode, gen_rtx_SYMBOL_REF (Pmode, alloc_rname)); for (i = 0; i < 64 - info->first_fp_reg_save; i++) { rtx addr, mem; addr = gen_rtx_PLUS (Pmode, sp_reg_rtx, GEN_INT (info->fp_save_offset + 8*i)); mem = gen_rtx_MEM (DFmode, addr); set_mem_alias_set (mem, rs6000_sr_alias_set); RTVEC_ELT (p, i+3) = gen_rtx_SET (VOIDmode, gen_rtx_REG (DFmode, info->first_fp_reg_save + i), mem); } } emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p)); } } /* Write function epilogue. */ static void rs6000_output_function_epilogue (file, size) FILE *file; HOST_WIDE_INT size ATTRIBUTE_UNUSED; { rs6000_stack_t *info = rs6000_stack_info (); if (! HAVE_epilogue) { rtx insn = get_last_insn (); /* If the last insn was a BARRIER, we don't have to write anything except the trace table. */ if (GET_CODE (insn) == NOTE) insn = prev_nonnote_insn (insn); if (insn == 0 || GET_CODE (insn) != BARRIER) { /* This is slightly ugly, but at least we don't have two copies of the epilogue-emitting code. */ start_sequence (); /* A NOTE_INSN_DELETED is supposed to be at the start and end of the "toplevel" insn chain. */ emit_note (0, NOTE_INSN_DELETED); rs6000_emit_epilogue (FALSE); emit_note (0, NOTE_INSN_DELETED); /* Expand INSN_ADDRESSES so final() doesn't crash. */ { rtx insn; unsigned addr = 0; for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn)) { INSN_ADDRESSES_NEW (insn, addr); addr += 4; } } if (TARGET_DEBUG_STACK) debug_rtx_list (get_insns (), 100); final (get_insns (), file, FALSE, FALSE); end_sequence (); } } #if TARGET_OBJECT_FORMAT == OBJECT_MACHO /* Mach-O doesn't support labels at the end of objects, so if it looks like we might want one, insert a NOP. */ { rtx insn = get_last_insn (); while (insn && NOTE_P (insn) && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL) insn = PREV_INSN (insn); if (insn && (LABEL_P (insn) || (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))) fputs ("\tnop\n", file); } #endif /* Output a traceback table here. See /usr/include/sys/debug.h for info on its format. We don't output a traceback table if -finhibit-size-directive was used. The documentation for -finhibit-size-directive reads ``don't output a @code{.size} assembler directive, or anything else that would cause trouble if the function is split in the middle, and the two halves are placed at locations far apart in memory.'' The traceback table has this property, since it includes the offset from the start of the function to the traceback table itself. System V.4 Powerpc's (and the embedded ABI derived from it) use a different traceback table. */ if (DEFAULT_ABI == ABI_AIX && ! flag_inhibit_size_directive && rs6000_traceback != traceback_none) { const char *fname = NULL; const char *language_string = lang_hooks.name; int fixed_parms = 0, float_parms = 0, parm_info = 0; int i; int optional_tbtab; if (rs6000_traceback == traceback_full) optional_tbtab = 1; else if (rs6000_traceback == traceback_part) optional_tbtab = 0; else optional_tbtab = !optimize_size && !TARGET_ELF; if (optional_tbtab) { fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); while (*fname == '.') /* V.4 encodes . in the name */ fname++; /* Need label immediately before tbtab, so we can compute its offset from the function start. */ ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT"); ASM_OUTPUT_LABEL (file, fname); } /* The .tbtab pseudo-op can only be used for the first eight expressions, since it can't handle the possibly variable length fields that follow. However, if you omit the optional fields, the assembler outputs zeros for all optional fields anyways, giving each variable length field is minimum length (as defined in sys/debug.h). Thus we can not use the .tbtab pseudo-op at all. */ /* An all-zero word flags the start of the tbtab, for debuggers that have to find it by searching forward from the entry point or from the current pc. */ fputs ("\t.long 0\n", file); /* Tbtab format type. Use format type 0. */ fputs ("\t.byte 0,", file); /* Language type. Unfortunately, there doesn't seem to be any official way to get this info, so we use language_string. C is 0. C++ is 9. No number defined for Obj-C, so use the value for C for now. There is no official value for Java, although IBM appears to be using 13. There is no official value for Chill, so we've chosen 44 pseudo-randomly. */ if (! strcmp (language_string, "GNU C") || ! strcmp (language_string, "GNU Objective-C")) i = 0; else if (! strcmp (language_string, "GNU F77")) i = 1; else if (! strcmp (language_string, "GNU Ada")) i = 3; else if (! strcmp (language_string, "GNU Pascal")) i = 2; else if (! strcmp (language_string, "GNU C++")) i = 9; else if (! strcmp (language_string, "GNU Java")) i = 13; else if (! strcmp (language_string, "GNU CHILL")) i = 44; else abort (); fprintf (file, "%d,", i); /* 8 single bit fields: global linkage (not set for C extern linkage, apparently a PL/I convention?), out-of-line epilogue/prologue, offset from start of procedure stored in tbtab, internal function, function has controlled storage, function has no toc, function uses fp, function logs/aborts fp operations. */ /* Assume that fp operations are used if any fp reg must be saved. */ fprintf (file, "%d,", (optional_tbtab << 5) | ((info->first_fp_reg_save != 64) << 1)); /* 6 bitfields: function is interrupt handler, name present in proc table, function calls alloca, on condition directives (controls stack walks, 3 bits), saves condition reg, saves link reg. */ /* The `function calls alloca' bit seems to be set whenever reg 31 is set up as a frame pointer, even when there is no alloca call. */ fprintf (file, "%d,", ((optional_tbtab << 6) | ((optional_tbtab & frame_pointer_needed) << 5) | (info->cr_save_p << 1) | (info->lr_save_p))); /* 3 bitfields: saves backchain, fixup code, number of fpr saved (6 bits). */ fprintf (file, "%d,", (info->push_p << 7) | (64 - info->first_fp_reg_save)); /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits). */ fprintf (file, "%d,", (32 - first_reg_to_save ())); if (optional_tbtab) { /* Compute the parameter info from the function decl argument list. */ tree decl; int next_parm_info_bit = 31; for (decl = DECL_ARGUMENTS (current_function_decl); decl; decl = TREE_CHAIN (decl)) { rtx parameter = DECL_INCOMING_RTL (decl); enum machine_mode mode = GET_MODE (parameter); if (GET_CODE (parameter) == REG) { if (GET_MODE_CLASS (mode) == MODE_FLOAT) { int bits; float_parms++; if (mode == SFmode) bits = 0x2; else if (mode == DFmode || mode == TFmode) bits = 0x3; else abort (); /* If only one bit will fit, don't or in this entry. */ if (next_parm_info_bit > 0) parm_info |= (bits << (next_parm_info_bit - 1)); next_parm_info_bit -= 2; } else { fixed_parms += ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD); next_parm_info_bit -= 1; } } } } /* Number of fixed point parameters. */ /* This is actually the number of words of fixed point parameters; thus an 8 byte struct counts as 2; and thus the maximum value is 8. */ fprintf (file, "%d,", fixed_parms); /* 2 bitfields: number of floating point parameters (7 bits), parameters all on stack. */ /* This is actually the number of fp registers that hold parameters; and thus the maximum value is 13. */ /* Set parameters on stack bit if parameters are not in their original