/*- * Copyright (c) 1998 Mark Newton * Copyright (c) 1994 Christos Zoulas * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * SVR4 compatibility module. * * SVR4 system calls that are implemented differently in BSD are * handled here. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include /* Must come after sys/malloc.h */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__FreeBSD__) #include #include #endif #if defined(NetBSD) # if defined(UVM) # include # endif #endif #define BSD_DIRENT(cp) ((struct dirent *)(cp)) static int svr4_mknod(struct thread *, register_t *, char *, svr4_mode_t, svr4_dev_t); static __inline clock_t timeval_to_clock_t(struct timeval *); static int svr4_setinfo (pid_t , struct rusage *, int, svr4_siginfo_t *); struct svr4_hrtcntl_args; static int svr4_hrtcntl (struct thread *, struct svr4_hrtcntl_args *, register_t *); static void bsd_statfs_to_svr4_statvfs(const struct statfs *, struct svr4_statvfs *); static void bsd_statfs_to_svr4_statvfs64(const struct statfs *, struct svr4_statvfs64 *); static struct proc *svr4_pfind(pid_t pid); /* BOGUS noop */ #if defined(BOGUS) int svr4_sys_setitimer(td, uap) struct thread *td; struct svr4_sys_setitimer_args *uap; { td->td_retval[0] = 0; return 0; } #endif int svr4_sys_wait(td, uap) struct thread *td; struct svr4_sys_wait_args *uap; { int error, st, sig; error = kern_wait(td, WAIT_ANY, &st, 0, NULL); if (error) return (error); if (WIFSIGNALED(st)) { sig = WTERMSIG(st); if (sig >= 0 && sig < NSIG) st = (st & ~0177) | SVR4_BSD2SVR4_SIG(sig); } else if (WIFSTOPPED(st)) { sig = WSTOPSIG(st); if (sig >= 0 && sig < NSIG) st = (st & ~0xff00) | (SVR4_BSD2SVR4_SIG(sig) << 8); } /* * It looks like wait(2) on svr4/solaris/2.4 returns * the status in retval[1], and the pid on retval[0]. */ td->td_retval[1] = st; if (uap->status) error = copyout(&st, uap->status, sizeof(st)); return (error); } int svr4_sys_execv(td, uap) struct thread *td; struct svr4_sys_execv_args *uap; { struct image_args eargs; char *path; int error; CHECKALTEXIST(td, uap->path, &path); error = exec_copyin_args(&eargs, path, UIO_SYSSPACE, uap->argp, NULL); free(path, M_TEMP); if (error == 0) error = kern_execve(td, &eargs, NULL); return (error); } int svr4_sys_execve(td, uap) struct thread *td; struct svr4_sys_execve_args *uap; { struct image_args eargs; char *path; int error; CHECKALTEXIST(td, uap->path, &path); error = exec_copyin_args(&eargs, path, UIO_SYSSPACE, uap->argp, uap->envp); free(path, M_TEMP); if (error == 0) error = kern_execve(td, &eargs, NULL); return (error); } int svr4_sys_time(td, v) struct thread *td; struct svr4_sys_time_args *v; { struct svr4_sys_time_args *uap = v; int error = 0; struct timeval tv; microtime(&tv); if (uap->t) error = copyout(&tv.tv_sec, uap->t, sizeof(*(uap->t))); td->td_retval[0] = (int) tv.tv_sec; return error; } /* * Read SVR4-style directory entries. We suck them into kernel space so * that they can be massaged before being copied out to user code. * * This code is ported from the Linux emulator: Changes to the VFS interface * between FreeBSD and NetBSD have made it simpler to port it from there than * to adapt the NetBSD version. */ int svr4_sys_getdents64(td, uap) struct thread *td; struct svr4_sys_getdents64_args *uap; { struct dirent *bdp; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* SVR4-format */ int resid, svr4reclen=0; /* SVR4-format */ struct file *fp; struct uio auio; struct iovec aiov; off_t off; struct svr4_dirent64 svr4_dirent; int buflen, error, eofflag, nbytes, justone; u_long *cookies = NULL, *cookiep; int ncookies; DPRINTF(("svr4_sys_getdents64(%d, *, %d)\n", uap->fd, uap->nbytes)); if ((error = getvnode(td->td_proc->p_fd, uap->fd, CAP_READ | CAP_SEEK, &fp)) != 0) { return (error); } if ((fp->f_flag & FREAD) == 0) { fdrop(fp, td); return (EBADF); } vp = fp->f_vnode; if (vp->v_type != VDIR) { fdrop(fp, td); return (EINVAL); } nbytes = uap->nbytes; if (nbytes == 1) { nbytes = sizeof (struct svr4_dirent64); justone = 1; } else justone = 0; off = fp->f_offset; #define DIRBLKSIZ 512 /* XXX we used to use ufs's DIRBLKSIZ */ buflen = max(DIRBLKSIZ, nbytes); buflen = min(buflen, MAXBSIZE); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_SHARED | LK_RETRY); again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_resid = buflen; auio.uio_offset = off; if (cookies) { free(cookies, M_TEMP); cookies = NULL; } #ifdef MAC error = mac_vnode_check_readdir(td->td_ucred, vp); if (error) goto out; #endif error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookies); if (error) { goto out; } inp = buf; outp = (caddr_t) uap->dp; resid = nbytes; if ((len = buflen - auio.uio_resid) <= 0) { goto eof; } cookiep = cookies; if (cookies) { /* * When using cookies, the vfs has the option of reading from * a different offset than that supplied (UFS truncates the * offset to a block boundary to make sure that it never reads * partway through a directory entry, even if the directory * has been compacted). */ while (len > 0 && ncookies > 0 && *cookiep <= off) { bdp = (struct dirent *) inp; len -= bdp->d_reclen; inp += bdp->d_reclen; cookiep++; ncookies--; } } while (len > 0) { if (cookiep && ncookies == 0) break; bdp = (struct dirent *) inp; reclen = bdp->d_reclen; if (reclen & 3) { DPRINTF(("svr4_readdir: reclen=%d\n", reclen)); error = EFAULT; goto out; } if (bdp->d_fileno == 0) { inp += reclen; if (cookiep) { off = *cookiep++; ncookies--; } else off += reclen; len -= reclen; continue; } svr4reclen = SVR4_RECLEN(&svr4_dirent, bdp->d_namlen); if (reclen > len || resid < svr4reclen) { outp++; break; } svr4_dirent.d_ino = (long) bdp->d_fileno; if (justone) { /* * old svr4-style readdir usage. */ svr4_dirent.d_off = (svr4_off_t) svr4reclen; svr4_dirent.d_reclen = (u_short) bdp->d_namlen; } else { svr4_dirent.d_off = (svr4_off_t)(off + reclen); svr4_dirent.d_reclen = (u_short) svr4reclen; } strlcpy(svr4_dirent.d_name, bdp->d_name, sizeof(svr4_dirent.d_name)); if ((error = copyout((caddr_t)&svr4_dirent, outp, svr4reclen))) goto out; inp += reclen; if (cookiep) { off = *cookiep++; ncookies--; } else off += reclen; outp += svr4reclen; resid -= svr4reclen; len -= reclen; if (justone) break; } if (outp == (caddr_t) uap->dp) goto again; fp->f_offset = off; if (justone) nbytes = resid + svr4reclen; eof: td->td_retval[0] = nbytes - resid; out: VOP_UNLOCK(vp, 0); fdrop(fp, td); if (cookies) free(cookies, M_TEMP); free(buf, M_TEMP); return error; } int svr4_sys_getdents(td, uap) struct thread *td; struct svr4_sys_getdents_args *uap; { struct dirent *bdp; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* SVR4-format */ int resid, svr4_reclen; /* SVR4-format */ struct file *fp; struct uio auio; struct iovec aiov; struct svr4_dirent idb; off_t off; /* true file offset */ int buflen, error, eofflag; u_long *cookiebuf = NULL, *cookie; int ncookies = 0, *retval = td->td_retval; if (uap->nbytes < 0) return (EINVAL); if ((error = getvnode(td->td_proc->p_fd, uap->fd, CAP_READ | CAP_SEEK, &fp)) != 0) return (error); if ((fp->f_flag & FREAD) == 0) { fdrop(fp, td); return (EBADF); } vp = fp->f_vnode; if (vp->v_type != VDIR) { fdrop(fp, td); return (EINVAL); } buflen = min(MAXBSIZE, uap->nbytes); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_SHARED | LK_RETRY); off = fp->f_offset; again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_resid = buflen; auio.uio_offset = off; #ifdef MAC error = mac_vnode_check_readdir(td->td_ucred, vp); if (error) goto out; #endif /* * First we read into the malloc'ed buffer, then * we massage it into user space, one record at a time. */ error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookiebuf); if (error) { goto out; } inp = buf; outp = uap->buf; resid = uap->nbytes; if ((len = buflen - auio.uio_resid) == 0) goto eof; for (cookie = cookiebuf; len > 0; len -= reclen) { bdp = (struct dirent *)inp; reclen = bdp->d_reclen; if (reclen & 3) panic("svr4_sys_getdents64: bad reclen"); if (cookie) off = *cookie++; /* each entry points to the next */ else off += reclen; if ((off >> 32) != 0) { uprintf("svr4_sys_getdents64: dir offset too large for emulated program"); error = EINVAL; goto out; } if (bdp->d_fileno == 0) { inp += reclen; /* it is a hole; squish it out */ continue; } svr4_reclen = SVR4_RECLEN(&idb, bdp->d_namlen); if (reclen > len || resid < svr4_reclen) { /* entry too big for buffer, so just stop */ outp++; break; } /* * Massage in place to make a SVR4-shaped dirent (otherwise * we have to worry about touching user memory outside of * the copyout() call). */ idb.d_ino = (svr4_ino_t)bdp->d_fileno; idb.d_off = (svr4_off_t)off; idb.d_reclen = (u_short)svr4_reclen; strlcpy(idb.d_name, bdp->d_name, sizeof(idb.d_name)); if ((error = copyout((caddr_t)&idb, outp, svr4_reclen))) goto out; /* advance past this real entry */ inp += reclen; /* advance output past SVR4-shaped entry */ outp += svr4_reclen; resid -= svr4_reclen; } /* if we squished out the whole block, try again */ if (outp == uap->buf) goto again; fp->f_offset = off; /* update the vnode offset */ eof: *retval = uap->nbytes - resid; out: VOP_UNLOCK(vp, 0); fdrop(fp, td); if (cookiebuf) free(cookiebuf, M_TEMP); free(buf, M_TEMP); return error; } int svr4_sys_mmap(td, uap) struct thread *td; struct svr4_sys_mmap_args *uap; { struct mmap_args mm; int *retval; retval = td->td_retval; #define _MAP_NEW 0x80000000 /* * Verify the arguments. */ if (uap->prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; /* XXX still needed? */ if (uap->len == 0) return EINVAL; mm.prot = uap->prot; mm.len = uap->len; mm.flags = uap->flags & ~_MAP_NEW; mm.fd = uap->fd; mm.addr = uap->addr; mm.pos = uap->pos; return sys_mmap(td, &mm); } int svr4_sys_mmap64(td, uap) struct thread *td; struct svr4_sys_mmap64_args *uap; { struct mmap_args mm; void *rp; #define _MAP_NEW 0x80000000 /* * Verify the arguments. */ if (uap->prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; /* XXX still needed? */ if (uap->len == 0) return EINVAL; mm.prot = uap->prot; mm.len = uap->len; mm.flags = uap->flags & ~_MAP_NEW; mm.fd = uap->fd; mm.addr = uap->addr; mm.pos = uap->pos; rp = (void *) round_page((vm_offset_t)(td->td_proc->p_vmspace->vm_daddr + maxdsiz)); if ((mm.flags & MAP_FIXED) == 0 && mm.addr != 0 && (void *)mm.addr < rp) mm.addr = rp; return sys_mmap(td, &mm); } int svr4_sys_fchroot(td, uap) struct thread *td; struct svr4_sys_fchroot_args *uap; { struct filedesc *fdp = td->td_proc->p_fd; struct vnode *vp; struct file *fp; int error; if ((error = priv_check(td, PRIV_VFS_FCHROOT)) != 0) return error; /* XXX: we have the chroot priv... what cap might we need? all? */ if ((error = getvnode(fdp, uap->fd, 0, &fp)) != 0) return error; vp = fp->f_vnode; VREF(vp); fdrop(fp, td); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); error = change_dir(vp, td); if (error) goto fail; #ifdef MAC error = mac_vnode_check_chroot(td->td_ucred, vp); if (error) goto fail; #endif VOP_UNLOCK(vp, 0); error = change_root(vp, td); vrele(vp); return (error); fail: vput(vp); return (error); } static int svr4_mknod(td, retval, path, mode, dev) struct thread *td; register_t *retval; char *path; svr4_mode_t mode; svr4_dev_t dev; { char *newpath; int error; CHECKALTEXIST(td, path, &newpath); if (S_ISFIFO(mode)) error = kern_mkfifo(td, newpath, UIO_SYSSPACE, mode); else error = kern_mknod(td, newpath, UIO_SYSSPACE, mode, dev); free(newpath, M_TEMP); return (error); } int svr4_sys_mknod(td, uap) struct thread *td; struct svr4_sys_mknod_args *uap; { int *retval = td->td_retval; return svr4_mknod(td, retval, uap->path, uap->mode, (svr4_dev_t)svr4_to_bsd_odev_t(uap->dev)); } int svr4_sys_xmknod(td, uap) struct thread *td; struct svr4_sys_xmknod_args *uap; { int *retval = td->td_retval; return svr4_mknod(td, retval, uap->path, uap->mode, (svr4_dev_t)svr4_to_bsd_dev_t(uap->dev)); } int svr4_sys_vhangup(td, uap) struct thread *td; struct svr4_sys_vhangup_args *uap; { return 0; } int svr4_sys_sysconfig(td, uap) struct thread *td; struct svr4_sys_sysconfig_args *uap; { int *retval; retval = &(td->td_retval[0]); switch (uap->name) { case SVR4_CONFIG_NGROUPS: *retval = ngroups_max; break; case SVR4_CONFIG_CHILD_MAX: *retval = maxproc; break; case SVR4_CONFIG_OPEN_FILES: *retval = maxfiles; break; case SVR4_CONFIG_POSIX_VER: *retval = 198808; break; case SVR4_CONFIG_PAGESIZE: *retval = PAGE_SIZE; break; case SVR4_CONFIG_CLK_TCK: *retval = 60; /* should this be `hz', ie. 100? */ break; case SVR4_CONFIG_XOPEN_VER: *retval = 2; /* XXX: What should that be? */ break; case SVR4_CONFIG_PROF_TCK: *retval = 60; /* XXX: What should that be? */ break; case SVR4_CONFIG_NPROC_CONF: *retval = 1; /* Only one processor for now */ break; case SVR4_CONFIG_NPROC_ONLN: *retval = 1; /* And it better be online */ break; case SVR4_CONFIG_AIO_LISTIO_MAX: case SVR4_CONFIG_AIO_MAX: case SVR4_CONFIG_AIO_PRIO_DELTA_MAX: *retval = 0; /* No aio support */ break; case SVR4_CONFIG_DELAYTIMER_MAX: *retval = 0; /* No delaytimer support */ break; case SVR4_CONFIG_MQ_OPEN_MAX: *retval = msginfo.msgmni; break; case SVR4_CONFIG_MQ_PRIO_MAX: *retval = 0; /* XXX: Don't know */ break; case SVR4_CONFIG_RTSIG_MAX: *retval = 0; break; case SVR4_CONFIG_SEM_NSEMS_MAX: *retval = seminfo.semmni; break; case SVR4_CONFIG_SEM_VALUE_MAX: *retval = seminfo.semvmx; break; case SVR4_CONFIG_SIGQUEUE_MAX: *retval = 0; /* XXX: Don't know */ break; case SVR4_CONFIG_SIGRT_MIN: case SVR4_CONFIG_SIGRT_MAX: *retval = 0; /* No real time signals */ break; case SVR4_CONFIG_TIMER_MAX: *retval = 3; /* XXX: real, virtual, profiling */ break; #if defined(NOTYET) case SVR4_CONFIG_PHYS_PAGES: #if defined(UVM) *retval = uvmexp.free; /* XXX: free instead of total */ #else *retval = cnt.v_free_count; /* XXX: free instead of total */ #endif break; case SVR4_CONFIG_AVPHYS_PAGES: #if defined(UVM) *retval = uvmexp.active; /* XXX: active instead of avg */ #else *retval = cnt.v_active_count; /* XXX: active instead of avg */ #endif break; #endif /* NOTYET */ case SVR4_CONFIG_COHERENCY: *retval = 0; /* XXX */ break; case SVR4_CONFIG_SPLIT_CACHE: *retval = 0; /* XXX */ break; case SVR4_CONFIG_ICACHESZ: *retval = 256; /* XXX */ break; case SVR4_CONFIG_DCACHESZ: *retval = 256; /* XXX */ break; case SVR4_CONFIG_ICACHELINESZ: *retval = 64; /* XXX */ break; case SVR4_CONFIG_DCACHELINESZ: *retval = 64; /* XXX */ break; case SVR4_CONFIG_ICACHEBLKSZ: *retval = 64; /* XXX */ break; case SVR4_CONFIG_DCACHEBLKSZ: *retval = 64; /* XXX */ break; case SVR4_CONFIG_DCACHETBLKSZ: *retval = 64; /* XXX */ break; case SVR4_CONFIG_ICACHE_ASSOC: *retval = 1; /* XXX */ break; case SVR4_CONFIG_DCACHE_ASSOC: *retval = 1; /* XXX */ break; case SVR4_CONFIG_MAXPID: *retval = PID_MAX; break; case SVR4_CONFIG_STACK_PROT: *retval = PROT_READ|PROT_WRITE|PROT_EXEC; break; default: return EINVAL; } return 0; } /* ARGSUSED */ int svr4_sys_break(td, uap) struct thread *td; struct svr4_sys_break_args *uap; { struct obreak_args ap; ap.nsize = uap->nsize; return (sys_obreak(td, &ap)); } static __inline clock_t timeval_to_clock_t(tv) struct timeval *tv; { return tv->tv_sec * hz + tv->tv_usec / (1000000 / hz); } int svr4_sys_times(td, uap) struct thread *td; struct svr4_sys_times_args *uap; { struct timeval tv, utime, stime, cutime, cstime; struct tms tms; struct proc *p; int