/* $FreeBSD$ */ /*- * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef USB_GLOBAL_INCLUDE_FILE #include USB_GLOBAL_INCLUDE_FILE #else #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define USB_DEBUG_VAR usb_debug #include #include #include #include #include #include #include #include #include #include #endif /* USB_GLOBAL_INCLUDE_FILE */ struct usb_std_packet_size { struct { uint16_t min; /* inclusive */ uint16_t max; /* inclusive */ } range; uint16_t fixed[4]; }; static usb_callback_t usb_request_callback; static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = { /* This transfer is used for generic control endpoint transfers */ [0] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control endpoint */ .direction = UE_DIR_ANY, .bufsize = USB_EP0_BUFSIZE, /* bytes */ .flags = {.proxy_buffer = 1,}, .callback = &usb_request_callback, .usb_mode = USB_MODE_DUAL, /* both modes */ }, /* This transfer is used for generic clear stall only */ [1] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .bufsize = sizeof(struct usb_device_request), .callback = &usb_do_clear_stall_callback, .timeout = 1000, /* 1 second */ .interval = 50, /* 50ms */ .usb_mode = USB_MODE_HOST, }, }; /* function prototypes */ static void usbd_update_max_frame_size(struct usb_xfer *); static void usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t); static void usbd_control_transfer_init(struct usb_xfer *); static int usbd_setup_ctrl_transfer(struct usb_xfer *); static void usb_callback_proc(struct usb_proc_msg *); static void usbd_callback_ss_done_defer(struct usb_xfer *); static void usbd_callback_wrapper(struct usb_xfer_queue *); static void usbd_transfer_start_cb(void *); static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *); static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr, uint8_t type, enum usb_dev_speed speed); /*------------------------------------------------------------------------* * usb_request_callback *------------------------------------------------------------------------*/ static void usb_request_callback(struct usb_xfer *xfer, usb_error_t error) { if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) usb_handle_request_callback(xfer, error); else usbd_do_request_callback(xfer, error); } /*------------------------------------------------------------------------* * usbd_update_max_frame_size * * This function updates the maximum frame size, hence high speed USB * can transfer multiple consecutive packets. *------------------------------------------------------------------------*/ static void usbd_update_max_frame_size(struct usb_xfer *xfer) { /* compute maximum frame size */ /* this computation should not overflow 16-bit */ /* max = 15 * 1024 */ xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count; } /*------------------------------------------------------------------------* * usbd_get_dma_delay * * The following function is called when we need to * synchronize with DMA hardware. * * Returns: * 0: no DMA delay required * Else: milliseconds of DMA delay *------------------------------------------------------------------------*/ usb_timeout_t usbd_get_dma_delay(struct usb_device *udev) { const struct usb_bus_methods *mtod; uint32_t temp; mtod = udev->bus->methods; temp = 0; if (mtod->get_dma_delay) { (mtod->get_dma_delay) (udev, &temp); /* * Round up and convert to milliseconds. Note that we use * 1024 milliseconds per second. to save a division. */ temp += 0x3FF; temp /= 0x400; } return (temp); } /*------------------------------------------------------------------------* * usbd_transfer_setup_sub_malloc * * This function will allocate one or more DMA'able memory chunks * according to "size", "align" and "count" arguments. "ppc" is * pointed to a linear array of USB page caches afterwards. * * If the "align" argument is equal to "1" a non-contiguous allocation * can happen. Else if the "align" argument is greater than "1", the * allocation will always be contiguous in memory. * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ #if USB_HAVE_BUSDMA uint8_t usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm, struct usb_page_cache **ppc, usb_size_t size, usb_size_t align, usb_size_t count) { struct usb_page_cache *pc; struct usb_page *pg; void *buf; usb_size_t n_dma_pc; usb_size_t n_dma_pg; usb_size_t n_obj; usb_size_t x; usb_size_t y; usb_size_t r; usb_size_t z; USB_ASSERT(align > 0, ("Invalid alignment, 0x%08x\n", align)); USB_ASSERT(size > 0, ("Invalid size = 0\n")); if (count == 0) { return (0); /* nothing to allocate */ } /* * Make sure that the size is aligned properly. */ size = -((-size) & (-align)); /* * Try multi-allocation chunks to reduce the number of DMA * allocations, hence DMA allocations are slow. */ if (align == 1) { /* special case - non-cached multi page DMA memory */ n_dma_pc = count; n_dma_pg = (2 + (size / USB_PAGE_SIZE)); n_obj = 1; } else if (size >= USB_PAGE_SIZE) { n_dma_pc = count; n_dma_pg = 1; n_obj = 1; } else { /* compute number of objects per page */ #ifdef USB_DMA_SINGLE_ALLOC n_obj = 1; #else n_obj = (USB_PAGE_SIZE / size); #endif /* * Compute number of DMA chunks, rounded up * to nearest one: */ n_dma_pc = ((count + n_obj - 1) / n_obj); n_dma_pg = 1; } /* * DMA memory is allocated once, but mapped twice. That's why * there is one list for auto-free and another list for * non-auto-free which only holds the mapping and not the * allocation. */ if (parm->buf == NULL) { /* reserve memory (auto-free) */ parm->dma_page_ptr += n_dma_pc * n_dma_pg; parm->dma_page_cache_ptr += n_dma_pc; /* reserve memory (no-auto-free) */ parm->dma_page_ptr += count * n_dma_pg; parm->xfer_page_cache_ptr += count; return (0); } for (x = 0; x != n_dma_pc; x++) { /* need to initialize the page cache */ parm->dma_page_cache_ptr[x].tag_parent = &parm->curr_xfer->xroot->dma_parent_tag; } for (x = 0; x != count; x++) { /* need to initialize the page cache */ parm->xfer_page_cache_ptr[x].tag_parent = &parm->curr_xfer->xroot->dma_parent_tag; } if (ppc != NULL) { if (n_obj != 1) *ppc = parm->xfer_page_cache_ptr; else *ppc = parm->dma_page_cache_ptr; } r = count; /* set remainder count */ z = n_obj * size; /* set allocation size */ pc = parm->xfer_page_cache_ptr; pg = parm->dma_page_ptr; if (n_obj == 1) { /* * Avoid mapping memory twice if only a single object * should be allocated per page cache: */ for (x = 0; x != n_dma_pc; x++) { if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, pg, z, align)) { return (1); /* failure */ } /* Make room for one DMA page cache and "n_dma_pg" pages */ parm->dma_page_cache_ptr++; pg += n_dma_pg; } } else { for (x = 0; x != n_dma_pc; x++) { if (r < n_obj) { /* compute last remainder */ z = r * size; n_obj = r; } if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, pg, z, align)) { return (1); /* failure */ } /* Set beginning of current buffer */ buf = parm->dma_page_cache_ptr->buffer; /* Make room for one DMA page cache and "n_dma_pg" pages */ parm->dma_page_cache_ptr++; pg += n_dma_pg; for (y = 0; (y != n_obj); y++, r--, pc++, pg += n_dma_pg) { /* Load sub-chunk into DMA */ if (usb_pc_dmamap_create(pc, size)) { return (1); /* failure */ } pc->buffer = USB_ADD_BYTES(buf, y * size); pc->page_start = pg; mtx_lock(pc->tag_parent->mtx); if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) { mtx_unlock(pc->tag_parent->mtx); return (1); /* failure */ } mtx_unlock(pc->tag_parent->mtx); } } } parm->xfer_page_cache_ptr = pc; parm->dma_page_ptr = pg; return (0); } #endif /*------------------------------------------------------------------------* * usbd_transfer_setup_sub - transfer setup subroutine * * This function must be called from the "xfer_setup" callback of the * USB Host or Device controller driver when setting up an USB * transfer. This function will setup correct packet sizes, buffer * sizes, flags and more, that are stored in the "usb_xfer" * structure. *------------------------------------------------------------------------*/ void usbd_transfer_setup_sub(struct usb_setup_params *parm) { enum { REQ_SIZE = 8, MIN_PKT = 8, }; struct usb_xfer *xfer = parm->curr_xfer; const struct usb_config *setup = parm->curr_setup; struct usb_endpoint_ss_comp_descriptor *ecomp; struct usb_endpoint_descriptor *edesc; struct usb_std_packet_size std_size; usb_frcount_t n_frlengths; usb_frcount_t n_frbuffers; usb_frcount_t x; uint16_t maxp_old; uint8_t type; uint8_t zmps; /* * Sanity check. The following parameters must be initialized before * calling this function. */ if ((parm->hc_max_packet_size == 0) || (parm->hc_max_packet_count == 0) || (parm->hc_max_frame_size == 0)) { parm->err = USB_ERR_INVAL; goto done; } edesc = xfer->endpoint->edesc; ecomp = xfer->endpoint->ecomp; type = (edesc->bmAttributes & UE_XFERTYPE); xfer->flags = setup->flags; xfer->nframes = setup->frames; xfer->timeout = setup->timeout; xfer->callback = setup->callback; xfer->interval = setup->interval; xfer->endpointno = edesc->bEndpointAddress; xfer->max_packet_size = UGETW(edesc->wMaxPacketSize); xfer->max_packet_count = 1; /* make a shadow copy: */ xfer->flags_int.usb_mode = parm->udev->flags.usb_mode; parm->bufsize = setup->bufsize; switch (parm->speed) { case USB_SPEED_HIGH: switch (type) { case UE_ISOCHRONOUS: case UE_INTERRUPT: xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; /* check for invalid max packet count */ if (xfer->max_packet_count > 3) xfer->max_packet_count = 3; break; default: break; } xfer->max_packet_size &= 0x7FF; break; case USB_SPEED_SUPER: xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; if (ecomp != NULL) xfer->max_packet_count += ecomp->bMaxBurst; if ((xfer->max_packet_count == 0) || (xfer->max_packet_count > 16)) xfer->max_packet_count = 16; switch (type) { case UE_CONTROL: xfer->max_packet_count = 1; break; case UE_ISOCHRONOUS: if (ecomp != NULL) { uint8_t mult; mult = UE_GET_SS_ISO_MULT( ecomp->bmAttributes) + 1; if (mult > 3) mult = 3; xfer->max_packet_count *= mult; } break; default: break; } xfer->max_packet_size &= 0x7FF; break; default: break; } /* range check "max_packet_count" */ if (xfer->max_packet_count > parm->hc_max_packet_count) { xfer->max_packet_count = parm->hc_max_packet_count; } /* store max