/*- * Copyright (c) 1998,1999 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include "apm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if NAPM > 0 #include #endif #include #include #include static d_open_t acdopen; static d_close_t acdclose; static d_ioctl_t acdioctl; static d_strategy_t acdstrategy; static struct cdevsw acd_cdevsw = { /* open */ acdopen, /* close */ acdclose, /* read */ physread, /* write */ physwrite, /* ioctl */ acdioctl, /* poll */ nopoll, /* mmap */ nommap, /* strategy */ acdstrategy, /* name */ "acd", /* maj */ 117, /* dump */ nodump, /* psize */ nopsize, /* flags */ D_DISK, /* bmaj */ 31 }; /* prototypes */ int32_t acdattach(struct atapi_softc *); static struct acd_softc *acd_init_lun(struct atapi_softc *, int32_t, struct devstat *); static void acd_describe(struct acd_softc *); static void lba2msf(int32_t, u_int8_t *, u_int8_t *, u_int8_t *); static int32_t msf2lba(u_int8_t, u_int8_t, u_int8_t); static void acd_start(struct acd_softc *); static int32_t acd_done(struct atapi_request *); static int32_t acd_read_toc(struct acd_softc *); static int32_t acd_setchan(struct acd_softc *, u_int8_t, u_int8_t, u_int8_t, u_int8_t); static void acd_select_slot(struct acd_softc *); static int32_t acd_open_disk(struct acd_softc *, int32_t); static int32_t acd_open_track(struct acd_softc *, struct wormio_prepare_track *); static int32_t acd_close_track(struct acd_softc *); static int32_t acd_close_disk(struct acd_softc *); static int32_t acd_read_track_info(struct acd_softc *, int32_t, struct acd_track_info*); static int32_t acd_eject(struct acd_softc *, int32_t); static int32_t acd_blank(struct acd_softc *); static int32_t acd_prevent_allow(struct acd_softc *, int32_t); static int32_t acd_start_stop(struct acd_softc *, int32_t); static int32_t acd_pause_resume(struct acd_softc *, int32_t); static int32_t acd_mode_sense(struct acd_softc *, u_int8_t, void *, int32_t); static int32_t acd_mode_select(struct acd_softc *, void *, int32_t); static int32_t acd_set_speed(struct acd_softc *cdp, int32_t); /* internal vars */ MALLOC_DEFINE(M_ACD, "ACD driver", "ATAPI CD driver buffers"); int acdattach(struct atapi_softc *atp) { struct acd_softc *cdp; struct changer *chp; int32_t error, count; static int32_t acd_cdev_done = 0, acdnlun = 0; if (!acd_cdev_done) { cdevsw_add(&acd_cdevsw); acd_cdev_done++; } if ((cdp = acd_init_lun(atp, acdnlun, NULL)) == NULL) { printf("acd: out of memory\n"); return -1; } /* get drive capabilities, some drives needs this repeated */ for (count = 0 ; count < 5 ; count++) { if (!(error = acd_mode_sense(cdp, ATAPI_CDROM_CAP_PAGE, &cdp->cap, sizeof(cdp->cap)))) break; } if (error) { free(cdp, M_ACD); return -1; } cdp->cap.max_read_speed = ntohs(cdp->cap.max_read_speed); cdp->cap.cur_read_speed = ntohs(cdp->cap.cur_read_speed); cdp->cap.max_write_speed = ntohs(cdp->cap.max_write_speed); cdp->cap.cur_write_speed = ntohs(cdp->cap.cur_write_speed); cdp->cap.max_vol_levels = ntohs(cdp->cap.max_vol_levels); cdp->cap.buf_size = ntohs(cdp->cap.buf_size); acd_describe(cdp); /* if this is a changer device, allocate the neeeded lun's */ if (cdp->cap.mech == MST_MECH_CHANGER) { int8_t ccb[16] = { ATAPI_MECH_STATUS, 0, 0, 0, 0, 0, 0, 