error; p = td->td_proc; PROC_LOCK(p); PROC_SLOCK(p); calcru(p, &utime, &stime); PROC_SUNLOCK(p); calccru(p, &cutime, &cstime); PROC_UNLOCK(p); tms.tms_utime = timeval_to_clock_t(&utime); tms.tms_stime = timeval_to_clock_t(&stime); tms.tms_cutime = timeval_to_clock_t(&cutime); tms.tms_cstime = timeval_to_clock_t(&cstime); error = copyout(&tms, uap->tp, sizeof(tms)); if (error) return (error); microtime(&tv); td->td_retval[0] = (int)timeval_to_clock_t(&tv); return (0); } int svr4_sys_ulimit(td, uap) struct thread *td; struct svr4_sys_ulimit_args *uap; { int *retval = td->td_retval; int error; switch (uap->cmd) { case SVR4_GFILLIM: PROC_LOCK(td->td_proc); *retval = lim_cur(td->td_proc, RLIMIT_FSIZE) / 512; PROC_UNLOCK(td->td_proc); if (*retval == -1) *retval = 0x7fffffff; return 0; case SVR4_SFILLIM: { struct rlimit krl; krl.rlim_cur = uap->newlimit * 512; PROC_LOCK(td->td_proc); krl.rlim_max = lim_max(td->td_proc, RLIMIT_FSIZE); PROC_UNLOCK(td->td_proc); error = kern_setrlimit(td, RLIMIT_FSIZE, &krl); if (error) return error; PROC_LOCK(td->td_proc); *retval = lim_cur(td->td_proc, RLIMIT_FSIZE); PROC_UNLOCK(td->td_proc); if (*retval == -1) *retval = 0x7fffffff; return 0; } case SVR4_GMEMLIM: { struct vmspace *vm = td->td_proc->p_vmspace; register_t r; PROC_LOCK(td->td_proc); r = lim_cur(td->td_proc, RLIMIT_DATA); PROC_UNLOCK(td->td_proc); if (r == -1) r = 0x7fffffff; r += (long) vm->vm_daddr; if (r < 0) r = 0x7fffffff; *retval = r; return 0; } case SVR4_GDESLIM: PROC_LOCK(td->td_proc); *retval = lim_cur(td->td_proc, RLIMIT_NOFILE); PROC_UNLOCK(td->td_proc); if (*retval == -1) *retval = 0x7fffffff; return 0; default: return EINVAL; } } static struct proc * svr4_pfind(pid) pid_t pid; { struct proc *p; /* look in the live processes */ if ((p = pfind(pid)) == NULL) /* look in the zombies */ p = zpfind(pid); return p; } int svr4_sys_pgrpsys(td, uap) struct thread *td; struct svr4_sys_pgrpsys_args *uap; { int *retval = td->td_retval; struct proc *p = td->td_proc; switch (uap->cmd) { case 1: /* setpgrp() */ /* * SVR4 setpgrp() (which takes no arguments) has the * semantics that the session ID is also created anew, so * in almost every sense, setpgrp() is identical to * setsid() for SVR4. (Under BSD, the difference is that * a setpgid(0,0) will not create a new session.) */ sys_setsid(td, NULL); /*FALLTHROUGH*/ case 0: /* getpgrp() */ PROC_LOCK(p); *retval = p->p_pgrp->pg_id; PROC_UNLOCK(p); return 0; case 2: /* getsid(pid) */ if (uap->pid == 0) PROC_LOCK(p); else if ((p = svr4_pfind(uap->pid)) == NULL) return ESRCH; /* * This has already been initialized to the pid of * the session leader. */ *retval = (register_t) p->p_session->s_sid; PROC_UNLOCK(p); return 0; case 3: /* setsid() */ return sys_setsid(td, NULL); case 4: /* getpgid(pid) */ if (uap->pid == 0) PROC_LOCK(p); else if ((p = svr4_pfind(uap->pid)) == NULL) return ESRCH; *retval = (int) p->p_pgrp->pg_id; PROC_UNLOCK(p); return 0; case 5: /* setpgid(pid, pgid); */ { struct setpgid_args sa; sa.pid = uap->pid; sa.pgid = uap->pgid; return sys_setpgid(td, &sa); } default: return EINVAL; } } struct svr4_hrtcntl_args { int cmd; int fun; int clk; svr4_hrt_interval_t * iv; svr4_hrt_time_t * ti; }; static int svr4_hrtcntl(td, uap, retval) struct thread *td; struct svr4_hrtcntl_args *uap; register_t *retval; { switch (uap->fun) { case SVR4_HRT_CNTL_RES: DPRINTF(("htrcntl(RES)\n")); *retval = SVR4_HRT_USEC; return 0; case SVR4_HRT_CNTL_TOFD: DPRINTF(("htrcntl(TOFD)\n")); { struct timeval tv; svr4_hrt_time_t t; if (uap->clk != SVR4_HRT_CLK_STD) { DPRINTF(("clk == %d\n", uap->clk)); return EINVAL; } if (uap->ti == NULL) { DPRINTF(("ti NULL\n")); return EINVAL; } microtime(&tv); t.h_sec = tv.tv_sec; t.h_rem = tv.tv_usec; t.h_res = SVR4_HRT_USEC; return copyout(&t, uap->ti, sizeof(t)); } case SVR4_HRT_CNTL_START: DPRINTF(("htrcntl(START)\n")); return ENOSYS; case SVR4_HRT_CNTL_GET: DPRINTF(("htrcntl(GET)\n")); return ENOSYS; default: DPRINTF(("Bad htrcntl command %d\n", uap->fun)); return ENOSYS; } } int svr4_sys_hrtsys(td, uap) struct thread *td; struct svr4_sys_hrtsys_args *uap; { int *retval = td->td_retval; switch (uap->cmd) { case SVR4_HRT_CNTL: return svr4_hrtcntl(td, (struct svr4_hrtcntl_args *) uap, retval); case SVR4_HRT_ALRM: DPRINTF(("hrtalarm\n")); return ENOSYS; case SVR4_HRT_SLP: DPRINTF(("hrtsleep\n")); return ENOSYS; case SVR4_HRT_CAN: DPRINTF(("hrtcancel\n")); return ENOSYS; default: DPRINTF(("Bad hrtsys command %d\n", uap->cmd)); return EINVAL; } } static int svr4_setinfo(pid, ru, st, s) pid_t pid; struct rusage *ru; int st; svr4_siginfo_t *s; { svr4_siginfo_t i; int sig; memset(&i, 0, sizeof(i)); i.svr4_si_signo = SVR4_SIGCHLD; i.svr4_si_errno = 0; /* XXX? */ i.svr4_si_pid = pid; if (ru) { i.svr4_si_stime = ru->ru_stime.tv_sec; i.svr4_si_utime = ru->ru_utime.tv_sec; } if (WIFEXITED(st)) { i.svr4_si_status = WEXITSTATUS(st); i.svr4_si_code = SVR4_CLD_EXITED; } else if (WIFSTOPPED(st)) { sig = WSTOPSIG(st); if (sig >= 0 && sig < NSIG) i.svr4_si_status = SVR4_BSD2SVR4_SIG(sig); if (i.svr4_si_status == SVR4_SIGCONT) i.svr4_si_code = SVR4_CLD_CONTINUED; else i.svr4_si_code = SVR4_CLD_STOPPED; } else { sig = WTERMSIG(st); if (sig >= 0 && sig < NSIG) i.svr4_si_status = SVR4_BSD2SVR4_SIG(sig); if (WCOREDUMP(st)) i.svr4_si_code = SVR4_CLD_DUMPED; else i.svr4_si_code = SVR4_CLD_KILLED; } DPRINTF(("siginfo [pid %ld signo %d code %d errno %d status %d]\n", i.svr4_si_pid, i.svr4_si_signo, i.svr4_si_code, i.svr4_si_errno, i.svr4_si_status)); return copyout(&i, s, sizeof(i)); } int svr4_sys_waitsys(td, uap) struct thread *td; struct svr4_sys_waitsys_args *uap; { struct rusage ru; pid_t pid; int nfound, status; int error, *retval = td->td_retval; struct proc *p, *q; DPRINTF(("waitsys(%d, %d, %p, %x)\n", uap->grp, uap->id, uap->info, uap->options)); q = td->td_proc; switch (uap->grp) { case SVR4_P_PID: pid = uap->id; break; case SVR4_P_PGID: PROC_LOCK(q); pid = -q->p_pgid; PROC_UNLOCK(q); break; case SVR4_P_ALL: pid = WAIT_ANY; break; default: return EINVAL; } /* Hand off the easy cases to kern_wait(). */ if (!(uap->options & (SVR4_WNOWAIT)) && (uap->options & (SVR4_WEXITED | SVR4_WTRAPPED))) { int options; options = 0; if (uap->options & SVR4_WSTOPPED) options |= WUNTRACED; if (uap->options & SVR4_WCONTINUED) options |= WCONTINUED; if (uap->options & SVR4_WNOHANG) options |= WNOHANG; error = kern_wait(td, pid, &status, options, &ru); if (error) return (error); if (uap->options & SVR4_WNOHANG && *retval == 0) error = svr4_setinfo(*retval, NULL, 0, uap->info); else error = svr4_setinfo(*retval, &ru, status, uap->info); *retval = 0; return (error); } /* * Ok, handle the weird cases. Either WNOWAIT is set (meaning we * just want to see if there is a process to harvest, we don't * want to actually harvest it), or WEXIT and WTRAPPED are clear * meaning we want to ignore zombies. Either way, we don't have * to handle harvesting zombies here. We do have to duplicate the * other portions of kern_wait() though, especially for WCONTINUED * and WSTOPPED. */ loop: nfound = 0; sx_slock(&proctree_lock); LIST_FOREACH(p, &q->p_children, p_sibling) { PROC_LOCK(p); if (pid != WAIT_ANY && p->p_pid != pid && p->p_pgid != -pid) { PROC_UNLOCK(p); DPRINTF(("pid %d pgid %d != %d\n", p->p_pid, p->p_pgid, pid)); continue; } if (p_canwait(td, p)) { PROC_UNLOCK(p); continue; } nfound++; PROC_SLOCK(p); /* * See if we have a zombie. If so, WNOWAIT should be set, * as otherwise we should have called kern_wait() up above. */ if ((p->p_state == PRS_ZOMBIE) && ((uap->options & (SVR4_WEXITED|SVR4_WTRAPPED)))) { PROC_SUNLOCK(p); KASSERT(uap->options & SVR4_WNOWAIT, ("WNOWAIT is