packet size value before filtering */ maxp_old = xfer->max_packet_size; /* filter "wMaxPacketSize" according to HC capabilities */ if ((xfer->max_packet_size > parm->hc_max_packet_size) || (xfer->max_packet_size == 0)) { xfer->max_packet_size = parm->hc_max_packet_size; } /* filter "wMaxPacketSize" according to standard sizes */ usbd_get_std_packet_size(&std_size, type, parm->speed); if (std_size.range.min || std_size.range.max) { if (xfer->max_packet_size < std_size.range.min) { xfer->max_packet_size = std_size.range.min; } if (xfer->max_packet_size > std_size.range.max) { xfer->max_packet_size = std_size.range.max; } } else { if (xfer->max_packet_size >= std_size.fixed[3]) { xfer->max_packet_size = std_size.fixed[3]; } else if (xfer->max_packet_size >= std_size.fixed[2]) { xfer->max_packet_size = std_size.fixed[2]; } else if (xfer->max_packet_size >= std_size.fixed[1]) { xfer->max_packet_size = std_size.fixed[1]; } else { /* only one possibility left */ xfer->max_packet_size = std_size.fixed[0]; } } /* * Check if the max packet size was outside its allowed range * and clamped to a valid value: */ if (maxp_old != xfer->max_packet_size) xfer->flags_int.maxp_was_clamped = 1; /* compute "max_frame_size" */ usbd_update_max_frame_size(xfer); /* check interrupt interval and transfer pre-delay */ if (type == UE_ISOCHRONOUS) { uint16_t frame_limit; xfer->interval = 0; /* not used, must be zero */ xfer->flags_int.isochronous_xfr = 1; /* set flag */ if (xfer->timeout == 0) { /* * set a default timeout in * case something goes wrong! */ xfer->timeout = 1000 / 4; } switch (parm->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER; xfer->fps_shift = 0; break; default: frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER; xfer->fps_shift = edesc->bInterval; if (xfer->fps_shift > 0) xfer->fps_shift--; if (xfer->fps_shift > 3) xfer->fps_shift = 3; if (xfer->flags.pre_scale_frames != 0) xfer->nframes <<= (3 - xfer->fps_shift); break; } if (xfer->nframes > frame_limit) { /* * this is not going to work * cross hardware */ parm->err = USB_ERR_INVAL; goto done; } if (xfer->nframes == 0) { /* * this is not a valid value */ parm->err = USB_ERR_ZERO_NFRAMES; goto done; } } else { /* * If a value is specified use that else check the * endpoint descriptor! */ if (type == UE_INTERRUPT) { uint32_t temp; if (xfer->interval == 0) { xfer->interval = edesc->bInterval; switch (parm->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: break; default: /* 125us -> 1ms */ if (xfer->interval < 4) xfer->interval = 1; else if (xfer->interval > 16) xfer->interval = (1 << (16 - 4)); else xfer->interval = (1 << (xfer->interval - 4)); break; } } if (xfer->interval == 0) { /* * One millisecond is the smallest * interval we support: */ xfer->interval = 1; } xfer->fps_shift = 0; temp = 1; while ((temp != 0) && (temp < xfer->interval)) { xfer->fps_shift++; temp *= 2; } switch (parm->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: break; default: xfer->fps_shift += 3; break; } } } /* * NOTE: we do not allow "max_packet_size" or "max_frame_size" * to be equal to zero when setting up USB transfers, hence * this leads to alot of extra code in the USB kernel. */ if ((xfer->max_frame_size == 0) || (xfer->max_packet_size == 0)) { zmps = 1; if ((parm->bufsize <= MIN_PKT) && (type != UE_CONTROL) && (type != UE_BULK)) { /* workaround */ xfer->max_packet_size = MIN_PKT; xfer->max_packet_count = 1; parm->bufsize = 0; /* automatic setup length */ usbd_update_max_frame_size(xfer); } else { parm->err = USB_ERR_ZERO_MAXP; goto done; } } else { zmps = 0; } /* * check if we should setup a default * length: */ if (parm->bufsize == 0) { parm->bufsize = xfer->max_frame_size; if (type == UE_ISOCHRONOUS) { parm->bufsize *= xfer->nframes; } } /* * check if we are about to setup a proxy * type of buffer: */ if (xfer->flags.proxy_buffer) { /* round bufsize up */ parm->bufsize += (xfer->max_frame_size - 1); if (parm->bufsize < xfer->max_frame_size) { /* length wrapped around */ parm->err = USB_ERR_INVAL; goto done; } /* subtract remainder */ parm->bufsize -= (parm->bufsize % xfer->max_frame_size); /* add length of USB device request structure, if any */ if (type == UE_CONTROL) { parm->bufsize += REQ_SIZE; /* SETUP message */ } } xfer->max_data_length = parm->bufsize; /* Setup "n_frlengths" and "n_frbuffers" */ if (type == UE_ISOCHRONOUS) { n_frlengths = xfer->nframes; n_frbuffers = 1; } else { if (type == UE_CONTROL) { xfer->flags_int.control_xfr = 1; if (xfer->nframes == 0) { if (parm->bufsize <= REQ_SIZE) { /* * there will never be any data * stage */ xfer->nframes = 1; } else { xfer->nframes = 2; } } } else { if (xfer->nframes == 0) { xfer->nframes = 1; } } n_frlengths = xfer->nframes; n_frbuffers = xfer->nframes; } /* * check if we have room for the * USB device request structure: */ if (type == UE_CONTROL) { if (xfer->max_data_length < REQ_SIZE) { /* length wrapped around or too small bufsize */ parm->err = USB_ERR_INVAL; goto done; } xfer->max_data_length -= REQ_SIZE; } /* * Setup "frlengths" and shadow "frlengths" for keeping the * initial frame lengths when a USB transfer is complete. This * information is useful when computing isochronous offsets. */ xfer->frlengths = parm->xfer_length_ptr; parm->xfer_length_ptr += 2 * n_frlengths; /* setup "frbuffers" */ xfer->frbuffers = parm->xfer_page_cache_ptr; parm->xfer_page_cache_ptr += n_frbuffers; /* initialize max frame count */ xfer->max_frame_count = xfer->nframes; /* * check if we need to setup * a local buffer: */ if (!xfer->flags.ext_buffer) { #if USB_HAVE_BUSDMA struct usb_page_search page_info; struct usb_page_cache *pc; if (usbd_transfer_setup_sub_malloc(parm, &pc, parm->bufsize, 1, 1)) { parm->err = USB_ERR_NOMEM; } else if (parm->buf != NULL) { usbd_get_page(pc, 0, &page_info); xfer->local_buffer = page_info.buffer; usbd_xfer_set_frame_offset(xfer, 0, 0); if ((type == UE_CONTROL) && (n_frbuffers > 1)) { usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); } } #else /* align data */ parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); if (parm->buf != NULL) { xfer->local_buffer = USB_ADD_BYTES(parm->buf, parm->size[0]); usbd_xfer_set_frame_offset(xfer, 0, 0); if ((type == UE_CONTROL) && (n_frbuffers > 1)) { usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); } } parm->size[0] += parm->bufsize; /* align data again */ parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); #endif } /* * Compute maximum buffer size */ if (parm->bufsize_max < parm->bufsize) { parm->bufsize_max = parm->bufsize; } #if USB_HAVE_BUSDMA if (xfer->flags_int.bdma_enable) { /* * Setup "dma_page_ptr". * * Proof for formula below: * * Assume there are three USB frames having length "a", "b" and * "c". These USB frames will at maximum need "z" * "usb_page" structures. "z" is given by: * * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) + * ((c / USB_PAGE_SIZE) + 2); * * Constraining "a", "b" and "c" like this: * * (a + b + c) <= parm->bufsize * * We know that: * * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2)); * * Here is the general formula: */ xfer->dma_page_ptr = parm->dma_page_ptr; parm->dma_page_ptr += (2 * n_frbuffers); parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE); } #endif if (zmps) { /* correct maximum data length */ xfer->max_data_length = 0; } /* subtract USB frame remainder from "hc_max_frame_size" */ xfer->max_hc_frame_size = (parm->hc_max_frame_size - (parm->hc_max_frame_size % xfer->max_frame_size)); if (xfer->max_hc_frame_size == 0) { parm->err = USB_ERR_INVAL; goto done; } /* initialize frame buffers */ if (parm->buf) { for (x = 0; x != n_frbuffers; x++) { xfer->frbuffers[x].tag_parent = &xfer->xroot->dma_parent_tag; #if USB_HAVE_BUSDMA if (xfer->flags_int.bdma_enable && (parm->bufsize_max > 0)) { if (usb_pc_dmamap_create( xfer->frbuffers + x, parm->bufsize_max)) { parm->err = USB_ERR_NOMEM; goto done; } } #endif } } done: if (parm->err) { /* * Set some dummy values so that we avoid division by zero: */ xfer->max_hc_frame_size = 1; xfer->max_frame_size = 1; xfer->max_packet_size = 1; xfer->max_data_length = 0; xfer->nframes = 0; xfer->max_frame_count = 0; } } static uint8_t usbd_transfer_setup_has_bulk(const struct usb_config *setup_start, uint16_t n_setup) { while (n_setup--) { uint8_t type = setup_start[n_setup].type; if (type == UE_BULK || type == UE_BULK_INTR || type == UE_TYPE_ANY) return (1); } return (0); } /*------------------------------------------------------------------------* * usbd_transfer_setup - setup an array of USB transfers * * NOTE: You must always call "usbd_transfer_unsetup" after calling * "usbd_transfer_setup" if success was returned. * * The idea is that the USB device driver should pre-allocate all its * transfers by one call to this function. * * Return values: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ usb_error_t usbd_transfer_setup(struct usb_device *udev, const uint8_t *ifaces, struct usb_xfer **ppxfer, const struct usb_config *setup_start, uint16_t n_setup, void *priv_sc, struct mtx *xfer_mtx) { const struct usb_config *setup_end = setup_start + n_setup; const struct usb_config *setup; struct usb_setup_params *parm; struct usb_endpoint *ep; struct usb_xfer_root *info; struct usb_xfer *xfer; void *buf = NULL; usb_error_t error = 0; uint16_t n; uint16_t refcount; uint8_t do_unlock; WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "usbd_transfer_setup can sleep!"); /* do some checking first */ if (n_setup == 0) { DPRINTFN(6, "setup array has zero length!\n"); return (USB_ERR_INVAL); } if (ifaces == NULL) { DPRINTFN(6, "ifaces array is NULL!