registers, regardless of whether they are on the stack? Xlc seems to set the bit when not optimizing. */ fprintf (file, "%d\n", ((float_parms << 1) | (! optimize))); if (! optional_tbtab) return; /* Optional fields follow. Some are variable length. */ /* Parameter types, left adjusted bit fields: 0 fixed, 10 single float, 11 double float. */ /* There is an entry for each parameter in a register, in the order that they occur in the parameter list. Any intervening arguments on the stack are ignored. If the list overflows a long (max possible length 34 bits) then completely leave off all elements that don't fit. */ /* Only emit this long if there was at least one parameter. */ if (fixed_parms || float_parms) fprintf (file, "\t.long %d\n", parm_info); /* Offset from start of code to tb table. */ fputs ("\t.long ", file); ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT"); #if TARGET_AIX RS6000_OUTPUT_BASENAME (file, fname); #else assemble_name (file, fname); #endif fputs ("-.", file); #if TARGET_AIX RS6000_OUTPUT_BASENAME (file, fname); #else assemble_name (file, fname); #endif putc ('\n', file); /* Interrupt handler mask. */ /* Omit this long, since we never set the interrupt handler bit above. */ /* Number of CTL (controlled storage) anchors. */ /* Omit this long, since the has_ctl bit is never set above. */ /* Displacement into stack of each CTL anchor. */ /* Omit this list of longs, because there are no CTL anchors. */ /* Length of function name. */ if (*fname == '*') ++fname; fprintf (file, "\t.short %d\n", (int) strlen (fname)); /* Function name. */ assemble_string (fname, strlen (fname)); /* Register for alloca automatic storage; this is always reg 31. Only emit this if the alloca bit was set above. */ if (frame_pointer_needed) fputs ("\t.byte 31\n", file); fputs ("\t.align 2\n", file); } } /* A C compound statement that outputs the assembler code for a thunk function, used to implement C++ virtual function calls with multiple inheritance. The thunk acts as a wrapper around a virtual function, adjusting the implicit object parameter before handing control off to the real function. First, emit code to add the integer DELTA to the location that contains the incoming first argument. Assume that this argument contains a pointer, and is the one used to pass the `this' pointer in C++. This is the incoming argument *before* the function prologue, e.g. `%o0' on a sparc. The addition must preserve the values of all other incoming arguments. After the addition, emit code to jump to FUNCTION, which is a `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch the return address. Hence returning from FUNCTION will return to whoever called the current `thunk'. The effect must be as if FUNCTION had been called directly with the adjusted first argument. This macro is responsible for emitting all of the code for a thunk function; output_function_prologue() and output_function_epilogue() are not invoked. The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been extracted from it.) It might possibly be useful on some targets, but probably not. If you do not define this macro, the target-independent code in the C++ frontend will generate a less efficient heavyweight thunk that calls FUNCTION instead of jumping to it. The generic approach does not support varargs. */ static void rs6000_output_mi_thunk (file, thunk_fndecl, delta, vcall_offset, function) FILE *file; tree thunk_fndecl ATTRIBUTE_UNUSED; HOST_WIDE_INT delta; HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED; tree function; { const char *this_reg = reg_names[ aggregate_value_p (TREE_TYPE (TREE_TYPE (function))) ? 4 : 3 ]; const char *prefix; const char *fname; const char *r0 = reg_names[0]; const char *toc = reg_names[2]; const char *schain = reg_names[11]; const char *r12 = reg_names[12]; char buf[512]; static int labelno = 0; /* Small constants that can be done by one add instruction. */ if (delta >= -32768 && delta <= 32767) { if (! TARGET_NEW_MNEMONICS) fprintf (file, "\tcal %s,%d(%s)\n", this_reg, (int) delta, this_reg); else fprintf (file, "\taddi %s,%s,%d\n", this_reg, this_reg, (int) delta); } /* 64-bit constants. If "int" is 32 bits, we'll never hit this abort. */ else if (TARGET_64BIT && (delta < -2147483647 - 1 || delta > 2147483647)) abort (); /* Large constants that can be done by one addis instruction. */ else if ((delta & 0xffff) == 0) asm_fprintf (file, "\t{cau|addis} %s,%s,%d\n", this_reg, this_reg, (int) (delta >> 16)); /* 32-bit constants that can be done by an add and addis instruction. */ else { /* Break into two pieces, propagating the sign bit from the low word to the upper word. */ int delta_low = ((delta & 0xffff) ^ 0x8000) - 0x8000; int delta_high = (delta - delta_low) >> 16; asm_fprintf (file, "\t{cau|addis} %s,%s,%d\n", this_reg, this_reg, delta_high); if (! TARGET_NEW_MNEMONICS) fprintf (file, "\tcal %s,%d(%s)\n", this_reg, delta_low, this_reg); else fprintf (file, "\taddi %s,%s,%d\n", this_reg, this_reg, delta_low); } /* Get the prefix in front of the names. */ switch (DEFAULT_ABI) { default: abort (); case ABI_AIX: prefix = "."; break; case ABI_V4: case ABI_AIX_NODESC: case ABI_DARWIN: prefix = ""; break; } /* If the function is compiled in this module, jump to it directly. Otherwise, load up its address and jump to it. */ fname = XSTR (XEXP (DECL_RTL (function), 0), 0); if (current_file_function_operand (XEXP (DECL_RTL (function), 0), VOIDmode) && (! lookup_attribute ("longcall", TYPE_ATTRIBUTES (TREE_TYPE (function))) || lookup_attribute ("shortcall", TYPE_ATTRIBUTES (TREE_TYPE (function))))) { fprintf (file, "\tb %s", prefix); assemble_name (file, fname); if (DEFAULT_ABI == ABI_V4 && flag_pic) fputs ("@local", file); putc ('\n', file); } else { switch (DEFAULT_ABI) { default: abort (); case ABI_AIX: /* Set up a TOC entry for the function. */ ASM_GENERATE_INTERNAL_LABEL (buf, "Lthunk", labelno); toc_section (); ASM_OUTPUT_INTERNAL_LABEL (file, "Lthunk", labelno); labelno++; if (TARGET_MINIMAL_TOC) fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file); else { fputs ("\t.tc ", file); assemble_name (file, fname); fputs ("[TC],", file); } assemble_name (file, fname); putc ('\n', file); function_section (current_function_decl); if (TARGET_MINIMAL_TOC) asm_fprintf (file, (TARGET_32BIT) ? "\t{l|lwz} %s,%s(%s)\n" : "\tld %s,%s(%s)\n", r12, TARGET_ELF ? ".LCTOC0@toc" : ".LCTOC..1", toc); asm_fprintf (file, (TARGET_32BIT) ? "\t{l|lwz} %s," : "\tld %s,", r12); assemble_name (file, buf); if (TARGET_ELF && TARGET_MINIMAL_TOC) fputs ("-(.LCTOC1)", file); asm_fprintf (file, "(%s)\n", TARGET_MINIMAL_TOC ? r12 : toc); asm_fprintf (file, (TARGET_32BIT) ? "\t{l|lwz} %s,0(%s)\n" : "\tld %s,0(%s)\n", r0, r12); asm_fprintf (file, (TARGET_32BIT) ? "\t{l|lwz} %s,4(%s)\n" : "\tld %s,8(%s)\n", toc, r12); asm_fprintf (file, "\tmtctr %s\n", r0); asm_fprintf (file, (TARGET_32BIT) ? "\t{l|lwz} %s,8(%s)\n" : "\tld %s,16(%s)\n", schain, r12); asm_fprintf (file, "\tbctr\n"); break; case ABI_AIX_NODESC: case ABI_V4: fprintf (file, "\tb %s", prefix); assemble_name (file, fname); if (flag_pic) fputs ("@plt", file); putc ('\n', file); break; #if TARGET_MACHO case ABI_DARWIN: fprintf (file, "\tb %s", prefix); if (flag_pic && !machopic_name_defined_p (fname)) assemble_name (file, machopic_stub_name (fname)); else assemble_name (file, fname); putc ('\n', file); break; #endif } } } /* A quick summary of the various types of 'constant-pool tables' under PowerPC: Target Flags Name One table per AIX (none) AIX TOC object file AIX -mfull-toc AIX TOC object file AIX -mminimal-toc AIX minimal TOC translation unit SVR4/EABI (none) SVR4 SDATA object file SVR4/EABI -fpic SVR4 pic object file SVR4/EABI -fPIC SVR4 PIC translation unit SVR4/EABI -mrelocatable EABI TOC function SVR4/EABI -maix AIX TOC object file SVR4/EABI -maix -mminimal-toc AIX minimal TOC translation unit Name Reg. Set by entries contains: made by addrs? fp? sum? AIX TOC 2 crt0 as Y option option AIX minimal TOC 30 prolog gcc Y Y option SVR4 SDATA 13 crt0 gcc N Y N SVR4 pic 30 prolog ld Y not yet N SVR4 PIC 30 prolog gcc Y option option EABI TOC 30 prolog gcc Y option option */ /* Hash table stuff for keeping track of TOC entries. */ struct toc_hash_struct { /* `key' will satisfy CONSTANT_P; in fact, it will satisfy ASM_OUTPUT_SPECIAL_POOL_ENTRY_P. */ rtx key; enum machine_mode key_mode; int labelno; }; static htab_t toc_hash_table; /* Hash functions for the hash table. */ static unsigned rs6000_hash_constant (k) rtx k; { enum rtx_code code = GET_CODE (k); enum machine_mode mode = GET_MODE (k); unsigned result = (code << 3) ^ mode; const char *format; int flen, fidx; format = GET_RTX_FORMAT (code); flen = strlen (format); fidx = 0; switch (code) { case LABEL_REF: return result * 1231 + (unsigned) INSN_UID (XEXP (k, 0)); case CONST_DOUBLE: if (mode != VOIDmode) return real_hash (CONST_DOUBLE_REAL_VALUE (k)) * result; flen = 2; break; case CODE_LABEL: fidx = 3; break; default: break; } for (; fidx < flen; fidx++) switch (format[fidx]) { case 's': { unsigned i, len; const char *str = XSTR (k, fidx); len = strlen (str); result = result * 613 + len; for (i = 0; i < len; i++) result = result * 613 + (unsigned) str[i]; break; } case 'u': case 'e': result = result * 1231 + rs6000_hash_constant (XEXP (k, fidx)); break; case 'i': case 'n': result = result * 613 + (unsigned) XINT (k, fidx); break; case 'w': if (sizeof (unsigned) >= sizeof (HOST_WIDE_INT)) result = result * 613 + (unsigned) XWINT (k, fidx); else { size_t i; for (i = 0; i < sizeof(HOST_WIDE_INT)/sizeof(unsigned); i++) result = result * 613 + (unsigned) (XWINT (k, fidx) >> CHAR_BIT * i); } break; default: abort (); } return result; } static unsigned toc_hash_function (hash_entry) const void * hash_entry; { const struct toc_hash_struct *thc = (const struct toc_hash_struct *) hash_entry; return rs6000_hash_constant (thc->key) ^ thc->key_mode; } /* Compare H1 and H2 for equivalence. */ static int toc_hash_eq (h1, h2) const void * h1; const void * h2; { rtx r1 = ((const struct toc_hash_struct *) h1)->key; rtx r2 = ((const struct toc_hash_struct *) h2)->key; if (((const struct toc_hash_struct *) h1)->key_mode != ((const struct toc_hash_struct *) h2)->key_mode) return 0; return rtx_equal_p (r1, r2); } /* Mark the hash table-entry HASH_ENTRY. */ static int toc_hash_mark_entry (hash_slot, unused) void ** hash_slot; void * unused ATTRIBUTE_UNUSED; { const struct toc_hash_struct * hash_entry = *(const struct toc_hash_struct **) hash_slot; rtx r = hash_entry->key; ggc_set_mark (hash_entry); /* For CODE_LABELS, we don't want to drag in the whole insn chain... */ if (GET_CODE (r) == LABEL_REF) { ggc_set_mark (r); ggc_set_mark (XEXP (r, 0)); } else ggc_mark_rtx (r); return 1; } /* Mark all the elements of the TOC hash-table *HT. */ static void toc_hash_mark_table (vht) void *vht; { htab_t *ht = vht; htab_traverse (*ht, toc_hash_mark_entry, (void *)0); } /* These are the names given by the C++ front-end to vtables, and vtable-like objects. Ideally, this logic should not be here; instead, there should be some programmatic way of inquiring as to whether or not an object is a vtable. */ #define VTABLE_NAME_P(NAME) \ (strncmp ("_vt.", name, strlen("_vt.")) == 0 \ || strncmp ("_ZTV", name, strlen ("_ZTV")) == 0 \ || strncmp ("_ZTT", name, strlen ("_ZTT")) == 0 \ || strncmp ("_ZTC", name, strlen ("_ZTC")) == 0) void rs6000_output_symbol_ref (file, x) FILE *file; rtx x; { /* Currently C++ toc references to vtables can be emitted before it is decided whether the vtable is public or private. If this is the case, then the linker will eventually complain that there is a reference to an unknown section. Thus, for vtables only, we emit the TOC reference to reference the symbol and not the section. */ const char *name = XSTR (x, 0); if (VTABLE_NAME_P (name)) { RS6000_OUTPUT_BASENAME (file, name); } else assemble_name (file, name); } /* Output a TOC entry. We derive the entry name from what is being written. */ void output_toc (file, x, labelno, mode) FILE *file; rtx x; int labelno; enum machine_mode mode; { char buf[256]; const char *name = buf; const char *real_name; rtx base = x; int offset = 0; if (TARGET_NO_TOC) abort (); /* When the linker won't eliminate them, don't output duplicate TOC entries (this happens on AIX if there is any kind of TOC, and on SVR4 under -fPIC or -mrelocatable). */ if (TARGET_TOC) { struct toc_hash_struct *h; void * * found; h = ggc_alloc (sizeof (*h)); h->key = x; h->key_mode = mode; h->labelno = labelno; found = htab_find_slot (toc_hash_table, h, 1); if (*found == NULL) *found = h; else /* This is indeed a duplicate. Set this label equal to that label. */ { fputs ("\t.set ", file); ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC"); fprintf (file, "%d,", labelno); ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC"); fprintf (file, "%d\n", ((*(const struct toc_hash_struct **) found)->labelno)); return; } } /* If we're going to put a double constant in the TOC, make sure it's aligned properly when strict alignment is on. */ if (GET_CODE (x) == CONST_DOUBLE && STRICT_ALIGNMENT && GET_MODE_BITSIZE (mode) >= 64 && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) { ASM_OUTPUT_ALIGN (file, 3); } ASM_OUTPUT_INTERNAL_LABEL (file, "LC", labelno); /* Handle FP constants specially. Note that if we have a minimal TOC, things we put here aren't actually in the TOC, so we can allow FP constants. */ if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == TFmode) { REAL_VALUE_TYPE rv; long k[4]; REAL_VALUE_FROM_CONST_DOUBLE (rv, x); REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k); if (TARGET_64BIT) { if (TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],", k[0] & 0xffffffff, k[1] & 0xffffffff, k[2] & 0xffffffff, k[3] & 0xffffffff); fprintf (file, "0x%lx%08lx,0x%lx%08lx\n", k[0] & 0xffffffff, k[1] & 0xffffffff, k[2] & 0xffffffff, k[3] & 0xffffffff); return; } else { if (TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],", k[0] & 0xffffffff, k[1] & 0xffffffff, k[2] & 0xffffffff, k[3] & 0xffffffff); fprintf (file, "0x%lx,0x%lx,0x%lx,0x%lx\n", k[0] & 0xffffffff, k[1] & 0xffffffff, k[2] & 0xffffffff, k[3] & 0xffffffff); return; } } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode) { REAL_VALUE_TYPE rv; long k[2]; REAL_VALUE_FROM_CONST_DOUBLE (rv, x); REAL_VALUE_TO_TARGET_DOUBLE (rv, k); if (TARGET_64BIT) { if (TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc FD_%lx_%lx[TC],", k[0] & 0xffffffff, k[1] & 0xffffffff); fprintf (file, "0x%lx%08lx\n", k[0] & 