/* $NetBSD: cpufunc.h,v 1.29 2003/09/06 09:08:35 rearnsha Exp $ */ /*- * Copyright (c) 1997 Mark Brinicombe. * Copyright (c) 1997 Causality Limited * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Causality Limited. * 4. The name of Causality Limited may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY CAUSALITY LIMITED ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL CAUSALITY LIMITED BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * cpufunc.h * * Prototypes for cpu, mmu and tlb related functions. * * $FreeBSD$ */ #ifndef _MACHINE_CPUFUNC_H_ #define _MACHINE_CPUFUNC_H_ #ifdef _KERNEL #include #include #include static __inline void breakpoint(void) { __asm(".word 0xe7ffffff"); } struct cpu_functions { /* CPU functions */ #if __ARM_ARCH < 6 void (*cf_cpwait) (void); /* MMU functions */ u_int (*cf_control) (u_int bic, u_int eor); void (*cf_setttb) (u_int ttb); /* TLB functions */ void (*cf_tlb_flushID) (void); void (*cf_tlb_flushID_SE) (u_int va); void (*cf_tlb_flushD) (void); void (*cf_tlb_flushD_SE) (u_int va); /* * Cache operations: * * We define the following primitives: * * icache_sync_range Synchronize I-cache range * * dcache_wbinv_all Write-back and Invalidate D-cache * dcache_wbinv_range Write-back and Invalidate D-cache range * dcache_inv_range Invalidate D-cache range * dcache_wb_range Write-back D-cache range * * idcache_wbinv_all Write-back and Invalidate D-cache, * Invalidate I-cache * idcache_wbinv_range Write-back and Invalidate D-cache, * Invalidate I-cache range * * Note that the ARM term for "write-back" is "clean". We use * the term "write-back" since it's a more common way to describe * the operation. * * There are some rules that must be followed: * * ID-cache Invalidate All: * Unlike other functions, this one must never write back. * It is used to intialize the MMU when it is in an unknown * state (such as when it may have lines tagged as valid * that belong to a previous set of mappings). * * I-cache Sync range: * The goal is to synchronize the instruction stream, * so you may beed to write-back dirty D-cache blocks * first. If a range is requested, and you can't * synchronize just a range, you have to hit the whole * thing. * * D-cache Write-Back and Invalidate range: * If you can't WB-Inv a range, you must WB-Inv the * entire D-cache. * * D-cache Invalidate: * If you can't Inv the D-cache, you must Write-Back * and Invalidate. Code that uses this operation * MUST NOT assume that the D-cache will not be written * back to memory. * * D-cache Write-Back: * If you can't Write-back without doing an Inv, * that's fine. Then treat this as a WB-Inv. * Skipping the invalidate is merely an optimization. * * All operations: * Valid virtual addresses must be passed to each * cache operation. */ void (*cf_icache_sync_range) (vm_offset_t, vm_size_t); void (*cf_dcache_wbinv_all) (void); void (*cf_dcache_wbinv_range) (vm_offset_t, vm_size_t); void (*cf_dcache_inv_range) (vm_offset_t, vm_size_t); void (*cf_dcache_wb_range) (vm_offset_t, vm_size_t); void (*cf_idcache_inv_all) (void); void (*cf_idcache_wbinv_all) (void); void (*cf_idcache_wbinv_range) (vm_offset_t, vm_size_t); #endif void (*cf_l2cache_wbinv_all) (void); void (*cf_l2cache_wbinv_range) (vm_offset_t, vm_size_t); void (*cf_l2cache_inv_range) (vm_offset_t, vm_size_t); void (*cf_l2cache_wb_range) (vm_offset_t, vm_size_t); void (*cf_l2cache_drain_writebuf) (void); /* Other functions */ #if __ARM_ARCH < 6 void (*cf_drain_writebuf) (void); #endif void (*cf_sleep) (int mode); #if __ARM_ARCH < 6 /* Soft functions */ void (*cf_context_switch) (void); #endif void (*cf_setup) (void); }; extern struct cpu_functions cpufuncs; extern u_int cputype; #if __ARM_ARCH < 6 #define cpu_cpwait() cpufuncs.cf_cpwait() #define cpu_control(c, e) cpufuncs.cf_control(c, e) #define cpu_setttb(t) cpufuncs.cf_setttb(t) #define cpu_tlb_flushID() cpufuncs.cf_tlb_flushID() #define cpu_tlb_flushID_SE(e) cpufuncs.cf_tlb_flushID_SE(e) #define cpu_tlb_flushD() cpufuncs.cf_tlb_flushD() #define cpu_tlb_flushD_SE(e) cpufuncs.cf_tlb_flushD_SE(e) #define cpu_icache_sync_range(a, s) cpufuncs.cf_icache_sync_range((a), (s)) #define cpu_dcache_wbinv_all() cpufuncs.cf_dcache_wbinv_all() #define cpu_dcache_wbinv_range(a, s) cpufuncs.cf_dcache_wbinv_range((a), (s)) #define cpu_dcache_inv_range(a, s) cpufuncs.cf_dcache_inv_range((a), (s)) #define cpu_dcache_wb_range(a, s) cpufuncs.cf_dcache_wb_range((a), (s)) #define cpu_idcache_inv_all() cpufuncs.cf_idcache_inv_all() #define cpu_idcache_wbinv_all() cpufuncs.cf_idcache_wbinv_all() #define cpu_idcache_wbinv_range(a, s) cpufuncs.cf_idcache_wbinv_range((a), (s)) #endif #define cpu_l2cache_wbinv_all() cpufuncs.cf_l2cache_wbinv_all() #define cpu_l2cache_wb_range(a, s) cpufuncs.cf_l2cache_wb_range((a), (s)) #define cpu_l2cache_inv_range(a, s) cpufuncs.cf_l2cache_inv_range((a), (s)) #define cpu_l2cache_wbinv_range(a, s) cpufuncs.cf_l2cache_wbinv_range((a), (s)) #define cpu_l2cache_drain_writebuf() cpufuncs.cf_l2cache_drain_writebuf() #if __ARM_ARCH < 6 #define cpu_drain_writebuf() cpufuncs.cf_drain_writebuf() #endif #define cpu_sleep(m) cpufuncs.cf_sleep(m) #define cpu_setup() cpufuncs.cf_setup() int set_cpufuncs (void); #define ARCHITECTURE_NOT_PRESENT 1 /* known but not configured */ #define ARCHITECTURE_NOT_SUPPORTED 2 /* not known */ void cpufunc_nullop (void); u_int cpu_ident (void); u_int cpufunc_control (u_int clear, u_int bic); void cpu_domains (u_int domains); u_int cpu_faultstatus (void); u_int cpu_faultaddress (void); u_int cpu_get_control (void); u_int cpu_pfr (int); #if defined(CPU_FA526) void fa526_setup (void); void fa526_setttb (u_int ttb); void fa526_context_switch (void); void fa526_cpu_sleep (int); void fa526_tlb_flushID_SE (u_int); void fa526_icache_sync_range(vm_offset_t start, vm_size_t end); void fa526_dcache_wbinv_all (void); void fa526_dcache_wbinv_range(vm_offset_t start, vm_size_t end); void fa526_dcache_inv_range (vm_offset_t start, vm_size_t end); void fa526_dcache_wb_range (vm_offset_t start, vm_size_t end); void fa526_idcache_wbinv_all(void); void fa526_idcache_wbinv_range(vm_offset_t start, vm_size_t end); #endif #if defined(CPU_ARM9) || defined(CPU_ARM9E) void arm9_setttb (u_int); void arm9_tlb_flushID_SE (u_int va); void arm9_context_switch (void); #endif #if defined(CPU_ARM9) void arm9_icache_sync_range (vm_offset_t, vm_size_t); void arm9_dcache_wbinv_all (void); void arm9_dcache_wbinv_range (vm_offset_t, vm_size_t); void arm9_dcache_inv_range (vm_offset_t, vm_size_t); void arm9_dcache_wb_range (vm_offset_t, vm_size_t); void arm9_idcache_wbinv_all (void); void arm9_idcache_wbinv_range (vm_offset_t, vm_size_t); void arm9_setup (void); extern unsigned arm9_dcache_sets_max; extern unsigned arm9_dcache_sets_inc; extern unsigned arm9_dcache_index_max; extern unsigned arm9_dcache_index_inc; #endif #if defined(CPU_ARM9E) void arm10_setup (void); u_int sheeva_control_ext (u_int, u_int); void sheeva_cpu_sleep (int); void sheeva_setttb (u_int); void sheeva_dcache_wbinv_range (vm_offset_t, vm_size_t); void sheeva_dcache_inv_range (vm_offset_t, vm_size_t); void sheeva_dcache_wb_range (vm_offset_t, vm_size_t); void sheeva_idcache_wbinv_range (vm_offset_t, vm_size_t); void sheeva_l2cache_wbinv_range (vm_offset_t, vm_size_t); void sheeva_l2cache_inv_range (vm_offset_t, vm_size_t); void sheeva_l2cache_wb_range (vm_offset_t, vm_size_t); void sheeva_l2cache_wbinv_all (void); #endif #if defined(CPU_MV_PJ4B) void armv6_idcache_wbinv_all (void); #endif #if defined(CPU_CORTEXA8) || defined(CPU_CORTEXA_MP) || \ defined(CPU_MV_PJ4B) || defined(CPU_KRAIT) void armv7_setttb (u_int); void armv7_idcache_wbinv_all (void); void armv7_cpu_sleep (int); void armv7_setup (void); void armv7_drain_writebuf (void); void armadaxp_idcache_wbinv_all (void); void cortexa_setup (void); #endif #if defined(CPU_MV_PJ4B) void pj4b_config (void); void pj4bv7_setup (void); #endif #if defined(CPU_ARM1176) void arm11_drain_writebuf (void); void arm11x6_setttb (u_int); void arm11x6_setup (void); void arm11x6_sleep (int); /* no ref. for errata */ #endif #if defined(CPU_ARM9E) void armv5_ec_setttb(u_int); void armv5_ec_icache_sync_range(vm_offset_t, vm_size_t); void armv5_ec_dcache_wbinv_all(void); void armv5_ec_dcache_wbinv_range(vm_offset_t, vm_size_t); void armv5_ec_dcache_inv_range(vm_offset_t, vm_size_t); void armv5_ec_dcache_wb_range(vm_offset_t, vm_size_t); void armv5_ec_idcache_wbinv_all(void); void armv5_ec_idcache_wbinv_range(vm_offset_t, vm_size_t); #endif #if defined(CPU_ARM9) || defined(CPU_ARM9E) || \ defined(CPU_FA526) || \ defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425) || \ defined(CPU_XSCALE_81342) void armv4_tlb_flushID (void); void armv4_tlb_flushD (void); void armv4_tlb_flushD_SE (u_int va); void armv4_drain_writebuf (void); void armv4_idcache_inv_all (void); #endif #if defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425) || \ defined(CPU_XSCALE_81342) void xscale_cpwait (void); void xscale_cpu_sleep (int mode); u_int xscale_control (u_int clear, u_int bic); void xscale_setttb (u_int ttb); void xscale_tlb_flushID_SE (u_int va); void xscale_cache_flushID (void); void xscale_cache_flushI (void); void xscale_cache_flushD (void); void xscale_cache_flushD_SE (u_int entry); void xscale_cache_cleanID (void); void xscale_cache_cleanD (void); void xscale_cache_cleanD_E (u_int entry); void xscale_cache_clean_minidata (void); void xscale_cache_purgeID (void); void xscale_cache_purgeID_E (u_int entry); void xscale_cache_purgeD (void); void xscale_cache_purgeD_E (u_int entry); void xscale_cache_syncI (void); void xscale_cache_cleanID_rng (vm_offset_t start, vm_size_t