\n"); return (USB_ERR_INVAL); } if (xfer_mtx == NULL) { DPRINTFN(6, "using global lock\n"); xfer_mtx = &Giant; } /* more sanity checks */ for (setup = setup_start, n = 0; setup != setup_end; setup++, n++) { if (setup->bufsize == (usb_frlength_t)-1) { error = USB_ERR_BAD_BUFSIZE; DPRINTF("invalid bufsize\n"); } if (setup->callback == NULL) { error = USB_ERR_NO_CALLBACK; DPRINTF("no callback\n"); } ppxfer[n] = NULL; } if (error) return (error); /* Protect scratch area */ do_unlock = usbd_enum_lock(udev); refcount = 0; info = NULL; parm = &udev->scratch.xfer_setup[0].parm; memset(parm, 0, sizeof(*parm)); parm->udev = udev; parm->speed = usbd_get_speed(udev); parm->hc_max_packet_count = 1; if (parm->speed >= USB_SPEED_MAX) { parm->err = USB_ERR_INVAL; goto done; } /* setup all transfers */ while (1) { if (buf) { /* * Initialize the "usb_xfer_root" structure, * which is common for all our USB transfers. */ info = USB_ADD_BYTES(buf, 0); info->memory_base = buf; info->memory_size = parm->size[0]; #if USB_HAVE_BUSDMA info->dma_page_cache_start = USB_ADD_BYTES(buf, parm->size[4]); info->dma_page_cache_end = USB_ADD_BYTES(buf, parm->size[5]); #endif info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm->size[5]); info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm->size[2]); cv_init(&info->cv_drain, "WDRAIN"); info->xfer_mtx = xfer_mtx; #if USB_HAVE_BUSDMA usb_dma_tag_setup(&info->dma_parent_tag, parm->dma_tag_p, udev->bus->dma_parent_tag[0].tag, xfer_mtx, &usb_bdma_done_event, udev->bus->dma_bits, parm->dma_tag_max); #endif info->bus = udev->bus; info->udev = udev; TAILQ_INIT(&info->done_q.head); info->done_q.command = &usbd_callback_wrapper; #if USB_HAVE_BUSDMA TAILQ_INIT(&info->dma_q.head); info->dma_q.command = &usb_bdma_work_loop; #endif info->done_m[0].hdr.pm_callback = &usb_callback_proc; info->done_m[0].xroot = info; info->done_m[1].hdr.pm_callback = &usb_callback_proc; info->done_m[1].xroot = info; /* * In device side mode control endpoint * requests need to run from a separate * context, else there is a chance of * deadlock! */ if (setup_start == usb_control_ep_cfg) info->done_p = USB_BUS_CONTROL_XFER_PROC(udev->bus); else if (xfer_mtx == &Giant) info->done_p = USB_BUS_GIANT_PROC(udev->bus); else if (usbd_transfer_setup_has_bulk(setup_start, n_setup)) info->done_p = USB_BUS_NON_GIANT_BULK_PROC(udev->bus); else info->done_p = USB_BUS_NON_GIANT_ISOC_PROC(udev->bus); } /* reset sizes */ parm->size[0] = 0; parm->buf = buf; parm->size[0] += sizeof(info[0]); for (setup = setup_start, n = 0; setup != setup_end; setup++, n++) { /* skip USB transfers without callbacks: */ if (setup->callback == NULL) { continue; } /* see if there is a matching endpoint */ ep = usbd_get_endpoint(udev, ifaces[setup->if_index], setup); /* * Check that the USB PIPE is valid and that * the endpoint mode is proper. * * Make sure we don't allocate a streams * transfer when such a combination is not * valid. */ if ((ep == NULL) || (ep->methods == NULL) || ((ep->ep_mode != USB_EP_MODE_STREAMS) && (ep->ep_mode != USB_EP_MODE_DEFAULT)) || (setup->stream_id != 0 && (setup->stream_id >= USB_MAX_EP_STREAMS || (ep->ep_mode != USB_EP_MODE_STREAMS)))) { if (setup->flags.no_pipe_ok) continue; if ((setup->usb_mode != USB_MODE_DUAL) && (setup->usb_mode != udev->flags.usb_mode)) continue; parm->err = USB_ERR_NO_PIPE; goto done; } /* align data properly */ parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); /* store current setup pointer */ parm->curr_setup = setup; if (buf) { /* * Common initialization of the * "usb_xfer" structure. */ xfer = USB_ADD_BYTES(buf, parm->size[0]); xfer->address = udev->address; xfer->priv_sc = priv_sc; xfer->xroot = info; usb_callout_init_mtx(&xfer->timeout_handle, &udev->bus->bus_mtx, 0); } else { /* * Setup a dummy xfer, hence we are * writing to the "usb_xfer" * structure pointed to by "xfer" * before we have allocated any * memory: */ xfer = &udev->scratch.xfer_setup[0].dummy; memset(xfer, 0, sizeof(*xfer)); refcount++; } /* set transfer endpoint pointer */ xfer->endpoint = ep; /* set transfer stream ID */ xfer->stream_id = setup->stream_id; parm->size[0] += sizeof(xfer[0]); parm->methods = xfer->endpoint->methods; parm->curr_xfer = xfer; /* * Call the Host or Device controller transfer * setup routine: */ (udev->bus->methods->xfer_setup) (parm); /* check for error */ if (parm->err) goto done; if (buf) { /* * Increment the endpoint refcount. This * basically prevents setting a new * configuration and alternate setting * when USB transfers are in use on * the given interface. Search the USB * code for "endpoint->refcount_alloc" if you * want more information. */ USB_BUS_LOCK(info->bus); if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX) parm->err = USB_ERR_INVAL; xfer->endpoint->refcount_alloc++; if (xfer->endpoint->refcount_alloc == 0) panic("usbd_transfer_setup(): Refcount wrapped to zero\n"); USB_BUS_UNLOCK(info->bus); /* * Whenever we set ppxfer[] then we * also need to increment the * "setup_refcount": */ info->setup_refcount++; /* * Transfer is successfully setup and * can be used: */ ppxfer[n] = xfer; } /* check for error */ if (parm->err) goto done; } if (buf != NULL || parm->err != 0) goto done; /* if no transfers, nothing to do */ if (refcount == 0) goto done; /* align data properly */ parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); /* store offset temporarily */ parm->size[1] = parm->size[0]; /* * The number of DMA tags required depends on * the number of endpoints. The current estimate * for maximum number of DMA tags per endpoint * is three: * 1) for loading memory * 2) for allocating memory * 3) for fixing memory [UHCI] */ parm->dma_tag_max += 3 * MIN(n_setup, USB_EP_MAX); /* * DMA tags for QH, TD, Data and more. */ parm->dma_tag_max += 8; parm->dma_tag_p += parm->dma_tag_max; parm->size[0] += ((uint8_t *)parm->dma_tag_p) - ((uint8_t *)0); /* align data properly */ parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); /* store offset temporarily */ parm->size[3] = parm->size[0]; parm->size[0] += ((uint8_t *)parm->dma_page_ptr) - ((uint8_t *)0); /* align data properly */ parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); /* store offset temporarily */ parm->size[4] = parm->size[0]; parm->size[0] += ((uint8_t *)parm->dma_page_cache_ptr) - ((uint8_t *)0); /* store end offset temporarily */ parm->size[5] = parm->size[0]; parm->size[0] += ((uint8_t *)parm->xfer_page_cache_ptr) - ((uint8_t *)0); /* store end offset temporarily */ parm->size[2] = parm->size[0]; /* align data properly */ parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); parm->size[6] = parm->size[0]; parm->size[0] += ((uint8_t *)parm->xfer_length_ptr) - ((uint8_t *)0); /* align data properly */ parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); /* allocate zeroed memory */ buf = malloc(parm->size[0], M_USB, M_WAITOK | M_ZERO); if (buf == NULL) { parm->err = USB_ERR_NOMEM; DPRINTFN(0, "cannot allocate memory block for " "configuration (%d bytes)\n", parm->size[0]); goto done; } parm->dma_tag_p = USB_ADD_BYTES(buf, parm->size[1]); parm->dma_page_ptr = USB_ADD_BYTES(buf, parm->size[3]); parm->dma_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[4]); parm->xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[5]); parm->xfer_length_ptr = USB_ADD_BYTES(buf, parm->size[6]); } done: if (buf) { if (info->setup_refcount == 0) { /* * "usbd_transfer_unsetup_sub" will unlock * the bus mutex before returning ! */ USB_BUS_LOCK(info->bus); /* something went wrong */ usbd_transfer_unsetup_sub(info, 0); } } /* check if any errors happened */ if (parm->err) usbd_transfer_unsetup(ppxfer, n_setup); error = parm->err; if (do_unlock) usbd_enum_unlock(udev); return (error); } /*------------------------------------------------------------------------* * usbd_transfer_unsetup_sub - factored out code *------------------------------------------------------------------------*/ static void usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay) { #if USB_HAVE_BUSDMA struct usb_page_cache *pc; #endif USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); /* wait for any outstanding DMA operations */ if (needs_delay) { usb_timeout_t temp; temp = usbd_get_dma_delay(info->udev); if (temp != 0) { usb_pause_mtx(&info->bus->bus_mtx, USB_MS_TO_TICKS(temp)); } } /* make sure that our done messages are not queued anywhere */ usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]); USB_BUS_UNLOCK(info->bus); #if USB_HAVE_BUSDMA /* free DMA'able memory, if any */ pc = info->dma_page_cache_start; while (pc != info->dma_page_cache_end) { usb_pc_free_mem(pc); pc++; } /* free DMA maps in all "xfer->frbuffers" */ pc = info->xfer_page_cache_start; while (pc != info->xfer_page_cache_end) { usb_pc_dmamap_destroy(pc); pc++; } /* free all DMA tags */ usb_dma_tag_unsetup(&info->dma_parent_tag); #endif cv_destroy(&info->cv_drain); /* * free the "memory_base" last, hence the "info" structure is * contained within the "memory_base"! */ free(info->memory_base, M_USB); } /*------------------------------------------------------------------------* * usbd_transfer_unsetup - unsetup/free an array of USB transfers * * NOTE: All USB transfers in progress will get called back passing * the error code "USB_ERR_CANCELLED" before this function * returns. *------------------------------------------------------------------------*/ void usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup) { struct usb_xfer *xfer; struct usb_xfer_root *info; uint8_t needs_delay = 0; WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "usbd_transfer_unsetup can sleep!"); while (n_setup--) { xfer = pxfer[n_setup]; if (xfer == NULL) continue; info = xfer->xroot; USB_XFER_LOCK(xfer); USB_BUS_LOCK(info->bus); /* * HINT: when you start/stop a transfer, it might be a * good idea to directly use the "pxfer[]" structure: * * usbd_transfer_start(sc->pxfer[0]); * usbd_transfer_stop(sc->pxfer[0]); * * That way, if your code has many parts that will not * stop running under the same lock, in other words * "xfer_mtx", the usbd_transfer_start and * usbd_transfer_stop functions will simply return * when they detect a NULL pointer argument. * * To avoid any races we clear the "pxfer[]" pointer * while holding the private mutex of the driver: */ pxfer[n_setup] = NULL; USB_BUS_UNLOCK(info->bus); USB_XFER_UNLOCK(xfer); usbd_transfer_drain(xfer); #if USB_HAVE_BUSDMA if (xfer->flags_int.bdma_enable) needs_delay = 1; #endif /* * NOTE: default endpoint does not have an * interface, even if endpoint->iface_index == 0 */ USB_BUS_LOCK(info->bus); xfer->endpoint->refcount_alloc--; USB_BUS_UNLOCK(info->bus); usb_callout_drain(&xfer->timeout_handle); USB_BUS_LOCK(info->bus); USB_ASSERT(info->setup_refcount != 0, ("Invalid