0, sizeof(struct changer)>>8, sizeof(struct changer), 0, 0, 0, 0, 0, 0 }; chp = malloc(sizeof(struct changer), M_ACD, M_NOWAIT); if (chp == NULL) { printf("acd: out of memory\n"); return 0; } bzero(chp, sizeof(struct changer)); error = atapi_queue_cmd(cdp->atp, ccb, chp, sizeof(struct changer), A_READ, 60, NULL, NULL, NULL); #ifdef ACD_DEBUG printf("error=%02x curr=%02x slots=%d len=%d\n", error, chp->current_slot, chp->slots, htons(chp->table_length)); #endif if (!error) { struct acd_softc *tmpcdp = cdp; int32_t count; int8_t string[16]; chp->table_length = htons(chp->table_length); for (count = 0; count < chp->slots; count++) { if (count > 0) { tmpcdp = acd_init_lun(atp, acdnlun, cdp->stats); if (!tmpcdp) { printf("acd: out of memory\n"); return -1; } } tmpcdp->slot = count; tmpcdp->changer_info = chp; printf("acd%d: changer slot %d %s\n", acdnlun, count, (chp->slot[count].present ? "CD present" : "empty")); acdnlun++; } sprintf(string, "acd%d-", cdp->lun); devstat_add_entry(cdp->stats, string, tmpcdp->lun, DEV_BSIZE, DEVSTAT_NO_ORDERED_TAGS, DEVSTAT_TYPE_CDROM | DEVSTAT_TYPE_IF_IDE, 0x178); } } else { devstat_add_entry(cdp->stats, "acd", cdp->lun, DEV_BSIZE, DEVSTAT_NO_ORDERED_TAGS, DEVSTAT_TYPE_CDROM | DEVSTAT_TYPE_IF_IDE, 0x178); acdnlun++; } return 0; } static struct acd_softc * acd_init_lun(struct atapi_softc *atp, int32_t lun, struct devstat *stats) { struct acd_softc *acd; dev_t dev; if (!(acd = malloc(sizeof(struct acd_softc), M_ACD, M_NOWAIT))) return NULL; bzero(acd, sizeof(struct acd_softc)); bufq_init(&acd->buf_queue); acd->atp = atp; acd->lun = lun; acd->flags &= ~(F_WRITTEN|F_TRACK_PREP|F_TRACK_PREPED); acd->block_size = 2048; acd->refcnt = 0; acd->slot = -1; acd->changer_info = NULL; acd->atp->flags |= ATAPI_F_MEDIA_CHANGED; if (stats == NULL) { if (!(acd->stats = malloc(sizeof(struct devstat), M_ACD, M_NOWAIT))) return NULL; bzero(acd->stats, sizeof(struct devstat)); } else acd->stats = stats; dev = make_dev(&acd_cdevsw, dkmakeminor(lun, 0, 0), UID_ROOT, GID_OPERATOR, 0644, "racd%da", lun); dev->si_drv1 = acd; dev->si_iosize_max = 252 * DEV_BSIZE; dev = make_dev(&acd_cdevsw, dkmakeminor(lun, 0, RAW_PART), UID_ROOT, GID_OPERATOR, 0644, "racd%dc", lun); dev->si_drv1 = acd; dev->si_iosize_max = 252 * DEV_BSIZE; dev = make_dev(&acd_cdevsw, dkmakeminor(lun, 0, 0), UID_ROOT, GID_OPERATOR, 0644, "acd%da", lun); dev->si_drv1 = acd; dev->si_iosize_max = 252 * DEV_BSIZE; dev = make_dev(&acd_cdevsw, dkmakeminor(lun, 0, RAW_PART), UID_ROOT, GID_OPERATOR, 0644, "acd%dc", lun); dev->si_drv1 = acd; dev->si_iosize_max = 252 * DEV_BSIZE; return acd; } static void acd_describe(struct acd_softc *cdp) { int32_t comma; int8_t *mechanism; int8_t model_buf[40+1]; int8_t revision_buf[8+1]; bpack(cdp->atp->atapi_parm->model, model_buf, sizeof(model_buf)); bpack(cdp->atp->atapi_parm->revision, revision_buf, sizeof(revision_buf)); printf("acd%d: <%s/%s> CDROM drive at ata%d as %s\n", cdp->lun, model_buf, revision_buf, cdp->atp->controller->lun, (cdp->atp->unit == ATA_MASTER) ? "master" : "slave "); if (cdp->cap.cur_read_speed) { printf("acd%d: ", cdp->lun); printf("read %dKB/s", cdp->cap.cur_read_speed * 1000 / 1024); if (cdp->cap.max_read_speed) printf(" (%dKB/s)", cdp->cap.max_read_speed * 1000 / 1024); if ((cdp->cap.cur_write_speed) && (cdp->cap.write_cdr || cdp->cap.write_cdrw || cdp->cap.write_dvdr || cdp->cap.write_dvdram)) { printf(" write %dKB/s", cdp->cap.cur_write_speed * 1000 / 1024); if (cdp->cap.max_write_speed) printf(" (%dKB/s)", cdp->cap.max_write_speed * 1000 / 1024); } } if (cdp->cap.buf_size) printf(", %dKB buffer", cdp->cap.buf_size); printf(", %s\n", ata_mode2str(cdp->atp->controller->mode[ (cdp->atp->unit == ATA_MASTER) ? 0 : 1])); printf("acd%d: supported read types:", cdp->lun); comma = 0; if (cdp->cap.read_cdr) { printf(" CD-R"); comma = 1; } if (cdp->cap.read_cdrw) { printf("%s CD-RW", comma ? "," : ""); comma = 1; } if (cdp->cap.cd_da) { printf("%s CD-DA", comma ? "," : ""); comma = 1; } if (cdp->cap.read_dvdrom) { printf("%s DVD-ROM", comma ? "," : ""); comma = 1; } if (cdp->cap.read_dvdr) { printf("%s DVD-R", comma ? "," : ""); comma = 1; } if (cdp->cap.read_dvdram) { printf("%s DVD-RAM", comma ? "," : ""); comma = 1; } if (cdp->cap.read_packet) printf("%s packet", comma ? "," : ""); if (cdp->cap.write_cdr || cdp->cap.write_cdrw || cdp->cap.write_dvdr || cdp->cap.write_dvdram) { printf("\nacd%d: supported write types:", cdp->lun); comma = 0; if (cdp->cap.write_cdr) { printf(" CD-R" ); comma = 1; } if (cdp->cap.write_cdrw) { printf("%s CD-RW", comma ? "," : ""); comma = 1; } if (cdp->cap.write_dvdr) { printf("%s DVD-R", comma ? "," : ""); comma = 1; } if (cdp->cap.write_dvdram) { printf("%s DVD-RAM", comma ? "," : ""); comma = 1; } if (cdp->cap.test_write) printf("%s test write", comma ? "," : ""); } if (cdp->cap.audio_play) { printf("\nacd%d: Audio: ", cdp->lun); if (cdp->cap.audio_play) printf("play"); if (cdp->cap.max_vol_levels) printf(", %d volume levels", cdp->cap.max_vol_levels); } printf("\nacd%d: Mechanism: ", cdp->lun); switch (cdp->cap.mech) { case MST_MECH_CADDY: mechanism = "caddy"; break; case MST_MECH_TRAY: mechanism = "tray"; break; case MST_MECH_POPUP: mechanism = "popup"; break; case MST_MECH_CHANGER: mechanism = "changer"; break; case MST_MECH_CARTRIDGE: mechanism = "cartridge"; break; default: mechanism = 0; break; } if (mechanism) printf("%s%s", cdp->cap.eject ? "ejectable " : "", mechanism); else if (cdp->cap.eject) printf("ejectable"); if (cdp->cap.mech != MST_MECH_CHANGER) { printf("\nacd%d: Medium: ", cdp->lun); switch (cdp->cap.medium_type & MST_TYPE_MASK_HIGH) { case MST_CDROM: printf("CD-ROM "); break; case MST_CDR: printf("CD-R "); break; case MST_CDRW: printf("CD-RW "); break; case MST_DOOR_OPEN: printf("door open"); break; case MST_NO_DISC: printf("no/blank disc inside"); break; case MST_FMT_ERROR: printf("medium format error"); break; } if ((cdp->cap.medium_type & MST_TYPE_MASK_HIGH) < MST_TYPE_MASK_HIGH) { switch (cdp->cap.medium_type & MST_TYPE_MASK_LOW) { case MST_DATA_120: printf("120mm data disc loaded"); break; case MST_AUDIO_120: printf("120mm audio disc loaded"); break; case MST_COMB_120: printf("120mm data/audio disc loaded"); break; case MST_PHOTO_120: printf("120mm photo disc loaded"); break; case MST_DATA_80: printf("80mm data disc loaded"); break; case MST_AUDIO_80: printf("80mm audio disc loaded"); break; case MST_COMB_80: printf("80mm data/audio disc