/* * Copyright (c) 1995 John Birrell . * Copyright (c) 2006 David Xu . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by John Birrell. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include "thr_private.h" #if defined(_PTHREADS_INVARIANTS) #define MUTEX_INIT_LINK(m) do { \ (m)->m_qe.tqe_prev = NULL; \ (m)->m_qe.tqe_next = NULL; \ } while (0) #define MUTEX_ASSERT_IS_OWNED(m) do { \ if ((m)->m_qe.tqe_prev == NULL) \ PANIC("mutex is not on list"); \ } while (0) #define MUTEX_ASSERT_NOT_OWNED(m) do { \ if (((m)->m_qe.tqe_prev != NULL) || \ ((m)->m_qe.tqe_next != NULL)) \ PANIC("mutex is on list"); \ } while (0) #else #define MUTEX_INIT_LINK(m) #define MUTEX_ASSERT_IS_OWNED(m) #define MUTEX_ASSERT_NOT_OWNED(m) #endif /* * Prototypes */ static int mutex_self_trylock(struct pthread *, pthread_mutex_t); static int mutex_self_lock(struct pthread *, pthread_mutex_t, const struct timespec *abstime); static int mutex_unlock_common(pthread_mutex_t *, int); __weak_reference(__pthread_mutex_init, pthread_mutex_init); __weak_reference(__pthread_mutex_lock, pthread_mutex_lock); __weak_reference(__pthread_mutex_timedlock, pthread_mutex_timedlock); __weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock); /* Single underscore versions provided for libc internal usage: */ /* No difference between libc and application usage of these: */ __weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy); __weak_reference(_pthread_mutex_unlock, pthread_mutex_unlock); __weak_reference(_pthread_mutex_getprioceiling, pthread_mutex_getprioceiling); __weak_reference(_pthread_mutex_setprioceiling, pthread_mutex_setprioceiling); static int mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutex_attr, int private) { const struct pthread_mutex_attr *attr; struct pthread_mutex *pmutex; if (mutex_attr == NULL) { attr = &_pthread_mutexattr_default; } else { attr = *mutex_attr; if (attr->m_type < PTHREAD_MUTEX_ERRORCHECK || attr->m_type >= PTHREAD_MUTEX_TYPE_MAX) return (EINVAL); if (attr->m_protocol < PTHREAD_PRIO_NONE || attr->m_protocol > PTHREAD_PRIO_PROTECT) return (EINVAL); } if ((pmutex = (pthread_mutex_t) malloc(sizeof(struct pthread_mutex))) == NULL) return (ENOMEM); _thr_umtx_init(&pmutex->m_lock); pmutex->m_type = attr->m_type; pmutex->m_protocol = attr->m_protocol; TAILQ_INIT(&pmutex->m_queue); pmutex->m_owner = NULL; pmutex->m_flags = attr->m_flags | MUTEX_FLAGS_INITED; if (private) pmutex->m_flags |= MUTEX_FLAGS_PRIVATE; pmutex->m_count = 0; pmutex->m_refcount = 0; if (attr->m_protocol == PTHREAD_PRIO_PROTECT) pmutex->m_prio = attr->m_ceiling; else pmutex->m_prio = -1; pmutex->m_saved_prio = 0; MUTEX_INIT_LINK(pmutex); *mutex = pmutex; return (0); } static int init_static(struct pthread *thread, pthread_mutex_t *mutex) { int ret; THR_LOCK_ACQUIRE(thread, &_mutex_static_lock); if (*mutex == NULL) ret = mutex_init(mutex, NULL, 0); else ret = 0; THR_LOCK_RELEASE(thread, &_mutex_static_lock); return (ret); } static int init_static_private(struct pthread *thread, pthread_mutex_t *mutex) { int ret; THR_LOCK_ACQUIRE(thread, &_mutex_static_lock); if (*mutex == NULL) ret = mutex_init(mutex, NULL, 1); else ret = 0; THR_LOCK_RELEASE(thread, &_mutex_static_lock); return (ret); } int _pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutex_attr) { return mutex_init(mutex, mutex_attr, 1); } int __pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutex_attr) { return mutex_init(mutex, mutex_attr, 0); } int _mutex_reinit(pthread_mutex_t *mutex) { _thr_umtx_init(&(*mutex)->m_lock); TAILQ_INIT(&(*mutex)->m_queue); MUTEX_INIT_LINK(*mutex); (*mutex)->m_owner = NULL; (*mutex)->m_count = 0; (*mutex)->m_refcount = 0; (*mutex)->m_prio = 0; (*mutex)->m_saved_prio = 0; return (0); } void _mutex_fork(struct pthread *curthread) { struct pthread_mutex *m; /* * Fix mutex ownership for child process. * note that process shared mutex should not * be inherited because owner is forking thread * which is in parent process, they should be * removed from the owned mutex list, current, * process shared mutex is not supported, so I * am not worried. */ TAILQ_FOREACH(m, &curthread->mutexq, m_qe) m->m_lock = (umtx_t)curthread->tid; } int _pthread_mutex_destroy(pthread_mutex_t *mutex) { struct pthread *curthread = _get_curthread(); pthread_mutex_t m; int ret = 0; if (__predict_false(*mutex == NULL)) ret = EINVAL; else { /* * Try to lock the mutex structure, we only need to * try once, if failed, the mutex is in used. */ ret = THR_UMTX_TRYLOCK(curthread, &(*mutex)->m_lock); if (ret) return (ret); /* * Check mutex other fields to see if this mutex is * in use. Mostly for prority mutex types, or there * are condition variables referencing it. */ if (((*mutex)->m_owner != NULL) || (TAILQ_FIRST(&(*mutex)->m_queue) != NULL) || ((*mutex)->m_refcount != 0)) { THR_UMTX_UNLOCK(curthread, &(*mutex)->m_lock); ret = EBUSY; } else { /* * Save a pointer to the mutex so it can be free'd * and set the caller's pointer to NULL. */ m = *mutex; *mutex = NULL; THR_UMTX_UNLOCK(curthread, &m->m_lock); MUTEX_ASSERT_NOT_OWNED(m); free(m); } } return (ret); } static int mutex_trylock_common(struct pthread *curthread, pthread_mutex_t *mutex) { struct pthread_mutex *m; int ret; m = *mutex; ret = THR_UMTX_TRYLOCK(curthread, &m->m_lock); if (ret == 0) { m->m_owner = curthread; /* Add to the list of owned mutexes. */ MUTEX_ASSERT_NOT_OWNED(m); TAILQ_INSERT_TAIL(&curthread->mutexq, m, m_qe); } else if (m->m_owner == curthread) { ret = mutex_self_trylock(curthread, m); } /* else {} */ return (ret); } int __pthread_mutex_trylock(pthread_mutex_t *mutex) { struct pthread *curthread = _get_curthread(); int ret = 0; /* * If the mutex is statically initialized, perform the dynamic * initialization: */ if ((*mutex != NULL) || ((ret = init_static(curthread, mutex)) == 0)) ret = mutex_trylock_common(curthread, mutex); return (ret); } int _pthread_mutex_trylock(pthread_mutex_t *mutex) { struct pthread *curthread = _get_curthread(); int ret = 0; /* * If the mutex is statically initialized, perform the dynamic * initialization marking the mutex private (delete safe): */ if ((*mutex != NULL) || ((ret = init_static_private(curthread, mutex)) == 0)) ret = mutex_trylock_common(curthread, mutex); return (ret); } static int mutex_lock_common(struct pthread *curthread, pthread_mutex_t *mutex, const struct timespec * abstime) { struct timespec ts, ts2; struct pthread_mutex *m; int ret = 0; m = *mutex; ret = THR_UMTX_TRYLOCK(curthread, &m->m_lock); if (ret == 0) { m->m_owner = curthread; /* Add to the list of owned mutexes: */ MUTEX_ASSERT_NOT_OWNED(m); TAILQ_INSERT_TAIL(&curthread->mutexq, m, m_qe); } else if (m->m_owner == curthread) { ret = mutex_self_lock(curthread, m, abstime); } else { if (abstime == NULL) { THR_UMTX_LOCK(curthread, &m->m_lock); ret = 0; } else { clock_gettime(CLOCK_REALTIME, &ts); TIMESPEC_SUB(&ts2, abstime, &ts); ret = THR_UMTX_TIMEDLOCK(curthread, &m->m_lock, &ts2); /* * Timed out wait is not restarted if * it was interrupted, not worth to do it. */ if (ret == EINTR) ret = ETIMEDOUT; } if (ret == 0) { m->m_owner = curthread; /* Add to the list of owned mutexes: */ MUTEX_ASSERT_NOT_OWNED(m); TAILQ_INSERT_TAIL(&curthread->mutexq, m, m_qe); } } return (ret); } int __pthread_mutex_lock(pthread_mutex_t *m) { struct pthread *curthread; int ret = 0; _thr_check_init(); curthread = _get_curthread(); /* * If the mutex is statically initialized, perform the dynamic * initialization: */ if ((*m != NULL) || ((ret = init_static(curthread, m)) == 0)) ret = mutex_lock_common(curthread, m, NULL); return (ret); } int _pthread_mutex_lock(pthread_mutex_t *m) { struct pthread *curthread; int ret = 0; _thr_check_init(); curthread = _get_curthread(); /* * If the mutex is statically initialized, perform the dynamic * initialization marking it private (delete safe): */ if ((*m != NULL) || ((ret = init_static_private(curthread, m)) == 0)) ret = mutex_lock_common(curthread, m, NULL); return (ret); } int __pthread_mutex_timedlock(pthread_mutex_t *m, const struct timespec *abstime) { struct pthread *curthread; int ret = 0; _thr_check_init(); if (abstime != NULL && (abstime->tv_sec < 0 || abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)) return (EINVAL); curthread = _get_curthread(); /* * If the mutex is statically initialized, perform the dynamic * initialization: */ if ((*m != NULL) || ((ret = init_static(curthread, m)) == 0)) ret = mutex_lock_common(curthread, m, abstime); return (ret); } int _pthread_mutex_timedlock(pthread_mutex_t *m, const struct timespec *abstime) { struct pthread *curthread; int ret = 0; _thr_check_init(); if (abstime != NULL && (abstime->tv_sec < 0 || abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)) return (EINVAL); curthread = _get_curthread(); /* * If the mutex is statically initialized, perform the dynamic * initialization marking it private (delete safe): */ if ((*m != NULL) || ((ret = init_static_private(curthread, m)) == 0)) ret = mutex_lock_common(curthread, m, abstime); return (ret); } int _pthread_mutex_unlock(pthread_mutex_t *m) { return (mutex_unlock_common(m, /* add reference */ 0)); } int _mutex_cv_unlock(pthread_mutex_t *m) { return (mutex_unlock_common(m, /* add reference */ 1)); } int _mutex_cv_lock(pthread_mutex_t *m) { int ret; ret = mutex_lock_common(_get_curthread(), m, NULL); if (ret == 0) (*m)->m_refcount--; return (ret); } static int mutex_self_trylock(struct pthread *curthread, pthread_mutex_t m) { int ret; switch (m->m_type) { case PTHREAD_MUTEX_ERRORCHECK: case PTHREAD_MUTEX_NORMAL: ret = EBUSY; break; case PTHREAD_MUTEX_RECURSIVE: /* Increment the lock count: */ if (m->m_count + 1 > 0) { m->m_count++; ret = 0; } else ret = EAGAIN; break; default: /* Trap invalid mutex types; */ ret = EINVAL; } return (ret); } static int mutex_self_lock(struct pthread *curthread, pthread_mutex_t m, const struct timespec *abstime) { struct timespec ts1, ts2; int ret; switch (m->m_type) { case PTHREAD_MUTEX_ERRORCHECK: if (abstime) { clock_gettime(CLOCK_REALTIME, &ts1); TIMESPEC_SUB(&ts2, abstime, &ts1); __sys_nanosleep(&ts2, NULL); ret = ETIMEDOUT; } else { /* * POSIX specifies that mutexes should return * EDEADLK if a recursive lock is detected. */ ret = EDEADLK; } break; case PTHREAD_MUTEX_NORMAL: /* * What SS2 define as a 'normal' mutex. Intentionally * deadlock on attempts to get a lock you already own. */ ret = 0; if (abstime) { clock_gettime(CLOCK_REALTIME, &ts1); TIMESPEC_SUB(&ts2, abstime, &ts1); __sys_nanosleep(&ts2, NULL); ret = ETIMEDOUT; } else { ts1.tv_sec = 30; ts1.tv_nsec = 0; for (;;) __sys_nanosleep(&ts1, NULL); } break; case PTHREAD_MUTEX_RECURSIVE: /* Increment the lock count: */ if (m->m_count + 1 > 0) { m->m_count++; ret = 0; } else ret = EAGAIN; break; default: /* Trap invalid mutex types; */ ret = EINVAL; } return (ret); } static int mutex_unlock_common(pthread_mutex_t *mutex, int add_reference) { struct pthread *curthread = _get_curthread(); struct pthread_mutex *m; int ret = 0; if (__predict_false((m = *mutex) == NULL)) return (EINVAL); /* * Check if the running thread is not the owner of the mutex. */ if (__predict_false(m->m_owner != curthread)) { ret = EPERM; } else if (__predict_false( m->m_type == PTHREAD_MUTEX_RECURSIVE && m->m_count > 0)) { m->m_count--; if (add_reference) m->m_refcount++; } else { /* * Clear the count in case this is a recursive mutex. */ m->m_count = 0; m->m_owner = NULL; /* Remove the mutex from the threads queue. */ MUTEX_ASSERT_IS_OWNED(m); TAILQ_REMOVE(&curthread->mutexq, m, m_qe); MUTEX_INIT_LINK(m); if (add_reference) m->m_refcount++; THR_UMTX_UNLOCK(curthread, &m->m_lock); } return (ret); } void _mutex_unlock_private(pthread_t pthread) { struct pthread_mutex *m, *m_next; for (m = TAILQ_FIRST(&pthread->mutexq); m != NULL; m = m_next) { m_next = TAILQ_NEXT(m, m_qe); if ((m->m_flags & MUTEX_FLAGS_PRIVATE) != 0) _pthread_mutex_unlock(&m); } } int _pthread_mutex_getprioceiling(pthread_mutex_t *mutex, int *prioceiling) { int ret; if (*mutex == NULL) ret = EINVAL; else if ((*mutex)->m_protocol != PTHREAD_PRIO_PROTECT) ret = EINVAL; else ret = (*mutex)->m_prio; return(ret); } int _pthread_mutex_setprioceiling(pthread_mutex_t *mutex, int prioceiling, int *old_ceiling) { int ret = 0; int tmp; if (*mutex == NULL) ret = EINVAL; else if ((*mutex)->m_protocol != PTHREAD_PRIO_PROTECT) ret = EINVAL; else if ((ret = pthread_mutex_lock(mutex)) == 0) { tmp = (*mutex)->m_prio; (*mutex)->m_prio = prioceiling; ret = pthread_mutex_unlock(mutex); /* Return the old ceiling. */ *old_ceiling = tmp; } return(ret); }