setup " "reference count\n")); info->setup_refcount--; if (info->setup_refcount == 0) { usbd_transfer_unsetup_sub(info, needs_delay); } else { USB_BUS_UNLOCK(info->bus); } } } /*------------------------------------------------------------------------* * usbd_control_transfer_init - factored out code * * In USB Device Mode we have to wait for the SETUP packet which * containst the "struct usb_device_request" structure, before we can * transfer any data. In USB Host Mode we already have the SETUP * packet at the moment the USB transfer is started. This leads us to * having to setup the USB transfer at two different places in * time. This function just contains factored out control transfer * initialisation code, so that we don't duplicate the code. *------------------------------------------------------------------------*/ static void usbd_control_transfer_init(struct usb_xfer *xfer) { struct usb_device_request req; /* copy out the USB request header */ usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); /* setup remainder */ xfer->flags_int.control_rem = UGETW(req.wLength); /* copy direction to endpoint variable */ xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT); xfer->endpointno |= (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT; } /*------------------------------------------------------------------------* * usbd_control_transfer_did_data * * This function returns non-zero if a control endpoint has * transferred the first DATA packet after the SETUP packet. * Else it returns zero. *------------------------------------------------------------------------*/ static uint8_t usbd_control_transfer_did_data(struct usb_xfer *xfer) { struct usb_device_request req; /* SETUP packet is not yet sent */ if (xfer->flags_int.control_hdr != 0) return (0); /* copy out the USB request header */ usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); /* compare remainder to the initial value */ return (xfer->flags_int.control_rem != UGETW(req.wLength)); } /*------------------------------------------------------------------------* * usbd_setup_ctrl_transfer * * This function handles initialisation of control transfers. Control * transfers are special in that regard that they can both transmit * and receive data. * * Return values: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ static int usbd_setup_ctrl_transfer(struct usb_xfer *xfer) { usb_frlength_t len; /* Check for control endpoint stall */ if (xfer->flags.stall_pipe && xfer->flags_int.control_act) { /* the control transfer is no longer active */ xfer->flags_int.control_stall = 1; xfer->flags_int.control_act = 0; } else { /* don't stall control transfer by default */ xfer->flags_int.control_stall = 0; } /* Check for invalid number of frames */ if (xfer->nframes > 2) { /* * If you need to split a control transfer, you * have to do one part at a time. Only with * non-control transfers you can do multiple * parts a time. */ DPRINTFN(0, "Too many frames: %u\n", (unsigned int)xfer->nframes); goto error; } /* * Check if there is a control * transfer in progress: */ if (xfer->flags_int.control_act) { if (xfer->flags_int.control_hdr) { /* clear send header flag */ xfer->flags_int.control_hdr = 0; /* setup control transfer */ if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { usbd_control_transfer_init(xfer); } } /* get data length */ len = xfer->sumlen; } else { /* the size of the SETUP structure is hardcoded ! */ if (xfer->frlengths[0] != sizeof(struct usb_device_request)) { DPRINTFN(0, "Wrong framelength %u != %zu\n", xfer->frlengths[0], sizeof(struct usb_device_request)); goto error; } /* check USB mode */ if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { /* check number of frames */ if (xfer->nframes != 1) { /* * We need to receive the setup * message first so that we know the * data direction! */ DPRINTF("Misconfigured transfer\n"); goto error; } /* * Set a dummy "control_rem" value. This * variable will be overwritten later by a * call to "usbd_control_transfer_init()" ! */ xfer->flags_int.control_rem = 0xFFFF; } else { /* setup "endpoint" and "control_rem" */ usbd_control_transfer_init(xfer); } /* set transfer-header flag */ xfer->flags_int.control_hdr = 1; /* get data length */ len = (xfer->sumlen - sizeof(struct usb_device_request)); } /* update did data flag */ xfer->flags_int.control_did_data = usbd_control_transfer_did_data(xfer); /* check if there is a length mismatch */ if (len > xfer->flags_int.control_rem) { DPRINTFN(0, "Length (%d) greater than " "remaining length (%d)\n", len, xfer->flags_int.control_rem); goto error; } /* check if we are doing a short transfer */ if (xfer->flags.force_short_xfer) { xfer->flags_int.control_rem = 0; } else { if ((len != xfer->max_data_length) && (len != xfer->flags_int.control_rem) && (xfer->nframes != 1)) { DPRINTFN(0, "Short control transfer without " "force_short_xfer set\n"); goto error; } xfer->flags_int.control_rem -= len; } /* the status part is executed when "control_act" is 0 */ if ((xfer->flags_int.control_rem > 0) || (xfer->flags.manual_status)) { /* don't execute the STATUS stage yet */ xfer->flags_int.control_act = 1; /* sanity check */ if ((!xfer->flags_int.control_hdr) && (xfer->nframes == 1)) { /* * This is not a valid operation! */ DPRINTFN(0, "Invalid parameter " "combination\n"); goto error; } } else { /* time to execute the STATUS stage */ xfer->flags_int.control_act = 0; } return (0); /* success */ error: return (1); /* failure */ } /*------------------------------------------------------------------------* * usbd_transfer_submit - start USB hardware for the given transfer * * This function should only be called from the USB callback. *------------------------------------------------------------------------*/ void usbd_transfer_submit(struct usb_xfer *xfer) { struct usb_xfer_root *info; struct usb_bus *bus; usb_frcount_t x; info = xfer->xroot; bus = info->bus; DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n", xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ? "read" : "write"); #ifdef USB_DEBUG if (USB_DEBUG_VAR > 0) { USB_BUS_LOCK(bus); usb_dump_endpoint(xfer->endpoint); USB_BUS_UNLOCK(bus); } #endif USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED); /* Only open the USB transfer once! */ if (!xfer->flags_int.open) { xfer->flags_int.open = 1; DPRINTF("open\n"); USB_BUS_LOCK(bus); (xfer->endpoint->methods->open) (xfer); USB_BUS_UNLOCK(bus); } /* set "transferring" flag */ xfer->flags_int.transferring = 1; #if USB_HAVE_POWERD /* increment power reference */ usbd_transfer_power_ref(xfer, 1); #endif /* * Check if the transfer is waiting on a queue, most * frequently the "done_q": */ if (xfer->wait_queue) { USB_BUS_LOCK(bus); usbd_transfer_dequeue(xfer); USB_BUS_UNLOCK(bus); } /* clear "did_dma_delay" flag */ xfer->flags_int.did_dma_delay = 0; /* clear "did_close" flag */ xfer->flags_int.did_close = 0; #if USB_HAVE_BUSDMA /* clear "bdma_setup" flag */ xfer->flags_int.bdma_setup = 0; #endif /* by default we cannot cancel any USB transfer immediately */ xfer->flags_int.can_cancel_immed = 0; /* clear lengths and frame counts by default */ xfer->sumlen = 0; xfer->actlen = 0; xfer->aframes = 0; /* clear any previous errors */ xfer->error = 0; /* Check if the device is still alive */ if (info->udev->state < USB_STATE_POWERED) { USB_BUS_LOCK(bus); /* * Must return cancelled error code else * device drivers can hang. */ usbd_transfer_done(xfer, USB_ERR_CANCELLED); USB_BUS_UNLOCK(bus); return; } /* sanity check */ if (xfer->nframes == 0) { if (xfer->flags.stall_pipe) { /* * Special case - want to stall without transferring * any data: */ DPRINTF("xfer=%p nframes=0: stall " "or clear stall!\n", xfer); USB_BUS_LOCK(bus); xfer->flags_int.can_cancel_immed = 1; /* start the transfer */ usb_command_wrapper(&xfer->endpoint-> endpoint_q[xfer->stream_id], xfer); USB_BUS_UNLOCK(bus); return; } USB_BUS_LOCK(bus); usbd_transfer_done(xfer, USB_ERR_INVAL); USB_BUS_UNLOCK(bus); return; } /* compute some variables */ for (x = 0; x != xfer->nframes; x++) { /* make a copy of the frlenghts[] */ xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x]; /* compute total transfer length */ xfer->sumlen += xfer->frlengths[x]; if (xfer->sumlen < xfer->frlengths[x]) { /* length wrapped around */ USB_BUS_LOCK(bus); usbd_transfer_done(xfer, USB_ERR_INVAL); USB_BUS_UNLOCK(bus); return; } } /* clear some internal flags */ xfer->flags_int.short_xfer_ok = 0; xfer->flags_int.short_frames_ok = 0; /* check if this is a control transfer */ if (xfer->flags_int.control_xfr) { if (usbd_setup_ctrl_transfer(xfer)) { USB_BUS_LOCK(bus); usbd_transfer_done(xfer, USB_ERR_STALLED); USB_BUS_UNLOCK(bus); return; } } /* * Setup filtered version of some transfer flags, * in case of data read direction */ if (USB_GET_DATA_ISREAD(xfer)) { if (xfer->flags.short_frames_ok) { xfer->flags_int.short_xfer_ok = 1; xfer->flags_int.short_frames_ok = 1; } else if (xfer->flags.short_xfer_ok) { xfer->flags_int.short_xfer_ok = 1; /* check for control transfer */ if (xfer->flags_int.control_xfr) { /* * 1) Control transfers do not support * reception of multiple short USB * frames in host mode and device side * mode, with exception of: * * 2) Due to sometimes buggy device * side firmware we need to do a * STATUS stage in case of short * control transfers in USB host mode. * The STATUS stage then becomes the * "alt_next" to the DATA stage. */ xfer->flags_int.short_frames_ok = 1; } } } /* * Check if BUS-DMA support is enabled and try to load virtual * buffers into DMA, if any: */ #if USB_HAVE_BUSDMA if (xfer->flags_int.bdma_enable) { /* insert the USB transfer last in the BUS-DMA queue */ usb_command_wrapper(&xfer->xroot->dma_q, xfer); return; } #endif /* * Enter the USB transfer into the Host Controller or * Device Controller schedule: */ usbd_pipe_enter(xfer); } /*------------------------------------------------------------------------* * usbd_pipe_enter - factored out code *------------------------------------------------------------------------*/ void usbd_pipe_enter(struct usb_xfer *xfer) { struct usb_endpoint *ep; USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); USB_BUS_LOCK(xfer->xroot->bus); ep = xfer->endpoint; DPRINTF("enter\n"); /* the transfer can now be cancelled */ xfer->flags_int.can_cancel_immed = 1; /* enter the transfer */ (ep->methods->enter) (xfer); /* check for transfer error */ if (xfer->error) { /* some error has happened */ usbd_transfer_done(xfer, 0); USB_BUS_UNLOCK(xfer->xroot->bus); return; } /* start the transfer */ usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], xfer); USB_BUS_UNLOCK(xfer->xroot->bus); } /*------------------------------------------------------------------------* * usbd_transfer_start - start an USB transfer * * NOTE: Calling this function more than one time will only * result in a single transfer start, until the USB transfer * completes. *------------------------------------------------------------------------*/ void usbd_transfer_start(struct usb_xfer *xfer) { if (xfer == NULL) { /* transfer is gone */ return; } USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); /* mark the USB transfer started */ if (!xfer->flags_int.started) { /* lock the BUS lock to avoid races updating flags_int */ USB_BUS_LOCK(xfer->xroot->bus); xfer->flags_int.started = 1; USB_BUS_UNLOCK(xfer->xroot->bus); } /* check if the USB transfer callback is already transferring */ if (xfer->flags_int.transferring) { return; } USB_BUS_LOCK(xfer->xroot->bus); /* call the USB transfer callback */ usbd_callback_ss_done_defer(xfer); USB_BUS_UNLOCK(xfer->xroot->bus); } /*------------------------------------------------------------------------* * usbd_transfer_stop - stop an USB transfer * * NOTE: Calling this function more than one time will only * result in a single transfer stop. * NOTE: When this function returns it is not safe to free nor * reuse any DMA buffers. See "usbd_transfer_drain()". *------------------------------------------------------------------------*/ void usbd_transfer_stop(struct usb_xfer *xfer) { struct usb_endpoint *ep; if (xfer == NULL) { /* transfer is gone */ return; } USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); /* check if the USB transfer was ever opened */ if (!xfer->flags_int.open) { if (xfer->flags_int.started) { /* nothing to do except clearing the "started" flag */ /* lock the BUS lock to avoid races updating flags_int */ USB_BUS_LOCK(xfer->xroot->bus); xfer->flags_int.started = 0; USB_BUS_UNLOCK(xfer->xroot->bus); } return; } /* try to stop the current USB transfer */ USB_BUS_LOCK(xfer->xroot->bus); /* override any previous error */ xfer->error = USB_ERR_CANCELLED; /* * Clear "open" and "started" when both private and USB lock * is locked so that we don't get a race updating "flags_int" */ xfer->flags_int.open = 0; xfer->flags_int.started = 0; /* * Check if we can cancel the USB transfer immediately. */ if (xfer->flags_int.transferring) { if (xfer->flags_int.can_cancel_immed && (!xfer->flags_int.did_close)) { DPRINTF("close\n"); /* * The following will lead to an USB_ERR_CANCELLED * error code being passed to the USB callback. */ (xfer->endpoint->methods->close) (xfer); /* only close once */ xfer->flags_int.did_close = 1; } else { /* need to wait for the next done callback */ } } else { DPRINTF("close\n"); /* close here and now */ (xfer->endpoint->methods->close) (xfer); /* * Any additional DMA delay is done by * "usbd_transfer_unsetup()". */ /* * Special case. Check if we need to restart a blocked * endpoint. */ ep = xfer->endpoint; /* * If the current USB transfer is completing we need * to start the next one: */ if (ep->endpoint_q[xfer->stream_id].curr == xfer) { usb_command_wrapper( &ep->endpoint_q[xfer->stream_id], NULL); } } USB_BUS_UNLOCK(xfer->xroot->bus); } /*------------------------------------------------------------------------* * usbd_transfer_pending * * This function will check if an USB transfer is pending which is a * little bit complicated! * Return values: * 0: Not pending * 1: Pending: The USB transfer will receive a callback in the future. *------------------------------------------------------------------------*/ uint8_t usbd_transfer_pending(struct usb_xfer *xfer) { struct usb_xfer_root *info; struct usb_xfer_queue *pq; if (xfer == NULL) { /* transfer is gone */ return (0); } USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); if (xfer->flags_int.transferring) { /* trivial case */ return (1); } USB_BUS_LOCK(xfer->xroot->bus); if (xfer->wait_queue) { /* we are waiting on a queue somewhere */ USB_BUS_UNLOCK(xfer->xroot->bus); return (1); } info = xfer->xroot; pq = &info->done_q; if (pq->curr == xfer) { /* we are currently scheduled for callback */ USB_BUS_UNLOCK(xfer->xroot->bus); return (1); } /* we are not pending */ USB_BUS_UNLOCK(xfer->xroot->bus); return (0); } /*------------------------------------------------------------------------* * usbd_transfer_drain * * This function will stop the USB transfer and wait for any * additional BUS-DMA and HW-DMA operations to complete. Buffers that * are loaded into DMA can safely be freed or reused after that this * function has returned. *------------------------------------------------------------------------*/ void usbd_transfer_drain(struct usb_xfer *xfer) { WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "usbd_transfer_drain can sleep!"); if (xfer == NULL) { /* transfer is gone */ return; } if (xfer->xroot->xfer_mtx != &Giant) { USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED); } USB_XFER_LOCK(xfer); usbd_transfer_stop(xfer); while (usbd_transfer_pending(xfer) || xfer->flags_int.doing_callback) { /* * It is allowed that the callback can drop its * transfer mutex. In that case checking only * "usbd_transfer_pending()" is not enough to tell if * the USB transfer is fully drained. We also need to * check the internal "doing_callback" flag. */ xfer->flags_int.draining = 1; /* * Wait until the current outstanding USB * transfer is complete ! */ cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx); } USB_XFER_UNLOCK(xfer); } struct usb_page_cache * usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex) { KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); return (&xfer->frbuffers[frindex]); } void * usbd_xfer_get_frame_buffer(struct usb_xfer *xfer, usb_frcount_t frindex) { struct usb_page_search page_info; KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); usbd_get_page(&xfer->frbuffers[frindex], 0, &page_info); return (page_info.buffer); } /*------------------------------------------------------------------------* * usbd_xfer_get_fps_shift * * The following function is only useful for isochronous transfers. It * returns how many times the frame execution rate has been shifted * down. * * Return value: * Success: 0..3 * Failure: 0 *------------------------------------------------------------------------*/ uint8_t usbd_xfer_get_fps_shift(struct usb_xfer *xfer) { return (xfer->fps_shift); } usb_frlength_t usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex) { KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); return (xfer->frlengths[frindex]); } /*------------------------------------------------------------------------* * usbd_xfer_set_frame_data * * This function sets the pointer of the buffer that should * loaded directly into DMA for the given USB frame. Passing "ptr" * equal to NULL while the corresponding "frlength" is greater * than zero gives undefined results! *------------------------------------------------------------------------*/ void usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, void *ptr, usb_frlength_t len) { KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); /* set virtual address to load and length */ xfer->frbuffers[frindex].buffer = ptr; usbd_xfer_set_frame_len(xfer, frindex, len); } void usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, void **ptr, int *len) { KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); if (ptr != NULL) *ptr = xfer->frbuffers[frindex].buffer; if (len != NULL) *len = xfer->frlengths[frindex]; } /*------------------------------------------------------------------------* * usbd_xfer_old_frame_length * * This function returns the framelength of the given frame at the * time the transfer was submitted. This function can be used to * compute the starting data pointer of the next isochronous frame * when an isochronous transfer has completed. *------------------------------------------------------------------------*/ usb_frlength_t usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex) { KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); return (xfer->frlengths[frindex + xfer->max_frame_count]); } void usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes, int *nframes) { if (actlen != NULL) *actlen = xfer->actlen; if (sumlen != NULL) *sumlen = xfer->sumlen; if (aframes != NULL) *aframes = xfer->aframes; if (nframes != NULL) *nframes = xfer->nframes; } /*------------------------------------------------------------------------* * usbd_xfer_set_frame_offset * * This function sets the frame data buffer offset relative to the beginning * of the USB DMA buffer allocated for this USB transfer. *------------------------------------------------------------------------*/ void usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset, usb_frcount_t frindex) { KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame " "when the USB buffer is external\n")); KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); /* set virtual address to load */ xfer->frbuffers[frindex].buffer = USB_ADD_BYTES(xfer->local_buffer, offset); } void usbd_xfer_set_interval(struct usb_xfer *xfer, int i) { xfer->interval = i; } void usbd_xfer_set_timeout(struct usb_xfer *xfer, int t) { xfer->timeout = t; } void usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n) { xfer->nframes = n; } usb_frcount_t usbd_xfer_max_frames(struct usb_xfer *xfer) { return (xfer->max_frame_count); } usb_frlength_t usbd_xfer_max_len(struct usb_xfer *xfer) { return (xfer->max_data_length); } usb_frlength_t usbd_xfer_max_framelen(struct usb_xfer *xfer) { return (xfer->max_frame_size); } void usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex, usb_frlength_t len) { KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); xfer->frlengths[frindex] = len; } /*------------------------------------------------------------------------* * usb_callback_proc - factored out code * * This function performs USB callbacks. *------------------------------------------------------------------------*/ static void usb_callback_proc(struct usb_proc_msg *_pm) { struct usb_done_msg *pm = (void *)_pm; struct usb_xfer_root *info = pm->xroot; /* Change locking order */ USB_BUS_UNLOCK(info->bus); /* * We exploit the fact that the mutex is the same for all * callbacks that will be called from this thread: */ mtx_lock(info->xfer_mtx); USB_BUS_LOCK(info->bus); /* Continue where we lost track */ usb_command_wrapper(&info->done_q, info->done_q.curr); mtx_unlock(info->xfer_mtx); } /*------------------------------------------------------------------------* * usbd_callback_ss_done_defer * * This function will defer the start, stop and done callback to the * correct thread. *------------------------------------------------------------------------*/ static void usbd_callback_ss_done_defer(struct usb_xfer *xfer) { struct usb_xfer_root *info = xfer->xroot; struct usb_xfer_queue *pq = &info->done_q; USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); if (pq->curr != xfer) { usbd_transfer_enqueue(pq, xfer); } if (!pq->recurse_1) { /* * We have to postpone the callback due to the fact we * will have a Lock Order Reversal, LOR, if we try to * proceed ! */ (void) usb_proc_msignal(info->done_p, &info->done_m[0], &info->done_m[1]); } else { /* clear second recurse flag */ pq->recurse_2 = 0; } return; } /*------------------------------------------------------------------------* * usbd_callback_wrapper * * This is a wrapper for USB callbacks. This wrapper does some * auto-magic things like figuring out if we can call the callback * directly from the current context or if we need to wakeup the * interrupt process. *------------------------------------------------------------------------*/ static void usbd_callback_wrapper(struct usb_xfer_queue *pq) { struct usb_xfer *xfer = pq->curr; struct usb_xfer_root *info = xfer->xroot; USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); if ((pq->recurse_3 != 0 || mtx_owned(info->xfer_mtx) == 0) && SCHEDULER_STOPPED() == 0) { /* * Cases that end up here: * * 5) HW interrupt done callback or other source. * 6) HW completed transfer during callback */ DPRINTFN(3, "case 5 and 6\n"); /* * We have to postpone the callback due to the fact we * will have a Lock Order Reversal, LOR, if we try to * proceed! * * Postponing the callback also ensures that other USB * transfer queues get a chance. */ (void) usb_proc_msignal(info->done_p, &info->done_m[0], &info->done_m[1]); return; } /* * Cases that end up here: * * 1) We are starting a transfer * 2) We are prematurely calling back a transfer * 3) We are stopping a transfer * 4) We are doing an ordinary callback */ DPRINTFN(3, "case 1-4\n"); /* get next USB transfer in the queue */ info->done_q.curr = NULL; /* set flag in case of drain */ xfer->flags_int.doing_callback = 1; USB_BUS_UNLOCK(info->bus); USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED); /* set correct USB state for callback */ if (!xfer->flags_int.transferring) { xfer->usb_state = USB_ST_SETUP; if (!xfer->flags_int.started) { /* we got stopped before we even got started */ USB_BUS_LOCK(info->bus); goto done; } } else { if (usbd_callback_wrapper_sub(xfer)) { /* the callback has been deferred */ USB_BUS_LOCK(info->bus); goto done; } #if USB_HAVE_POWERD /* decrement power reference */ usbd_transfer_power_ref(xfer, -1); #endif xfer->flags_int.transferring = 0; if (xfer->error) { xfer->usb_state = USB_ST_ERROR; } else { /* set transferred state */ xfer->usb_state = USB_ST_TRANSFERRED; #if USB_HAVE_BUSDMA /* sync DMA memory, if any */ if (xfer->flags_int.bdma_enable && (!xfer->flags_int.bdma_no_post_sync)) { usb_bdma_post_sync(xfer); } #endif } } #if USB_HAVE_PF if (xfer->usb_state != USB_ST_SETUP) { USB_BUS_LOCK(info->bus); usbpf_xfertap(xfer, USBPF_XFERTAP_DONE); USB_BUS_UNLOCK(info->bus); } #endif /* call processing routine */ (xfer->callback) (xfer, xfer->error); /* pickup the USB mutex again */ USB_BUS_LOCK(info->bus); /* * Check if we got started after that we got cancelled, but * before we managed to do the callback. */ if ((!xfer->flags_int.open) && (xfer->flags_int.started) && (xfer->usb_state == USB_ST_ERROR)) { /* clear flag in case of drain */ xfer->flags_int.doing_callback = 0; /* try to loop, but not recursivly */ usb_command_wrapper(&info->done_q, xfer); return; } done: /* clear flag in case of drain */ xfer->flags_int.doing_callback = 0; /* * Check if we are draining. */ if (xfer->flags_int.draining && (!xfer->flags_int.transferring)) { /* "usbd_transfer_drain()" is waiting for end of transfer */ xfer->flags_int.draining = 0; cv_broadcast(&info->cv_drain); } /* do the next callback, if any */ usb_command_wrapper(&info->done_q, info->done_q.curr); } /*------------------------------------------------------------------------* * usb_dma_delay_done_cb * * This function is called when the DMA delay has been exectuded, and * will make sure that the callback is called to complete the USB * transfer. This code path is ususally only used when there is an USB * error like USB_ERR_CANCELLED. *------------------------------------------------------------------------*/ void usb_dma_delay_done_cb(struct usb_xfer *xfer) { USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); DPRINTFN(3, "Completed %p\n", xfer); /* queue callback for execution, again */ usbd_transfer_done(xfer, 0); } /*------------------------------------------------------------------------* * usbd_transfer_dequeue * * - This function is used to remove an USB transfer from a USB * transfer queue. * * - This function can be called multiple times in a row. *------------------------------------------------------------------------*/ void usbd_transfer_dequeue(struct usb_xfer *xfer) { struct usb_xfer_queue *pq; pq = xfer->wait_queue; if (pq) { TAILQ_REMOVE(&pq->head, xfer, wait_entry); xfer->wait_queue = NULL; } } /*------------------------------------------------------------------------* * usbd_transfer_enqueue * * - This function is used to insert an USB transfer into a USB * * transfer queue. * * - This function can be called multiple times in a row. *------------------------------------------------------------------------*/ void usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer) { /* * Insert the USB transfer into the queue, if it is not * already on a USB transfer queue: */ if (xfer->wait_queue == NULL) { xfer->wait_queue = pq; TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry); } } /*------------------------------------------------------------------------* * usbd_transfer_done * * - This function is used to remove an USB transfer from the busdma, * pipe or interrupt queue. * * - This function is used to queue the USB transfer on the done * queue. * * - This function is used to stop any USB transfer timeouts. *------------------------------------------------------------------------*/ void usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error) { struct usb_xfer_root *info = xfer->xroot; USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); DPRINTF("err=%s\n", usbd_errstr(error)); /* * If we are not transferring then just return. * This can happen during transfer cancel. */ if (!xfer->flags_int.transferring) { DPRINTF("not transferring\n"); /* end of control transfer, if any */ xfer->flags_int.control_act = 0; return; } /* only set transfer error, if not already set */ if (xfer->error == USB_ERR_NORMAL_COMPLETION) xfer->error = error; /* stop any callouts */ usb_callout_stop(&xfer->timeout_handle); /* * If we are waiting on a queue, just remove the USB transfer * from the queue, if any. We should have the required locks * locked to do the remove when this function is called. */ usbd_transfer_dequeue(xfer); #if USB_HAVE_BUSDMA if (mtx_owned(info->xfer_mtx)) { struct usb_xfer_queue *pq; /* * If the private USB lock is not locked, then we assume * that the BUS-DMA load stage has been passed: */ pq = &info->dma_q; if (pq->curr == xfer) { /* start the next BUS-DMA load, if any */ usb_command_wrapper(pq, NULL); } } #endif /* keep some statistics */ if (xfer->error) { info->bus->stats_err.uds_requests [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; } else { info->bus->stats_ok.uds_requests [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; } /* call the USB transfer callback */ usbd_callback_ss_done_defer(xfer); } /*------------------------------------------------------------------------* * usbd_transfer_start_cb * * This function is called to start the USB transfer when * "xfer->interval" is greater than zero, and and the endpoint type is * BULK or CONTROL. *------------------------------------------------------------------------*/ static void usbd_transfer_start_cb(void *arg) { struct usb_xfer *xfer = arg; struct usb_endpoint *ep = xfer->endpoint; USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); DPRINTF("start\n"); #if USB_HAVE_PF usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); #endif /* the transfer can now be cancelled */ xfer->flags_int.can_cancel_immed = 1; /* start USB transfer, if no error */ if (xfer->error == 0) (ep->methods->start) (xfer); /* check for transfer error */ if (xfer->error) { /* some error has happened */ usbd_transfer_done(xfer, 0); } } /*------------------------------------------------------------------------* * usbd_xfer_set_stall * * This function is used to set the stall flag outside the * callback. This function is NULL safe. *------------------------------------------------------------------------*/ void usbd_xfer_set_stall(struct usb_xfer *xfer) { if (xfer == NULL) { /* tearing down */ return; } USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); /* avoid any races by locking the USB mutex */ USB_BUS_LOCK(xfer->xroot->bus); xfer->flags.stall_pipe = 1; USB_BUS_UNLOCK(xfer->xroot->bus); } int usbd_xfer_is_stalled(struct usb_xfer *xfer) { return (xfer->endpoint->is_stalled); } /*------------------------------------------------------------------------* * usbd_transfer_clear_stall * * This function