0xffffffff, k[1] & 0xffffffff); return; } else { if (TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc FD_%lx_%lx[TC],", k[0] & 0xffffffff, k[1] & 0xffffffff); fprintf (file, "0x%lx,0x%lx\n", k[0] & 0xffffffff, k[1] & 0xffffffff); return; } } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode) { REAL_VALUE_TYPE rv; long l; REAL_VALUE_FROM_CONST_DOUBLE (rv, x); REAL_VALUE_TO_TARGET_SINGLE (rv, l); if (TARGET_64BIT) { if (TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff); fprintf (file, "0x%lx00000000\n", l & 0xffffffff); return; } else { if (TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff); fprintf (file, "0x%lx\n", l & 0xffffffff); return; } } else if (GET_MODE (x) == VOIDmode && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)) { unsigned HOST_WIDE_INT low; HOST_WIDE_INT high; if (GET_CODE (x) == CONST_DOUBLE) { low = CONST_DOUBLE_LOW (x); high = CONST_DOUBLE_HIGH (x); } else #if HOST_BITS_PER_WIDE_INT == 32 { low = INTVAL (x); high = (low & 0x80000000) ? ~0 : 0; } #else { low = INTVAL (x) & 0xffffffff; high = (HOST_WIDE_INT) INTVAL (x) >> 32; } #endif /* TOC entries are always Pmode-sized, but since this is a bigendian machine then if we're putting smaller integer constants in the TOC we have to pad them. (This is still a win over putting the constants in a separate constant pool, because then we'd have to have both a TOC entry _and_ the actual constant.) For a 32-bit target, CONST_INT values are loaded and shifted entirely within `low' and can be stored in one TOC entry. */ if (TARGET_64BIT && POINTER_SIZE < GET_MODE_BITSIZE (mode)) abort ();/* It would be easy to make this work, but it doesn't now. */ if (POINTER_SIZE > GET_MODE_BITSIZE (mode)) { #if HOST_BITS_PER_WIDE_INT == 32 lshift_double (low, high, POINTER_SIZE - GET_MODE_BITSIZE (mode), POINTER_SIZE, &low, &high, 0); #else low |= high << 32; low <<= POINTER_SIZE - GET_MODE_BITSIZE (mode); high = (HOST_WIDE_INT) low >> 32; low &= 0xffffffff; #endif } if (TARGET_64BIT) { if (TARGET_MINIMAL_TOC) fputs (DOUBLE_INT_ASM_OP, file); else fprintf (file, "\t.tc ID_%lx_%lx[TC],", (long) high & 0xffffffff, (long) low & 0xffffffff); fprintf (file, "0x%lx%08lx\n", (long) high & 0xffffffff, (long) low & 0xffffffff); return; } else { if (POINTER_SIZE < GET_MODE_BITSIZE (mode)) { if (TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc ID_%lx_%lx[TC],", (long) high & 0xffffffff, (long) low & 0xffffffff); fprintf (file, "0x%lx,0x%lx\n", (long) high & 0xffffffff, (long) low & 0xffffffff); } else { if (TARGET_MINIMAL_TOC) fputs ("\t.long ", file); else fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff); fprintf (file, "0x%lx\n", (long) low & 0xffffffff); } return; } } if (GET_CODE (x) == CONST) { if (GET_CODE (XEXP (x, 0)) != PLUS) abort (); base = XEXP (XEXP (x, 0), 0); offset = INTVAL (XEXP (XEXP (x, 0), 1)); } if (GET_CODE (base) == SYMBOL_REF) name = XSTR (base, 0); else if (GET_CODE (base) == LABEL_REF) ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (base, 0))); else if (GET_CODE (base) == CODE_LABEL) ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base)); else abort (); real_name = (*targetm.strip_name_encoding) (name); if (TARGET_MINIMAL_TOC) fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file); else { fprintf (file, "\t.tc %s", real_name); if (offset < 0) fprintf (file, ".N%d", - offset); else if (offset) fprintf (file, ".P%d", offset); fputs ("[TC],", file); } /* Currently C++ toc references to vtables can be emitted before it is decided whether the vtable is public or private. If this is the case, then the linker will eventually complain that there is a TOC reference to an unknown section. Thus, for vtables only, we emit the TOC reference to reference the symbol and not the section. */ if (VTABLE_NAME_P (name)) { RS6000_OUTPUT_BASENAME (file, name); if (offset < 0) fprintf (file, "%d", offset); else if (offset > 0) fprintf (file, "+%d", offset); } else output_addr_const (file, x); putc ('\n', file); } /* Output an assembler pseudo-op to write an ASCII string of N characters starting at P to FILE. On the RS/6000, we have to do this using the .byte operation and write out special characters outside the quoted string. Also, the assembler is broken; very long strings are truncated, so we must artificially break them up early. */ void output_ascii (file, p, n) FILE *file; const char *p; int n; { char c; int i, count_string; const char *for_string = "\t.byte \""; const char *for_decimal = "\t.byte "; const char *to_close = NULL; count_string = 0; for (i = 0; i < n; i++) { c = *p++; if (c >= ' ' && c < 0177) { if (for_string) fputs (for_string, file); putc (c, file); /* Write two quotes to get one. */ if (c == '"') { putc (c, file); ++count_string; } for_string = NULL; for_decimal = "\"\n\t.byte "; to_close = "\"\n"; ++count_string; if (count_string >= 512) { fputs (to_close, file); for_string = "\t.byte \""; for_decimal = "\t.byte "; to_close = NULL; count_string = 0; } } else { if (for_decimal) fputs (for_decimal, file); fprintf (file, "%d", c); for_string = "\n\t.byte \""; for_decimal = ", "; to_close = "\n"; count_string = 0; } } /* Now close the string if we have written one. Then end the line. */ if (to_close) fputs (to_close, file); } /* Generate a unique section name for FILENAME for a section type represented by SECTION_DESC. Output goes into BUF. SECTION_DESC can be any string, as long as it is different for each possible section type. We name the section in the same manner as xlc. The name begins with an underscore followed by the filename (after stripping any leading directory names) with the last period replaced by the string SECTION_DESC. If FILENAME does not contain a period, SECTION_DESC is appended to the end of the name. */ void rs6000_gen_section_name (buf, filename, section_desc) char **buf; const char *filename; const char *section_desc; { const char *q, *after_last_slash, *last_period = 0; char *p; int len; after_last_slash = filename; for (q = filename; *q; q++) { if (*q == '/') after_last_slash = q + 1; else if (*q == '.') last_period = q; } len = strlen (after_last_slash) + strlen (section_desc) + 2; *buf = (char *) xmalloc (len); p = *buf; *p++ = '_'; for (q = after_last_slash; *q; q++) { if (q == last_period) { strcpy (p, section_desc); p += strlen (section_desc); } else if (ISALNUM (*q)) *p++ = *q; } if (last_period == 0) strcpy (p, section_desc); else *p = '\0'; } /* Emit profile function. */ void output_profile_hook (labelno) int labelno ATTRIBUTE_UNUSED; { if (DEFAULT_ABI == ABI_AIX) { #ifdef NO_PROFILE_COUNTERS emit_library_call (init_one_libfunc (RS6000_MCOUNT), 0, VOIDmode, 0); #else char buf[30]; const char *label_name; rtx fun; ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno); label_name = (*targetm.strip_name_encoding) (ggc_strdup (buf)); fun = gen_rtx_SYMBOL_REF (Pmode, label_name); emit_library_call (init_one_libfunc (RS6000_MCOUNT), 0, VOIDmode, 1, fun, Pmode); #endif } else if (DEFAULT_ABI == ABI_DARWIN) { const char *mcount_name = RS6000_MCOUNT; int caller_addr_regno = LINK_REGISTER_REGNUM; /* Be conservative and always set this, at least for now. */ current_function_uses_pic_offset_table = 1; #if TARGET_MACHO /* For PIC code, set up a stub and collect the