end); void xscale_cache_cleanD_rng (vm_offset_t start, vm_size_t end); void xscale_cache_purgeID_rng (vm_offset_t start, vm_size_t end); void xscale_cache_purgeD_rng (vm_offset_t start, vm_size_t end); void xscale_cache_syncI_rng (vm_offset_t start, vm_size_t end); void xscale_cache_flushD_rng (vm_offset_t start, vm_size_t end); void xscale_context_switch (void); void xscale_setup (void); #endif /* CPU_XSCALE_PXA2X0 || CPU_XSCALE_IXP425 */ #ifdef CPU_XSCALE_81342 void xscalec3_l2cache_purge (void); void xscalec3_cache_purgeID (void); void xscalec3_cache_purgeD (void); void xscalec3_cache_cleanID (void); void xscalec3_cache_cleanD (void); void xscalec3_cache_syncI (void); void xscalec3_cache_purgeID_rng (vm_offset_t start, vm_size_t end); void xscalec3_cache_purgeD_rng (vm_offset_t start, vm_size_t end); void xscalec3_cache_cleanID_rng (vm_offset_t start, vm_size_t end); void xscalec3_cache_cleanD_rng (vm_offset_t start, vm_size_t end); void xscalec3_cache_syncI_rng (vm_offset_t start, vm_size_t end); void xscalec3_l2cache_flush_rng (vm_offset_t, vm_size_t); void xscalec3_l2cache_clean_rng (vm_offset_t start, vm_size_t end); void xscalec3_l2cache_purge_rng (vm_offset_t start, vm_size_t end); void xscalec3_setttb (u_int ttb); void xscalec3_context_switch (void); #endif /* CPU_XSCALE_81342 */ /* * Macros for manipulating CPU interrupts */ #if __ARM_ARCH < 6 #define __ARM_INTR_BITS (PSR_I | PSR_F) #else #define __ARM_INTR_BITS (PSR_I | PSR_F | PSR_A) #endif static __inline uint32_t __set_cpsr(uint32_t bic, uint32_t eor) { uint32_t tmp, ret; __asm __volatile( "mrs %0, cpsr\n" /* Get the CPSR */ "bic %1, %0, %2\n" /* Clear bits */ "eor %1, %1, %3\n" /* XOR bits */ "msr cpsr_xc, %1\n" /* Set the CPSR */ : "=&r" (ret), "=&r" (tmp) : "r" (bic), "r" (eor) : "memory"); return ret; } static __inline uint32_t disable_interrupts(uint32_t mask) { return (__set_cpsr(mask & __ARM_INTR_BITS, mask & __ARM_INTR_BITS)); } static __inline uint32_t enable_interrupts(uint32_t mask) { return (__set_cpsr(mask & __ARM_INTR_BITS, 0)); } static __inline uint32_t restore_interrupts(uint32_t old_cpsr) { return (__set_cpsr(__ARM_INTR_BITS, old_cpsr & __ARM_INTR_BITS)); } static __inline register_t intr_disable(void) { return (disable_interrupts(PSR_I | PSR_F)); } static __inline void intr_restore(register_t s) { restore_interrupts(s); } #undef __ARM_INTR_BITS /* * Functions to manipulate cpu r13 * (in arm/arm32/setstack.S) */ void set_stackptr (u_int mode, u_int address); u_int get_stackptr (u_int mode); /* * Miscellany */ int get_pc_str_offset (void); /* * CPU functions from locore.S */ void cpu_reset (void) __attribute__((__noreturn__)); /* * Cache info variables. */ /* PRIMARY CACHE VARIABLES */ extern int arm_picache_size; extern int arm_picache_line_size; extern int arm_picache_ways; extern int arm_pdcache_size; /* and unified */ extern int arm_pdcache_line_size; extern int arm_pdcache_ways; extern int arm_pcache_type; extern int arm_pcache_unified; extern int arm_dcache_align; extern int arm_dcache_align_mask; extern u_int arm_cache_level; extern u_int arm_cache_loc; extern u_int arm_cache_type[14]; #endif /* _KERNEL */ #endif /* _MACHINE_CPUFUNC_H_ */ /* End of cpufunc.h */