clear")); /* Found a zombie, so cache info in local variables. */ pid = p->p_pid; status = p->p_xstat; ru = p->p_ru; PROC_SLOCK(p); calcru(p, &ru.ru_utime, &ru.ru_stime); PROC_SUNLOCK(p); PROC_UNLOCK(p); sx_sunlock(&proctree_lock); /* Copy the info out to userland. */ *retval = 0; DPRINTF(("found %d\n", pid)); return (svr4_setinfo(pid, &ru, status, uap->info)); } /* * See if we have a stopped or continued process. * XXX: This duplicates the same code in kern_wait(). */ if ((p->p_flag & P_STOPPED_SIG) && (p->p_suspcount == p->p_numthreads) && (p->p_flag & P_WAITED) == 0 && (p->p_flag & P_TRACED || uap->options & SVR4_WSTOPPED)) { PROC_SUNLOCK(p); if (((uap->options & SVR4_WNOWAIT)) == 0) p->p_flag |= P_WAITED; sx_sunlock(&proctree_lock); pid = p->p_pid; status = W_STOPCODE(p->p_xstat); ru = p->p_ru; PROC_SLOCK(p); calcru(p, &ru.ru_utime, &ru.ru_stime); PROC_SUNLOCK(p); PROC_UNLOCK(p); if (((uap->options & SVR4_WNOWAIT)) == 0) { PROC_LOCK(q); sigqueue_take(p->p_ksi); PROC_UNLOCK(q); } *retval = 0; DPRINTF(("jobcontrol %d\n", pid)); return (svr4_setinfo(pid, &ru, status, uap->info)); } PROC_SUNLOCK(p); if (uap->options & SVR4_WCONTINUED && (p->p_flag & P_CONTINUED)) { sx_sunlock(&proctree_lock); if (((uap->options & SVR4_WNOWAIT)) == 0) p->p_flag &= ~P_CONTINUED; pid = p->p_pid; ru = p->p_ru; status = SIGCONT; PROC_SLOCK(p); calcru(p, &ru.ru_utime, &ru.ru_stime); PROC_SUNLOCK(p); PROC_UNLOCK(p); if (((uap->options & SVR4_WNOWAIT)) == 0) { PROC_LOCK(q); sigqueue_take(p->p_ksi); PROC_UNLOCK(q); } *retval = 0; DPRINTF(("jobcontrol %d\n", pid)); return (svr4_setinfo(pid, &ru, status, uap->info)); } PROC_UNLOCK(p); } if (nfound == 0) { sx_sunlock(&proctree_lock); return (ECHILD); } if (uap->options & SVR4_WNOHANG) { sx_sunlock(&proctree_lock); *retval = 0; return (svr4_setinfo(0, NULL, 0, uap->info)); } PROC_LOCK(q); sx_sunlock(&proctree_lock); if (q->p_flag & P_STATCHILD) { q->p_flag &= ~P_STATCHILD; error = 0; } else error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "svr4_wait", 0); PROC_UNLOCK(q); if (error) return error; goto loop; } static void bsd_statfs_to_svr4_statvfs(bfs, sfs) const struct statfs *bfs; struct svr4_statvfs *sfs; { sfs->f_bsize = bfs->f_iosize; /* XXX */ sfs->f_frsize = bfs->f_bsize; sfs->f_blocks = bfs->f_blocks; sfs->f_bfree = bfs->f_bfree; sfs->f_bavail = bfs->f_bavail; sfs->f_files = bfs->f_files; sfs->f_ffree = bfs->f_ffree; sfs->f_favail = bfs->f_ffree; sfs->f_fsid = bfs->f_fsid.val[0]; memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype)); sfs->f_flag = 0; if (bfs->f_flags & MNT_RDONLY) sfs->f_flag |= SVR4_ST_RDONLY; if (bfs->f_flags & MNT_NOSUID) sfs->f_flag |= SVR4_ST_NOSUID; sfs->f_namemax = MAXNAMLEN; memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */ memset(sfs->f_filler, 0, sizeof(sfs->f_filler)); } static void bsd_statfs_to_svr4_statvfs64(bfs, sfs) const struct statfs *bfs; struct svr4_statvfs64 *sfs; { sfs->f_bsize = bfs->f_iosize; /* XXX */ sfs->f_frsize = bfs->f_bsize; sfs->f_blocks = bfs->f_blocks; sfs->f_bfree = bfs->f_bfree; sfs->f_bavail = bfs->f_bavail; sfs->f_files = bfs->f_files; sfs->f_ffree = bfs->f_ffree; sfs->f_favail = bfs->f_ffree; sfs->f_fsid = bfs->f_fsid.val[0]; memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype)); sfs->f_flag = 0; if (bfs->f_flags & MNT_RDONLY) sfs->f_flag |= SVR4_ST_RDONLY; if (bfs->f_flags & MNT_NOSUID) sfs->f_flag |= SVR4_ST_NOSUID; sfs->f_namemax = MAXNAMLEN; memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */ memset(sfs->f_filler, 0, sizeof(sfs->f_filler)); } int svr4_sys_statvfs(td, uap) struct thread *td; struct svr4_sys_statvfs_args *uap; { struct svr4_statvfs sfs; struct statfs bfs; char *path; int error; CHECKALTEXIST(td, uap->path, &path); error = kern_statfs(td, path, UIO_SYSSPACE, &bfs); free(path, M_TEMP); if (error) return (error); bsd_statfs_to_svr4_statvfs(&bfs, &sfs); return copyout(&sfs, uap->fs, sizeof(sfs)); } int svr4_sys_fstatvfs(td, uap) struct thread *td; struct svr4_sys_fstatvfs_args *uap; { struct svr4_statvfs sfs; struct statfs bfs; int error; error = kern_fstatfs(td, uap->fd, &bfs); if (error) return (error); bsd_statfs_to_svr4_statvfs(&bfs, &sfs); return copyout(&sfs, uap->fs, sizeof(sfs)); } int svr4_sys_statvfs64(td, uap) struct thread *td; struct svr4_sys_statvfs64_args *uap; { struct svr4_statvfs64 sfs; struct statfs bfs; char *path; int error; CHECKALTEXIST(td, uap->path, &path); error = kern_statfs(td, path, UIO_SYSSPACE, &bfs); free(path, M_TEMP); if (error) return (error); bsd_statfs_to_svr4_statvfs64(&bfs, &sfs); return copyout(&sfs, uap->fs, sizeof(sfs)); } int svr4_sys_fstatvfs64(td, uap) struct thread *td; struct svr4_sys_fstatvfs64_args *uap; { struct svr4_statvfs64 sfs; struct statfs bfs; int error; error = kern_fstatfs(td, uap->fd, &bfs); if (error) return (error); bsd_statfs_to_svr4_statvfs64(&bfs, &sfs); return copyout(&sfs, uap->fs, sizeof(sfs)); } int svr4_sys_alarm(td, uap) struct thread *td; struct svr4_sys_alarm_args *uap; { struct itimerval itv, oitv; int error; timevalclear(&itv.it_interval); itv.it_value.tv_sec = uap->sec; itv.it_value.tv_usec = 0; error = kern_setitimer(td, ITIMER_REAL, &itv, &oitv); if (error) return (error); if (oitv.it_value.tv_usec != 0) oitv.it_value.tv_sec++; td->td_retval[0] = oitv.it_value.tv_sec; return (0); } int svr4_sys_gettimeofday(td, uap) struct thread *td; struct svr4_sys_gettimeofday_args *uap; { if (uap->tp) { struct timeval atv; microtime(&atv); return copyout(&atv, uap->tp, sizeof (atv)); } return 0; } int svr4_sys_facl(td, uap) struct thread *td; struct svr4_sys_facl_args *uap; { int *retval; retval = td->td_retval; *retval = 0; switch (uap->cmd) { case SVR4_SYS_SETACL: /* We don't support acls on any filesystem */ return ENOSYS; case SVR4_SYS_GETACL: return copyout(retval, &uap->num, sizeof(uap->num)); case SVR4_SYS_GETACLCNT: return 0; default: return EINVAL; } } int svr4_sys_acl(td, uap) struct thread *td; struct svr4_sys_acl_args *uap; { /* XXX: for now the same */ return svr4_sys_facl(td, (struct svr4_sys_facl_args *)uap); } int svr4_sys_auditsys(td, uap) struct thread *td; struct svr4_sys_auditsys_args *uap; { /* * XXX: Big brother is *not* watching. */ return 0; } int svr4_sys_memcntl(td, uap) struct thread *td; struct svr4_sys_memcntl_args *uap; { switch (uap->cmd) { case SVR4_MC_SYNC: { struct msync_args msa; msa.addr = uap->addr; msa.len = uap->len; msa.flags = (int)uap->arg; return sys_msync(td, &msa); } case SVR4_MC_ADVISE: { struct madvise_args maa; maa.addr = uap->addr; maa.len = uap->len; maa.behav = (int)uap->arg; return sys_madvise(td, &maa); } case SVR4_MC_LOCK: case SVR4_MC_UNLOCK: case SVR4_MC_LOCKAS: case SVR4_MC_UNLOCKAS: return EOPNOTSUPP; default: return ENOSYS; } } int svr4_sys_nice(td, uap) struct thread *td; struct svr4_sys_nice_args *uap; { struct setpriority_args ap; int error; ap.which = PRIO_PROCESS; ap.who = 0; ap.prio = uap->prio; if ((error = sys_setpriority(td, &ap)) != 0) return error; /* the cast is stupid, but the structures are the same */ if ((error = sys_getpriority(td, (struct getpriority_args *)&ap)) != 0) return error; return 0; } int svr4_sys_resolvepath(td, uap) struct thread *td; struct svr4_sys_resolvepath_args *uap; { struct nameidata nd; int error, *retval = td->td_retval; unsigned int ncopy; NDINIT(&nd, LOOKUP, NOFOLLOW | SAVENAME, UIO_USERSPACE, uap->path, td); if ((error = namei(&nd)) != 0) return (error); NDFREE(&nd, NDF_NO_FREE_PNBUF); ncopy = min(uap->bufsiz, strlen(nd.ni_cnd.cn_pnbuf) + 1); if ((error = copyout(nd.ni_cnd.cn_pnbuf, uap->buf, ncopy)) != 0) goto bad; *retval = ncopy; bad: NDFREE(&nd, NDF_ONLY_PNBUF); return error; }