caller's address from r0, which is where the prologue puts it. */ if (flag_pic) { mcount_name = machopic_stub_name (mcount_name); if (current_function_uses_pic_offset_table) caller_addr_regno = 0; } #endif emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mcount_name), 0, VOIDmode, 1, gen_rtx_REG (Pmode, caller_addr_regno), Pmode); } } /* Write function profiler code. */ void output_function_profiler (file, labelno) FILE *file; int labelno; { char buf[100]; int save_lr = 8; ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno); switch (DEFAULT_ABI) { default: abort (); case ABI_V4: save_lr = 4; /* Fall through. */ case ABI_AIX_NODESC: if (!TARGET_32BIT) { warning ("no profiling of 64-bit code for this ABI"); return; } fprintf (file, "\tmflr %s\n", reg_names[0]); if (flag_pic == 1) { fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file); asm_fprintf (file, "\t{st|stw} %s,%d(%s)\n", reg_names[0], save_lr, reg_names[1]); asm_fprintf (file, "\tmflr %s\n", reg_names[12]); asm_fprintf (file, "\t{l|lwz} %s,", reg_names[0]); assemble_name (file, buf); asm_fprintf (file, "@got(%s)\n", reg_names[12]); } else if (flag_pic > 1) { asm_fprintf (file, "\t{st|stw} %s,%d(%s)\n", reg_names[0], save_lr, reg_names[1]); /* Now, we need to get the address of the label. */ fputs ("\tbl 1f\n\t.long ", file); assemble_name (file, buf); fputs ("-.\n1:", file); asm_fprintf (file, "\tmflr %s\n", reg_names[11]); asm_fprintf (file, "\t{l|lwz} %s,0(%s)\n", reg_names[0], reg_names[11]); asm_fprintf (file, "\t{cax|add} %s,%s,%s\n", reg_names[0], reg_names[0], reg_names[11]); } else { asm_fprintf (file, "\t{liu|lis} %s,", reg_names[12]); assemble_name (file, buf); fputs ("@ha\n", file); asm_fprintf (file, "\t{st|stw} %s,%d(%s)\n", reg_names[0], save_lr, reg_names[1]); asm_fprintf (file, "\t{cal|la} %s,", reg_names[0]); assemble_name (file, buf); asm_fprintf (file, "@l(%s)\n", reg_names[12]); } if (current_function_needs_context && DEFAULT_ABI == ABI_AIX_NODESC) { asm_fprintf (file, "\t{st|stw} %s,%d(%s)\n", reg_names[STATIC_CHAIN_REGNUM], 12, reg_names[1]); fprintf (file, "\tbl %s\n", RS6000_MCOUNT); asm_fprintf (file, "\t{l|lwz} %s,%d(%s)\n", reg_names[STATIC_CHAIN_REGNUM], 12, reg_names[1]); } else /* ABI_V4 saves the static chain reg with ASM_OUTPUT_REG_PUSH. */ fprintf (file, "\tbl %s\n", RS6000_MCOUNT); break; case ABI_AIX: case ABI_DARWIN: /* Don't do anything, done in output_profile_hook (). */ break; } } /* Adjust the cost of a scheduling dependency. Return the new cost of a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ static int rs6000_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn ATTRIBUTE_UNUSED; int cost; { if (! recog_memoized (insn)) return 0; if (REG_NOTE_KIND (link) != 0) return 0; if (REG_NOTE_KIND (link) == 0) { /* Data dependency; DEP_INSN writes a register that INSN reads some cycles later. */ switch (get_attr_type (insn)) { case TYPE_JMPREG: /* Tell the first scheduling pass about the latency between a mtctr and bctr (and mtlr and br/blr). The first scheduling pass will not know about this latency since the mtctr instruction, which has the latency associated to it, will be generated by reload. */ return TARGET_POWER ? 5 : 4; case TYPE_BRANCH: /* Leave some extra cycles between a compare and its dependent branch, to inhibit expensive mispredicts. */ if ((rs6000_cpu_attr == CPU_PPC603 || rs6000_cpu_attr == CPU_PPC604 || rs6000_cpu_attr == CPU_PPC604E || rs6000_cpu_attr == CPU_PPC620 || rs6000_cpu_attr == CPU_PPC630 || rs6000_cpu_attr == CPU_PPC750 || rs6000_cpu_attr == CPU_PPC7400 || rs6000_cpu_attr == CPU_PPC7450 || rs6000_cpu_attr == CPU_POWER4) && recog_memoized (dep_insn) && (INSN_CODE (dep_insn) >= 0) && (get_attr_type (dep_insn) == TYPE_COMPARE || get_attr_type (dep_insn) == TYPE_DELAYED_COMPARE || get_attr_type (dep_insn) == TYPE_FPCOMPARE || get_attr_type (dep_insn) == TYPE_CR_LOGICAL)) return cost + 2; default: break; } /* Fall out to return default cost. */ } return cost; } /* A C statement (sans semicolon) to update the integer scheduling priority INSN_PRIORITY (INSN). Reduce the priority to execute the INSN earlier, increase the priority to execute INSN later. Do not define this macro if you do not need to adjust the scheduling priorities of insns. */ static int rs6000_adjust_priority (insn, priority) rtx insn ATTRIBUTE_UNUSED; int priority; { /* On machines (like the 750) which have asymmetric integer units, where one integer unit can do multiply and divides and the other can't, reduce the priority of multiply/divide so it is scheduled before other integer operations. */ #if 0 if (! INSN_P (insn)) return priority; if (GET_CODE (PATTERN (insn)) == USE) return priority; switch (rs6000_cpu_attr) { case CPU_PPC750: switch (get_attr_type (insn)) { default: break; case TYPE_IMUL: case TYPE_IDIV: fprintf (stderr, "priority was %#x (%d) before adjustment\n", priority, priority); if (priority >= 0 && priority < 0x01000000) priority >>= 3; break; } } #endif return priority; } /* Return how many instructions the machine can issue per cycle. */ static int rs6000_issue_rate () { switch (rs6000_cpu_attr) { case CPU_RIOS1: /* ? */ case CPU_RS64A: case CPU_PPC601: /* ? */ case CPU_PPC7450: return 3; case CPU_PPC603: case CPU_PPC750: case CPU_PPC7400: return 2; case CPU_RIOS2: case CPU_PPC604: case CPU_PPC604E: case CPU_PPC620: case CPU_PPC630: case CPU_POWER4: return 4; default: return 1; } } /* Length in units of the trampoline for entering a nested function. */ int rs6000_trampoline_size () { int ret = 0; switch (DEFAULT_ABI) { default: abort (); case ABI_AIX: ret = (TARGET_32BIT) ? 12 : 24; break; case ABI_DARWIN: case ABI_V4: case ABI_AIX_NODESC: ret = (TARGET_32BIT) ? 40 : 48; break; } return ret; } /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. */ void rs6000_initialize_trampoline (addr, fnaddr, cxt) rtx addr; rtx fnaddr; rtx cxt; { enum machine_mode pmode = Pmode; int regsize = (TARGET_32BIT) ? 4 : 8; rtx ctx_reg = force_reg (pmode, cxt); switch (DEFAULT_ABI) { default: abort (); /* Macros to shorten the code expansions below. */ #define MEM_DEREF(addr) gen_rtx_MEM (pmode, memory_address (pmode, addr)) #define MEM_PLUS(addr,offset) \ gen_rtx_MEM (pmode, memory_address (pmode, plus_constant (addr, offset))) /* Under AIX, just build the 3 word function descriptor */ case ABI_AIX: { rtx fn_reg = gen_reg_rtx (pmode); rtx toc_reg = gen_reg_rtx (pmode); emit_move_insn (fn_reg, MEM_DEREF (fnaddr)); emit_move_insn (toc_reg, MEM_PLUS (fnaddr, regsize)); emit_move_insn (MEM_DEREF (addr), fn_reg); emit_move_insn (MEM_PLUS (addr, regsize), toc_reg); emit_move_insn (MEM_PLUS (addr, 2*regsize), ctx_reg); } break; /* Under V.4/eabi/darwin, __trampoline_setup does the real work. */ case ABI_DARWIN: case ABI_V4: case ABI_AIX_NODESC: emit_library_call (gen_rtx_SYMBOL_REF (SImode, "__trampoline_setup"), FALSE, VOIDmode, 4, addr, pmode, GEN_INT (rs6000_trampoline_size ()), SImode, fnaddr, pmode, ctx_reg, pmode); break; } return; } /* Table of valid machine attributes. */ const struct attribute_spec rs6000_attribute_table[] = { /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ { "longcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute }, { "shortcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute }, { NULL, 