is used to clear the stall flag outside the * callback. This function is NULL safe. *------------------------------------------------------------------------*/ void usbd_transfer_clear_stall(struct usb_xfer *xfer) { if (xfer == NULL) { /* tearing down */ return; } USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); /* avoid any races by locking the USB mutex */ USB_BUS_LOCK(xfer->xroot->bus); xfer->flags.stall_pipe = 0; USB_BUS_UNLOCK(xfer->xroot->bus); } /*------------------------------------------------------------------------* * usbd_pipe_start * * This function is used to add an USB transfer to the pipe transfer list. *------------------------------------------------------------------------*/ void usbd_pipe_start(struct usb_xfer_queue *pq) { struct usb_endpoint *ep; struct usb_xfer *xfer; uint8_t type; xfer = pq->curr; ep = xfer->endpoint; USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); /* * If the endpoint is already stalled we do nothing ! */ if (ep->is_stalled) { return; } /* * Check if we are supposed to stall the endpoint: */ if (xfer->flags.stall_pipe) { struct usb_device *udev; struct usb_xfer_root *info; /* clear stall command */ xfer->flags.stall_pipe = 0; /* get pointer to USB device */ info = xfer->xroot; udev = info->udev; /* * Only stall BULK and INTERRUPT endpoints. */ type = (ep->edesc->bmAttributes & UE_XFERTYPE); if ((type == UE_BULK) || (type == UE_INTERRUPT)) { uint8_t did_stall; did_stall = 1; if (udev->flags.usb_mode == USB_MODE_DEVICE) { (udev->bus->methods->set_stall) ( udev, ep, &did_stall); } else if (udev->ctrl_xfer[1]) { info = udev->ctrl_xfer[1]->xroot; usb_proc_msignal( USB_BUS_CS_PROC(info->bus), &udev->cs_msg[0], &udev->cs_msg[1]); } else { /* should not happen */ DPRINTFN(0, "No stall handler\n"); } /* * Check if we should stall. Some USB hardware * handles set- and clear-stall in hardware. */ if (did_stall) { /* * The transfer will be continued when * the clear-stall control endpoint * message is received. */ ep->is_stalled = 1; return; } } else if (type == UE_ISOCHRONOUS) { /* * Make sure any FIFO overflow or other FIFO * error conditions go away by resetting the * endpoint FIFO through the clear stall * method. */ if (udev->flags.usb_mode == USB_MODE_DEVICE) { (udev->bus->methods->clear_stall) (udev, ep); } } } /* Set or clear stall complete - special case */ if (xfer->nframes == 0) { /* we are complete */ xfer->aframes = 0; usbd_transfer_done(xfer, 0); return; } /* * Handled cases: * * 1) Start the first transfer queued. * * 2) Re-start the current USB transfer. */ /* * Check if there should be any * pre transfer start delay: */ if (xfer->interval > 0) { type = (ep->edesc->bmAttributes & UE_XFERTYPE); if ((type == UE_BULK) || (type == UE_CONTROL)) { usbd_transfer_timeout_ms(xfer, &usbd_transfer_start_cb, xfer->interval); return; } } DPRINTF("start\n"); #if USB_HAVE_PF usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); #endif /* the transfer can now be cancelled */ xfer->flags_int.can_cancel_immed = 1; /* start USB transfer, if no error */ if (xfer->error == 0) (ep->methods->start) (xfer); /* check for transfer error */ if (xfer->error) { /* some error has happened */ usbd_transfer_done(xfer, 0); } } /*------------------------------------------------------------------------* * usbd_transfer_timeout_ms * * This function is used to setup a timeout on the given USB * transfer. If the timeout has been deferred the callback given by * "cb" will get called after "ms" milliseconds. *------------------------------------------------------------------------*/ void usbd_transfer_timeout_ms(struct usb_xfer *xfer, void (*cb) (void *arg), usb_timeout_t ms) { USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); /* defer delay */ usb_callout_reset(&xfer->timeout_handle, USB_MS_TO_TICKS(ms) + USB_CALLOUT_ZERO_TICKS, cb, xfer); } /*------------------------------------------------------------------------* * usbd_callback_wrapper_sub * * - This function will update variables in an USB transfer after * that the USB transfer is complete. * * - This function is used to start the next USB transfer on the * ep transfer queue, if any. * * NOTE: In some special cases the USB transfer will not be removed from * the pipe queue, but remain first. To enforce USB transfer removal call * this function passing the error code "USB_ERR_CANCELLED". * * Return values: * 0: Success. * Else: The callback has been deferred. *------------------------------------------------------------------------*/ static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *xfer) { struct usb_endpoint *ep; struct usb_bus *bus; usb_frcount_t x; bus = xfer->xroot->bus; if ((!xfer->flags_int.open) && (!xfer->flags_int.did_close)) { DPRINTF("close\n"); USB_BUS_LOCK(bus); (xfer->endpoint->methods->close) (xfer); USB_BUS_UNLOCK(bus); /* only close once */ xfer->flags_int.did_close = 1; return (1); /* wait for new callback */ } /* * If we have a non-hardware induced error we * need to do the DMA delay! */ if (xfer->error != 0 && !xfer->flags_int.did_dma_delay && (xfer->error == USB_ERR_CANCELLED || xfer->error == USB_ERR_TIMEOUT || bus->methods->start_dma_delay != NULL)) { usb_timeout_t temp; /* only delay once */ xfer->flags_int.did_dma_delay = 1; /* we can not cancel this delay */ xfer->flags_int.can_cancel_immed = 0; temp = usbd_get_dma_delay(xfer->xroot->udev); DPRINTFN(3, "DMA delay, %u ms, " "on %p\n", temp, xfer); if (temp != 0) { USB_BUS_LOCK(bus); /* * Some hardware solutions have dedicated * events when it is safe to free DMA'ed * memory. For the other hardware platforms we * use a static delay. */ if (bus->methods->start_dma_delay != NULL) { (bus->methods->start_dma_delay) (xfer); } else { usbd_transfer_timeout_ms(xfer, (void (*)(void *))&usb_dma_delay_done_cb, temp); } USB_BUS_UNLOCK(bus); return (1); /* wait for new callback */ } } /* check actual number of frames */ if (xfer->aframes > xfer->nframes) { if (xfer->error == 0) { panic("%s: actual number of frames, %d, is " "greater than initial number of frames, %d\n", __FUNCTION__, xfer->aframes, xfer->nframes); } else { /* just set some valid value */ xfer->aframes = xfer->nframes; } } /* compute actual length */ xfer->actlen = 0; for (x = 0; x != xfer->aframes; x++) { xfer->actlen += xfer->frlengths[x]; } /* * Frames that were not transferred get zero actual length in * case the USB device driver does not check the actual number * of frames transferred, "xfer->aframes": */ for (; x < xfer->nframes; x++) { usbd_xfer_set_frame_len(xfer, x, 0); } /* check actual length */ if (xfer->actlen > xfer->sumlen) { if (xfer->error == 0) { panic("%s: actual length, %d, is greater than " "initial length, %d\n", __FUNCTION__, xfer->actlen, xfer->sumlen); } else { /* just set some valid value */ xfer->actlen = xfer->sumlen; } } DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n", xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen, xfer->aframes, xfer->nframes); if (xfer->error) { /* end of control transfer, if any */ xfer->flags_int.control_act = 0; #if USB_HAVE_TT_SUPPORT switch (xfer->error) { case USB_ERR_NORMAL_COMPLETION: case USB_ERR_SHORT_XFER: case USB_ERR_STALLED: case USB_ERR_CANCELLED: /* nothing to do */ break; default: /* try to reset the TT, if any */ USB_BUS_LOCK(bus); uhub_tt_buffer_reset_async_locked(xfer->xroot->udev, xfer->endpoint); USB_BUS_UNLOCK(bus); break; } #endif /* check if we should block the execution queue */ if ((xfer->error != USB_ERR_CANCELLED) && (xfer->flags.pipe_bof)) { DPRINTFN(2, "xfer=%p: Block On Failure " "on endpoint=%p\n", xfer, xfer->endpoint); goto done; } } else { /* check for short transfers */ if (xfer->actlen < xfer->sumlen) { /* end of control transfer, if any */ xfer->flags_int.control_act = 0; if (!xfer->flags_int.short_xfer_ok) { xfer->error = USB_ERR_SHORT_XFER; if (xfer->flags.pipe_bof) { DPRINTFN(2, "xfer=%p: Block On Failure on " "Short Transfer on endpoint %p.\n", xfer, xfer->endpoint); goto done; } } } else { /* * Check if we are in the middle of a * control transfer: */ if (xfer->flags_int.control_act) { DPRINTFN(5, "xfer=%p: Control transfer " "active on endpoint=%p\n", xfer, xfer->endpoint); goto done; } } } ep = xfer->endpoint; /* * If the current USB transfer is completing we need to start the * next one: */ USB_BUS_LOCK(bus); if (ep->endpoint_q[xfer->stream_id].curr == xfer) { usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], NULL); if (ep->endpoint_q[xfer->stream_id].curr != NULL || TAILQ_FIRST(&ep->endpoint_q[xfer->stream_id].head) != NULL) { /* there is another USB transfer waiting */ } else { /* this is the last USB transfer */ /* clear isochronous sync flag */ xfer->endpoint->is_synced = 0; } } USB_BUS_UNLOCK(bus); done: return (0); } /*------------------------------------------------------------------------* * usb_command_wrapper * * This function is used to execute commands non-recursivly on an USB * transfer. *------------------------------------------------------------------------*/ void usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer) { if (xfer) { /* * If the transfer is not already processing, * queue it! */ if (pq->curr != xfer) { usbd_transfer_enqueue(pq, xfer); if (pq->curr != NULL) { /* something is already processing */ DPRINTFN(6, "busy %p\n", pq->curr); return; } } } else { /* Get next element in queue */ pq->curr = NULL; } if (!pq->recurse_1) { /* clear third recurse flag */ pq->recurse_3 = 0; do { /* set two first recurse flags */ pq->recurse_1 = 1; pq->recurse_2 = 1; if (pq->curr == NULL) { xfer = TAILQ_FIRST(&pq->head); if (xfer) { TAILQ_REMOVE(&pq->head, xfer, wait_entry); xfer->wait_queue = NULL; pq->curr = xfer; } else { break; } } DPRINTFN(6, "cb %p (enter)\n", pq->curr); (pq->command) (pq); DPRINTFN(6, "cb %p (leave)\n", pq->curr); /* * Set third recurse flag to indicate * recursion happened: */ pq->recurse_3 = 1; } while (!pq->recurse_2); /* clear first recurse flag */ pq->recurse_1 = 0; } else { /* clear second recurse flag */ pq->recurse_2 = 0; } } /*------------------------------------------------------------------------* * usbd_ctrl_transfer_setup * * This function is used to setup the default USB control endpoint * transfer. *------------------------------------------------------------------------*/ void usbd_ctrl_transfer_setup(struct usb_device *udev) { struct usb_xfer *xfer; uint8_t no_resetup; uint8_t iface_index; /* check for root HUB */ if (udev->parent_hub == NULL) return; repeat: xfer = udev->ctrl_xfer[0]; if (xfer) { USB_XFER_LOCK(xfer); no_resetup = ((xfer->address == udev->address) && (udev->ctrl_ep_desc.wMaxPacketSize[0] == udev->ddesc.bMaxPacketSize)); if (udev->flags.usb_mode == USB_MODE_DEVICE) { if (no_resetup) { /* * NOTE: checking "xfer->address" and * starting the USB transfer must be * atomic! */ usbd_transfer_start(xfer); } } USB_XFER_UNLOCK(xfer); } else { no_resetup = 0; } if (no_resetup) { /* * All parameters are exactly the same like before. * Just return. */ return; } /* * Update wMaxPacketSize for the default control endpoint: */ udev->ctrl_ep_desc.wMaxPacketSize[0] = udev->ddesc.bMaxPacketSize; /* * Unsetup any existing USB transfer: */ usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); /* * Reset clear stall error counter. */ udev->clear_stall_errors = 0; /* * Try to setup a new USB transfer for the * default control endpoint: */ iface_index = 0; if (usbd_transfer_setup(udev, &iface_index, udev->ctrl_xfer, usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL, &udev->device_mtx)) { DPRINTFN(0, "could not setup default " "USB transfer\n"); } else { goto repeat; } } /*------------------------------------------------------------------------* * usbd_clear_data_toggle - factored out code * * NOTE: the intention of this function is not to reset the hardware * data toggle. *------------------------------------------------------------------------*/ void usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep) { USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); /* check that we have a valid case */ if (udev->flags.usb_mode == USB_MODE_HOST && udev->parent_hub != NULL && udev->bus->methods->clear_stall != NULL && ep->methods != NULL) { (udev->bus->methods->clear_stall) (udev, ep); } } /*------------------------------------------------------------------------* * usbd_clear_data_toggle - factored out code * * NOTE: the intention of this function is not to reset the hardware * data toggle on the USB device side. *------------------------------------------------------------------------*/ void usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep) { DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep); USB_BUS_LOCK(udev->bus); ep->toggle_next = 0; /* some hardware needs a callback to clear the data toggle */ usbd_clear_stall_locked(udev, ep); USB_BUS_UNLOCK(udev->bus); } /*------------------------------------------------------------------------* * usbd_clear_stall_callback - factored out clear stall callback * * Input parameters: * xfer1: Clear Stall Control Transfer * xfer2: Stalled USB Transfer * * This function is NULL safe. * * Return values: * 0: In progress * Else: Finished * * Clear stall config example: * * static const struct usb_config my_clearstall = { * .type = UE_CONTROL, * .endpoint = 0, * .direction = UE_DIR_ANY, * .interval = 50, //50 milliseconds * .bufsize = sizeof(struct usb_device_request), * .timeout = 1000, //1.000 seconds * .callback = &my_clear_stall_callback, // ** * .usb_mode = USB_MODE_HOST, * }; * * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback" * passing the correct parameters. *------------------------------------------------------------------------*/ uint8_t usbd_clear_stall_callback(struct usb_xfer *xfer1, struct usb_xfer *xfer2) { struct usb_device_request req; if (xfer2 == NULL) { /* looks like we are tearing down */ DPRINTF("NULL input parameter\n"); return (0); } USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED); USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED); switch (USB_GET_STATE(xfer1)) { case USB_ST_SETUP: /* * pre-clear the data toggle to DATA0 ("umass.c" and * "ata-usb.c" depends on this) */ usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint); /* setup a clear-stall packet */ req.bmRequestType = UT_WRITE_ENDPOINT; req.bRequest = UR_CLEAR_FEATURE; USETW(req.wValue, UF_ENDPOINT_HALT); req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress; req.wIndex[1] = 0; USETW(req.wLength, 0); /* * "usbd_transfer_setup_sub()" will ensure that * we have sufficient room in the buffer for * the request structure! */ /* copy in the transfer */ usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req)); /* set length */ xfer1->frlengths[0] = sizeof(req); xfer1->nframes = 1; usbd_transfer_submit(xfer1); return (0); case USB_ST_TRANSFERRED: break; default: /* Error */ if (xfer1->error == USB_ERR_CANCELLED) { return (0); } break; } return (1); /* Clear Stall Finished */ } /*------------------------------------------------------------------------* * usbd_transfer_poll * * The following function gets called from the USB keyboard driver and * UMASS when the system has paniced. * * NOTE: It is currently not possible to resume normal operation on * the USB controller which has been polled, due to clearing of the * "up_dsleep" and "up_msleep" flags. *------------------------------------------------------------------------*/ void usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max) { struct usb_xfer *xfer; struct usb_xfer_root *xroot; struct usb_device *udev; struct usb_proc_msg *pm; uint16_t n; uint16_t drop_bus; uint16_t drop_xfer; for (n = 0; n != max; n++) { /* Extra checks to avoid panic */ xfer = ppxfer[n]; if (xfer == NULL) continue; /* no USB transfer */ xroot = xfer->xroot; if (xroot == NULL) continue; /* no USB root */ udev = xroot->udev; if (udev == NULL) continue; /* no USB device */ if (udev->bus == NULL) continue; /* no BUS structure */ if (udev->bus->methods == NULL) continue; /* no BUS methods */ if (udev->bus->methods->xfer_poll == NULL) continue; /* no poll method */ /* make sure that the BUS mutex is not locked */ drop_bus = 0; while (mtx_owned(&xroot->udev->bus->bus_mtx) && !SCHEDULER_STOPPED()) { mtx_unlock(&xroot->udev->bus->bus_mtx); drop_bus++; } /* make sure that the transfer mutex is not locked */ drop_xfer = 0; while (mtx_owned(xroot->xfer_mtx) && !SCHEDULER_STOPPED()) { mtx_unlock(xroot->xfer_mtx); drop_xfer++; } /* Make sure cv_signal() and cv_broadcast() is not called */ USB_BUS_CONTROL_XFER_PROC(udev->bus)->up_msleep = 0; USB_BUS_EXPLORE_PROC(udev->bus)->up_msleep = 0; USB_BUS_GIANT_PROC(udev->bus)->up_msleep = 0; USB_BUS_NON_GIANT_ISOC_PROC(udev->bus)->up_msleep = 0; USB_BUS_NON_GIANT_BULK_PROC(udev->bus)->up_msleep = 0; /* poll USB hardware */ (udev->bus->methods->xfer_poll) (udev->bus); USB_BUS_LOCK(xroot->bus); /* check for clear stall */ if (udev->ctrl_xfer[1] != NULL) { /* poll clear stall start */ pm = &udev->cs_msg[0].hdr; (pm->pm_callback) (pm); /* poll clear stall done thread */ pm = &udev->ctrl_xfer[1]-> xroot->done_m[0].hdr; (pm->pm_callback) (pm); } /* poll done thread */ pm = &xroot->done_m[0].hdr; (pm->pm_callback) (pm); USB_BUS_UNLOCK(xroot->bus); /* restore transfer mutex */ while (drop_xfer--) mtx_lock(xroot->xfer_mtx); /* restore BUS mutex */ while (drop_bus--) mtx_lock(&xroot->udev->bus->bus_mtx); } } static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr, uint8_t type, enum usb_dev_speed speed) { static const uint16_t intr_range_max[USB_SPEED_MAX] = { [USB_SPEED_LOW] = 8, [USB_SPEED_FULL] = 64, [USB_SPEED_HIGH] = 1024, [USB_SPEED_VARIABLE] = 1024, [USB_SPEED_SUPER] = 1024, }; static const uint16_t isoc_range_max[USB_SPEED_MAX] = { [USB_SPEED_LOW] = 0, /* invalid */ [USB_SPEED_FULL] = 1023, [USB_SPEED_HIGH] = 1024, [USB_SPEED_VARIABLE] = 3584, [USB_SPEED_SUPER] = 1024, }; static const uint16_t control_min[USB_SPEED_MAX] = { [USB_SPEED_LOW] = 8, [USB_SPEED_FULL] = 8, [USB_SPEED_HIGH] = 64, [USB_SPEED_VARIABLE] = 512, [USB_SPEED_SUPER] = 512, }; static const uint16_t bulk_min[USB_SPEED_MAX] = { [USB_SPEED_LOW] = 8, [USB_SPEED_FULL] = 8, [USB_SPEED_HIGH] = 512, [USB_SPEED_VARIABLE] = 512, [USB_SPEED_SUPER] = 1024, }; uint16_t temp; memset(ptr, 0, sizeof(*ptr)); switch (type) { case UE_INTERRUPT: ptr->range.max = intr_range_max[speed]; break; case UE_ISOCHRONOUS: ptr->range.max = isoc_range_max[speed]; break; default: if (type == UE_BULK) temp = bulk_min[speed]; else /* UE_CONTROL */ temp = control_min[speed]; /* default is fixed */ ptr->fixed[0] = temp; ptr->fixed[1] = temp; ptr->fixed[2] = temp; ptr->fixed[3] = temp; if (speed == USB_SPEED_FULL) { /* multiple sizes */ ptr->fixed[1] = 16; ptr->fixed[2] = 32; ptr->fixed[3] = 64; } if ((speed == USB_SPEED_VARIABLE) && (type == UE_BULK)) { /* multiple sizes */ ptr->fixed[2] = 1024; ptr->fixed[3] = 1536; } break; } } void * usbd_xfer_softc(struct usb_xfer *xfer) { return (xfer->priv_sc); } void * usbd_xfer_get_priv(struct usb_xfer *xfer) { return (xfer->priv_fifo); } void usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr) { xfer->priv_fifo = ptr; } uint8_t usbd_xfer_state(struct usb_xfer *xfer) { return (xfer->usb_state); } void usbd_xfer_set_flag(struct usb_xfer *xfer, int flag) { switch (flag) { case USB_FORCE_SHORT_XFER: xfer->flags.force_short_xfer = 1; break; case USB_SHORT_XFER_OK: xfer->flags.short_xfer_ok = 1; break; case USB_MULTI_SHORT_OK: xfer->flags.short_frames_ok = 1; break; case USB_MANUAL_STATUS: xfer->flags.manual_status = 1; break; } } void usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag) { switch (flag) { case USB_FORCE_SHORT_XFER: xfer->flags.force_short_xfer = 0; break; case USB_SHORT_XFER_OK: xfer->flags.short_xfer_ok = 0; break; case USB_MULTI_SHORT_OK: xfer->flags.short_frames_ok = 0; break; case USB_MANUAL_STATUS: xfer->flags.manual_status = 0; break; } } /* * The following function returns in milliseconds when the isochronous * transfer was completed by the hardware. The returned value wraps * around 65536 milliseconds. */ uint16_t usbd_xfer_get_timestamp(struct usb_xfer *xfer) { return (xfer->isoc_time_complete); } /* * The following function returns non-zero if the max packet size * field was clamped to a valid value. Else it returns zero. */ uint8_t usbd_xfer_maxp_was_clamped(struct usb_xfer *xfer) { return (xfer->flags_int.maxp_was_clamped); }