0, 0, false, false, false, NULL } }; /* Handle a "longcall" or "shortcall" attribute; arguments as in struct attribute_spec.handler. */ static tree rs6000_handle_longcall_attribute (node, name, args, flags, no_add_attrs) tree *node; tree name; tree args ATTRIBUTE_UNUSED; int flags ATTRIBUTE_UNUSED; bool *no_add_attrs; { if (TREE_CODE (*node) != FUNCTION_TYPE && TREE_CODE (*node) != FIELD_DECL && TREE_CODE (*node) != TYPE_DECL) { warning ("`%s' attribute only applies to functions", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } return NULL_TREE; } /* Set longcall attributes on all functions declared when rs6000_default_long_calls is true. */ static void rs6000_set_default_type_attributes (type) tree type; { if (rs6000_default_long_calls && (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)) TYPE_ATTRIBUTES (type) = tree_cons (get_identifier ("longcall"), NULL_TREE, TYPE_ATTRIBUTES (type)); } /* Return a reference suitable for calling a function with the longcall attribute. */ struct rtx_def * rs6000_longcall_ref (call_ref) rtx call_ref; { const char *call_name; tree node; if (GET_CODE (call_ref) != SYMBOL_REF) return call_ref; /* System V adds '.' to the internal name, so skip them. */ call_name = XSTR (call_ref, 0); if (*call_name == '.') { while (*call_name == '.') call_name++; node = get_identifier (call_name); call_ref = gen_rtx_SYMBOL_REF (VOIDmode, IDENTIFIER_POINTER (node)); } return force_reg (Pmode, call_ref); } #ifdef USING_ELFOS_H /* A C statement or statements to switch to the appropriate section for output of RTX in mode MODE. You can assume that RTX is some kind of constant in RTL. The argument MODE is redundant except in the case of a `const_int' rtx. Select the section by calling `text_section' or one of the alternatives for other sections. Do not define this macro if you put all constants in the read-only data section. */ static void rs6000_elf_select_rtx_section (mode, x, align) enum machine_mode mode; rtx x; unsigned HOST_WIDE_INT align; { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode)) toc_section (); else default_elf_select_rtx_section (mode, x, align); } /* A C statement or statements to switch to the appropriate section for output of DECL. DECL is either a `VAR_DECL' node or a constant of some sort. RELOC indicates whether forming the initial value of DECL requires link-time relocations. */ static void rs6000_elf_select_section (decl, reloc, align) tree decl; int reloc; unsigned HOST_WIDE_INT align; { default_elf_select_section_1 (decl, reloc, align, flag_pic || DEFAULT_ABI == ABI_AIX); } /* A C statement to build up a unique section name, expressed as a STRING_CST node, and assign it to DECL_SECTION_NAME (decl). RELOC indicates whether the initial value of EXP requires link-time relocations. If you do not define this macro, GCC will use the symbol name prefixed by `.' as the section name. Note - this macro can now be called for uninitialized data items as well as initialized data and functions. */ static void rs6000_elf_unique_section (decl, reloc) tree decl; int reloc; { default_unique_section_1 (decl, reloc, flag_pic || DEFAULT_ABI == ABI_AIX); } /* If we are referencing a function that is static or is known to be in this file, make the SYMBOL_REF special. We can use this to indicate that we can branch to this function without emitting a no-op after the call. For real AIX calling sequences, we also replace the function name with the real name (1 or 2 leading .'s), rather than the function descriptor name. This saves a lot of overriding code to read the prefixes. */ static void rs6000_elf_encode_section_info (decl, first) tree decl; int first; { if (!first) return; if (TREE_CODE (decl) == FUNCTION_DECL) { rtx sym_ref = XEXP (DECL_RTL (decl), 0); if ((*targetm.binds_local_p) (decl)) SYMBOL_REF_FLAG (sym_ref) = 1; if (DEFAULT_ABI == ABI_AIX) { size_t len1 = (DEFAULT_ABI == ABI_AIX) ? 1 : 2; size_t len2 = strlen (XSTR (sym_ref, 0)); char *str = alloca (len1 + len2 + 1); str[0] = '.'; str[1] = '.'; memcpy (str + len1, XSTR (sym_ref, 0), len2 + 1); XSTR (sym_ref, 0) = ggc_alloc_string (str, len1 + len2); } } else if (rs6000_sdata != SDATA_NONE && DEFAULT_ABI == ABI_V4 && TREE_CODE (decl) == VAR_DECL) { rtx sym_ref = XEXP (DECL_RTL (decl), 0); int size = int_size_in_bytes (TREE_TYPE (decl)); tree section_name = DECL_SECTION_NAME (decl); const char *name = (char *)0; int len = 0; if ((*targetm.binds_local_p) (decl)) SYMBOL_REF_FLAG (sym_ref) = 1; if (section_name) { if (TREE_CODE (section_name) == STRING_CST) { name = TREE_STRING_POINTER (section_name); len = TREE_STRING_LENGTH (section_name); } else abort (); } if ((size > 0 && size <= g_switch_value) || (name && ((len == sizeof (".sdata") - 1 && strcmp (name, ".sdata") == 0) || (len == sizeof (".sdata2") - 1 && strcmp (name, ".sdata2") == 0) || (len == sizeof (".sbss") - 1 && strcmp (name, ".sbss") == 0) || (len == sizeof (".sbss2") - 1 && strcmp (name, ".sbss2") == 0) || (len == sizeof (".PPC.EMB.sdata0") - 1 && strcmp (name, ".PPC.EMB.sdata0") == 0) || (len == sizeof (".PPC.EMB.sbss0") - 1 && strcmp (name, ".PPC.EMB.sbss0") == 0)))) { size_t len = strlen (XSTR (sym_ref, 0)); char *str = alloca (len + 2); str[0] = '@'; memcpy (str + 1, XSTR (sym_ref, 0), len + 1); XSTR (sym_ref, 0) = ggc_alloc_string (str, len + 1); } } } static const char * rs6000_elf_strip_name_encoding (str) const char *str; { while (*str == '*' || *str == '@') str++; return str; } static bool rs6000_elf_in_small_data_p (decl) tree decl; { if (rs6000_sdata == SDATA_NONE) return false; if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl)) { const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (decl)); if (strcmp (section, ".sdata") == 0 || strcmp (section, ".sdata2") == 0 || strcmp (section, ".sbss") == 0) return true; } else { HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl)); if (size > 0 && size <= g_switch_value && (rs6000_sdata != SDATA_DATA || TREE_PUBLIC (decl))) return true; } return false; } #endif /* USING_ELFOS_H */ /* Return a REG that occurs in ADDR with coefficient 1. ADDR can be effectively incremented by incrementing REG. r0 is special and we must not select it as an address register by this routine since our caller will try to increment the returned register via an "la" instruction. */ struct rtx_def * find_addr_reg (addr) rtx addr; { while (GET_CODE (addr) == PLUS) { if (GET_CODE (XEXP (addr, 0)) == REG && REGNO (XEXP (addr, 0)) != 0) addr = XEXP (addr, 0); else if (GET_CODE (XEXP (addr, 1)) == REG && REGNO (XEXP (addr, 1)) != 0) addr = XEXP (addr, 1); else if (CONSTANT_P (XEXP (addr, 0))) addr = XEXP (addr, 1); else if (CONSTANT_P (XEXP (addr, 1))) addr = XEXP (addr, 0); else abort (); } if (GET_CODE (addr) == REG && REGNO (addr) != 0) return addr; abort (); } void rs6000_fatal_bad_address (op) rtx op; { fatal_insn ("bad address", op); } /* Called to register all of our global variables with the garbage collector. */ static void rs6000_add_gc_roots () { toc_hash_table = htab_create (1021, toc_hash_function, toc_hash_eq, NULL); ggc_add_root (&toc_hash_table, 1, sizeof (toc_hash_table), toc_hash_mark_table); } #if TARGET_MACHO #if 0 /* Returns 1 if OP is either a symbol reference or a sum of a symbol reference and a constant. */ int symbolic_operand (op) rtx op; { switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return (GET_CODE (op) == SYMBOL_REF || (GET_CODE (XEXP (op, 0)) == SYMBOL_REF || GET_CODE (XEXP (op, 0)) == LABEL_REF) && GET_CODE (XEXP (op, 1)) == CONST_INT); default: return 0; } } #endif #ifdef RS6000_LONG_BRANCH static tree stub_list = 0; /* ADD_COMPILER_STUB adds the compiler generated stub for handling procedure calls to the linked list. */ void add_compiler_stub (label_name, function_name, line_number) tree label_name; tree function_name; int line_number; { tree stub = build_tree_list (function_name, label_name); TREE_TYPE (stub) = build_int_2 (line_number, 0); TREE_CHAIN (stub) = stub_list; stub_list = stub; } #define STUB_LABEL_NAME(STUB) TREE_VALUE (STUB) #define STUB_FUNCTION_NAME(STUB) TREE_PURPOSE (STUB) #define STUB_LINE_NUMBER(STUB) TREE_INT_CST_LOW (TREE_TYPE (STUB)) /* OUTPUT_COMPILER_STUB outputs the compiler generated stub for handling procedure calls from the linked list and initializes the linked list. */ void output_compiler_stub () { char tmp_buf[256]; char label_buf[256]; tree stub; if (!flag_pic) for (stub = stub_list; stub; stub = TREE_CHAIN (stub)) { fprintf (asm_out_file, "%s:\n", IDENTIFIER_POINTER(STUB_LABEL_NAME(stub))); #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO) if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG) fprintf (asm_out_file, "\t.stabd 68,0,%d\n", STUB_LINE_NUMBER(stub)); #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */ if (IDENTIFIER_POINTER (STUB_FUNCTION_NAME (stub))[0] == '*') strcpy (label_buf, IDENTIFIER_POINTER (STUB_FUNCTION_NAME (stub))+1); else { label_buf[0] = '_'; strcpy (label_buf+1, IDENTIFIER_POINTER (STUB_FUNCTION_NAME (stub))); } strcpy (tmp_buf, "lis r12,hi16("); strcat (tmp_buf, label_buf); strcat (tmp_buf, ")\n\tori r12,r12,lo16("); strcat (tmp_buf, label_buf); strcat (tmp_buf, ")\n\tmtctr r12\n\tbctr"); output_asm_insn (tmp_buf, 0); #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO) if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG) fprintf(asm_out_file, "\t.stabd 68,0,%d\n", STUB_LINE_NUMBER (stub)); #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */ } stub_list = 0; } /* NO_PREVIOUS_DEF checks in the link list whether the function name is already there or not. */ int no_previous_def (function_name) tree function_name; { tree stub; for (stub = stub_list; stub; stub = TREE_CHAIN (stub)) if (function_name == STUB_FUNCTION_NAME (stub)) return 0; return 1; } /* GET_PREV_LABEL gets the label name from the previous definition of the function. */ tree get_prev_label (function_name) tree function_name; { tree stub; for (stub = stub_list; stub; stub = TREE_CHAIN (stub)) if (function_name == STUB_FUNCTION_NAME (stub)) return STUB_LABEL_NAME (stub); return 0; } /* INSN is either a function call or a millicode call. It may have an unconditional jump in its delay slot. CALL_DEST is the routine we are calling. */ char * output_call (insn, call_dest, operand_number) rtx insn; rtx call_dest; int operand_number; { static char buf[256]; if (GET_CODE (call_dest) == SYMBOL_REF && TARGET_LONG_BRANCH && !flag_pic) { tree labelname; tree funname = get_identifier (XSTR (call_dest, 0)); if (no_previous_def (funname)) { int line_number = 0; rtx label_rtx = gen_label_rtx (); char *label_buf, temp_buf[256]; ASM_GENERATE_INTERNAL_LABEL (temp_buf, "L", CODE_LABEL_NUMBER (label_rtx)); label_buf = temp_buf[0] == '*' ? temp_buf + 1 : temp_buf; labelname = get_identifier (label_buf); for (; insn && GET_CODE (insn) != NOTE; insn = PREV_INSN (insn)); if (insn) line_number = NOTE_LINE_NUMBER (insn); add_compiler_stub (labelname, funname, line_number); } else labelname = get_prev_label (funname); sprintf (buf, "jbsr %%z%d,%.246s", operand_number, IDENTIFIER_POINTER (labelname)); return buf; } else { sprintf (buf, "bl %%z%d", operand_number); return buf; } } #endif /* RS6000_LONG_BRANCH */ #define GEN_LOCAL_LABEL_FOR_SYMBOL(BUF,SYMBOL,LENGTH,N) \ do { \ const char *const symbol_ = (SYMBOL); \ char *buffer_ = (BUF); \ if (symbol_[0] == '"') \ { \ sprintf(buffer_, "\"L%d$%s", (N), symbol_+1); \ } \ else if (name_needs_quotes(symbol_)) \ { \ sprintf(buffer_, "\"L%d$%s\"", (N), symbol_); \ } \ else \ { \ sprintf(buffer_, "L%d$%s", (N), symbol_); \ } \ } while (0) /* Generate PIC and indirect symbol stubs. */ void machopic_output_stub (file, symb, stub) FILE *file; const char *symb, *stub; { unsigned int length; char *symbol_name, *lazy_ptr_name; char *local_label_0; static int label = 0; /* Lose our funky encoding stuff so it doesn't contaminate the stub. */ symb = (*targetm.strip_name_encoding) (symb); label += 1; length = strlen (symb); symbol_name = alloca (length + 32); GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length); lazy_ptr_name = alloca (length + 32); GEN_LAZY_PTR_NAME_FOR_SYMBOL (lazy_ptr_name, symb, length); local_label_0 = alloca (length + 32); GEN_LOCAL_LABEL_FOR_SYMBOL (local_label_0, symb, length, 0); if (flag_pic == 2) machopic_picsymbol_stub_section (); else machopic_symbol_stub_section (); fprintf (file, "%s:\n", stub); fprintf (file, "\t.indirect_symbol %s\n", symbol_name); if (flag_pic == 2) { fprintf (file, "\tmflr r0\n"); fprintf (file, "\tbcl 20,31,%s\n", local_label_0); fprintf (file, "%s:\n\tmflr r11\n", local_label_0); fprintf (file, "\taddis r11,r11,ha16(%s-%s)\n", lazy_ptr_name, local_label_0); fprintf (file, "\tmtlr r0\n"); fprintf (file, "\tlwz r12,lo16(%s-%s)(r11)\n", lazy_ptr_name, local_label_0); fprintf (file, "\tmtctr r12\n"); fprintf (file, "\taddi r11,r11,lo16(%s-%s)\n", lazy_ptr_name, local_label_0); fprintf (file, "\tbctr\n"); } else fprintf (file, "non-pure not supported\n"); machopic_lazy_symbol_ptr_section (); fprintf (file, "%s:\n", lazy_ptr_name); fprintf (file, "\t.indirect_symbol %s\n", symbol_name); fprintf (file, "\t.long dyld_stub_binding_helper\n"); } /* Legitimize PIC addresses. If the address is already position-independent, we return ORIG. Newly generated position-independent addresses go into a reg. This is REG if non zero, otherwise we allocate register(s) as necessary. */ #define SMALL_INT(X) ((unsigned) (INTVAL(X) + 0x8000) < 0x10000) rtx rs6000_machopic_legitimize_pic_address (orig, mode, reg) rtx orig; enum machine_mode mode; rtx reg; { rtx base, offset; if (reg == NULL && ! reload_in_progress && ! reload_completed) reg = gen_reg_rtx (Pmode); if (GET_CODE (orig) == CONST) { if (GET_CODE (XEXP (orig, 0)) == PLUS && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) return orig; if (GET_CODE (XEXP (orig, 0)) == PLUS) { base = rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); offset = rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, reg); } else abort (); if (GET_CODE (offset) == CONST_INT) { if (SMALL_INT (offset)) return plus_constant (base, INTVAL (offset)); else if (! reload_in_progress && ! reload_completed) offset = force_reg (Pmode, offset); else { rtx mem = force_const_mem (Pmode, orig); return machopic_legitimize_pic_address (mem, Pmode, reg); } } return gen_rtx (PLUS, Pmode, base, offset); } /* Fall back on generic machopic code. */ return machopic_legitimize_pic_address (orig, mode, reg); } /* This is just a placeholder to make linking work without having to add this to the generic Darwin EXTRA_SECTIONS. If -mcall-aix is ever needed for Darwin (not too likely!) this would have to get a real definition. */ void toc_section () { } #endif /* TARGET_MACHO */ #if TARGET_ELF static unsigned int rs6000_elf_section_type_flags (decl, name, reloc) tree decl; const char *name; int reloc; { unsigned int flags = default_section_type_flags_1 (decl, name, reloc, flag_pic || DEFAULT_ABI == ABI_AIX); if (TARGET_RELOCATABLE) flags |= SECTION_WRITE; return flags; } /* Record an element in the table of global constructors. SYMBOL is a SYMBOL_REF of the function to be called; PRIORITY is a number between 0 and MAX_INIT_PRIORITY. This differs from default_named_section_asm_out_constructor in that we have special handling for -mrelocatable. */ static void rs6000_elf_asm_out_constructor (symbol, priority) rtx symbol; int priority; { const char *section = ".ctors"; char buf[16]; if (priority != DEFAULT_INIT_PRIORITY) { sprintf (buf, ".ctors.%.5u", /* Invert the numbering so the linker puts us in the proper order; constructors are run from right to left, and the linker sorts in increasing order. */ MAX_INIT_PRIORITY - priority); section = buf; } named_section_flags (section, SECTION_WRITE); assemble_align (POINTER_SIZE); if (TARGET_RELOCATABLE) { fputs ("\t.long (", asm_out_file); output_addr_const (asm_out_file, symbol); fputs (")@fixup\n", asm_out_file); } else assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1); } static void rs6000_elf_asm_out_destructor (symbol, priority) rtx symbol; int priority; { const char *section = ".dtors"; char buf[16]; if (priority != DEFAULT_INIT_PRIORITY) { sprintf (buf, ".dtors.%.5u", /* Invert the numbering so the linker puts us in the proper order; constructors are run from right to left, and the linker sorts in increasing order. */ MAX_INIT_PRIORITY - priority); section = buf; } named_section_flags (section, SECTION_WRITE); assemble_align (POINTER_SIZE); if (TARGET_RELOCATABLE) { fputs ("\t.long (", asm_out_file); output_addr_const (asm_out_file, symbol); fputs (")@fixup\n", asm_out_file); } else assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1); } #endif #if TARGET_XCOFF static void rs6000_xcoff_asm_globalize_label (stream, name) FILE *stream; const char *name; { fputs (GLOBAL_ASM_OP, stream); RS6000_OUTPUT_BASENAME (stream, name); putc ('\n', stream); } static void rs6000_xcoff_asm_named_section (name, flags) const char *name; unsigned int flags; { int smclass; static const char * const suffix[3] = { "PR", "RO", "RW" }; if (flags & SECTION_CODE) smclass = 0; else if (flags & SECTION_WRITE) smclass = 2; else smclass = 1; fprintf (asm_out_file, "\t.csect %s%s[%s],%u\n", (flags & SECTION_CODE) ? "." : "", name, suffix[smclass], flags & SECTION_ENTSIZE); } static void rs6000_xcoff_select_section (decl, reloc, align) tree decl; int reloc; unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED; { if (decl_readonly_section_1 (decl, reloc, 1)) { if (TREE_PUBLIC (decl)) read_only_data_section (); else read_only_private_data_section (); } else { if (TREE_PUBLIC (decl)) data_section (); else private_data_section (); } } static void rs6000_xcoff_unique_section (decl, reloc) tree decl; int reloc ATTRIBUTE_UNUSED; { const char *name; /* Use select_section for private and uninitialized data. */ if (!TREE_PUBLIC (decl) || DECL_COMMON (decl) || DECL_INITIAL (decl) == NULL_TREE || DECL_INITIAL (decl) == error_mark_node || (flag_zero_initialized_in_bss && initializer_zerop (DECL_INITIAL (decl)))) return; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = (*targetm.strip_name_encoding) (name); DECL_SECTION_NAME (decl) = build_string (strlen (name), name); } /* Select section for constant in constant pool. On RS/6000, all constants are in the private read-only data area. However, if this is being placed in the TOC it must be output as a toc entry. */ static void rs6000_xcoff_select_rtx_section (mode, x, align) enum machine_mode mode; rtx x; unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED; { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode)) toc_section (); else read_only_private_data_section (); } /* Remove any trailing [DS] or the like from the symbol name. */ static const char * rs6000_xcoff_strip_name_encoding (name) const char *name; { size_t len; if (*name == '*') name++; len = strlen (name); if (name[len - 1] == ']') return ggc_alloc_string (name, len - 4); else return name; } /* Section attributes. AIX is always PIC. */ static unsigned int rs6000_xcoff_section_type_flags (decl, name, reloc) tree decl; const char *name; int reloc; { unsigned int align; unsigned int flags = default_section_type_flags_1 (decl, name, reloc, 1); /* Align to at least UNIT size. */ if (flags & SECTION_CODE) align = MIN_UNITS_PER_WORD; else /* Increase alignment of large objects if not already stricter. */ align = MAX ((DECL_ALIGN (decl) / BITS_PER_UNIT), int_size_in_bytes (TREE_TYPE (decl)) > MIN_UNITS_PER_WORD ? UNITS_PER_FP_WORD : MIN_UNITS_PER_WORD); return flags | (exact_log2 (align) & SECTION_ENTSIZE); } #endif /* TARGET_XCOFF */ /* Note that this is also used for PPC64 Linux. */ static void rs6000_xcoff_encode_section_info (decl, first) tree decl; int first ATTRIBUTE_UNUSED; { if (TREE_CODE (decl) == FUNCTION_DECL && (*targetm.binds_local_p) (decl)) SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1; } /* Cross-module name binding. For AIX and PPC64 Linux, which always are PIC, use private copy of flag_pic. */ static bool rs6000_binds_local_p (decl) tree decl; { return default_binds_local_p_1 (decl, flag_pic || rs6000_flag_pic); } /* A C expression returning the cost of moving data from a register of class CLASS1 to one of CLASS2. */ int rs6000_register_move_cost (mode, from, to) enum machine_mode mode; enum reg_class from, to; { /* Moves from/to GENERAL_REGS. */ if (reg_classes_intersect_p (to, GENERAL_REGS) || reg_classes_intersect_p (from, GENERAL_REGS)) { if (! reg_classes_intersect_p (to, GENERAL_REGS)) from = to; if (from == FLOAT_REGS || from == ALTIVEC_REGS) return (rs6000_memory_move_cost (mode, from, 0) + rs6000_memory_move_cost (mode, GENERAL_REGS, 0)); /* It's more expensive to move CR_REGS than CR0_REGS because of the shift...*/ else if (from == CR_REGS) return 4; else /* A move will cost one instruction per GPR moved. */ return 2 * HARD_REGNO_NREGS (0, mode); } /* Moving between two similar registers is just one instruction. */ else if (reg_classes_intersect_p (to, from)) return mode == TFmode ? 4 : 2; /* Everything else has to go through GENERAL_REGS. */ else return (rs6000_register_move_cost (mode, GENERAL_REGS, to) + rs6000_register_move_cost (mode, from, GENERAL_REGS)); } /* A C expressions returning the cost of moving data of MODE from a register to or from memory. */ int rs6000_memory_move_cost (mode, class, in) enum machine_mode mode; enum reg_class class; int in ATTRIBUTE_UNUSED; { if (reg_classes_intersect_p (class, GENERAL_REGS)) return 4 * HARD_REGNO_NREGS (0, mode); else if (reg_classes_intersect_p (class, FLOAT_REGS)) return 4 * HARD_REGNO_NREGS (32, mode); else if (reg_classes_intersect_p (class, ALTIVEC_REGS)) return 4 * HARD_REGNO_NREGS (FIRST_ALTIVEC_REGNO, mode); else return 4 + rs6000_register_move_cost (mode, class, GENERAL_REGS); }