loaded"); break; case MST_PHOTO_80: printf("80mm photo disc loaded"); break; case MST_FMT_NONE: switch (cdp->cap.medium_type & MST_TYPE_MASK_HIGH) { case MST_CDROM: printf("unknown medium"); break; case MST_CDR: case MST_CDRW: printf("blank medium"); break; } break; default: printf("unknown type=0x%x", cdp->cap.medium_type); break; } } } if (cdp->cap.lock) printf(cdp->cap.locked ? ", locked" : ", unlocked"); if (cdp->cap.prevent) printf(", lock protected"); printf("\n"); } static __inline void lba2msf(int32_t lba, u_int8_t *m, u_int8_t *s, u_int8_t *f) { lba += 150; lba &= 0xffffff; *m = lba / (60 * 75); lba %= (60 * 75); *s = lba / 75; *f = lba % 75; } static __inline int32_t msf2lba(u_int8_t m, u_int8_t s, u_int8_t f) { return (m * 60 + s) * 75 + f - 150; } static int acdopen(dev_t dev, int32_t flags, int32_t fmt, struct proc *p) { struct acd_softc *cdp = dev->si_drv1; if (cdp->flags & F_WRITING) return EBUSY; if (flags & FWRITE) { if ((cdp->flags & F_BOPEN) || cdp->refcnt) return EBUSY; else cdp->flags |= F_WRITING; } dev->si_bsize_phys = 2048; /* XXX SOS */ if (!(cdp->flags & F_BOPEN) && !cdp->refcnt) { acd_prevent_allow(cdp, 1); cdp->flags |= F_LOCKED; if (!(flags & O_NONBLOCK) && !(flags & FWRITE)) acd_read_toc(cdp); } if (fmt == S_IFBLK) cdp->flags |= F_BOPEN; else cdp->refcnt++; return 0; } static int acdclose(dev_t dev, int32_t flags, int32_t fmt, struct proc *p) { struct acd_softc *cdp = dev->si_drv1; if (fmt == S_IFBLK) cdp->flags &= ~F_BOPEN; else cdp->refcnt--; /* are we the last open ?? */ if (!(cdp->flags & F_BOPEN) && !cdp->refcnt) { /* yup, do we need to close any written tracks */ if ((flags & FWRITE) != 0) { if ((cdp->flags & F_TRACK_PREPED) != 0) { acd_close_track(cdp); cdp->flags &= ~(F_TRACK_PREPED | F_TRACK_PREP); } } acd_prevent_allow(cdp, 0); /* allow the user eject */ } cdp->flags &= ~(F_LOCKED | F_WRITING); return 0; } static int acdioctl(dev_t dev, u_long cmd, caddr_t addr, int32_t flag, struct proc *p) { struct acd_softc *cdp = dev->si_drv1; int32_t error = 0; if (cdp->atp->flags & ATAPI_F_MEDIA_CHANGED) switch (cmd) { case CDIOCRESET: atapi_test_ready(cdp->atp); break; default: acd_read_toc(cdp); acd_prevent_allow(cdp, 1); cdp->flags |= F_LOCKED; break; } switch (cmd) { case CDIOCRESUME: error = acd_pause_resume(cdp, 1); break; case CDIOCPAUSE: error = acd_pause_resume(cdp, 0); break; case CDIOCSTART: error = acd_start_stop(cdp, 1); break; case CDIOCSTOP: error = acd_start_stop(cdp, 0); break; case CDIOCALLOW: acd_select_slot(cdp); cdp->flags &= ~F_LOCKED; error = acd_prevent_allow(cdp, 0); break; case CDIOCPREVENT: acd_select_slot(cdp); cdp->flags |= F_LOCKED; error = acd_prevent_allow(cdp, 1); break; case CDIOCRESET: error = suser(p); if (error) break; error = atapi_test_ready(cdp->atp); break; case CDIOCEJECT: if ((cdp->flags & F_BOPEN) && cdp->refcnt) { error = EBUSY; break; } error = acd_eject(cdp, 0); break; case CDIOCCLOSE: if ((cdp->flags & F_BOPEN) && cdp->refcnt) break; error = acd_eject(cdp, 1); break; case CDIOREADTOCHEADER: if (!cdp->toc.hdr.ending_track) { error = EIO; break; } bcopy(&cdp->toc.hdr, addr, sizeof(cdp->toc.hdr)); break; case CDIOREADTOCENTRYS: { struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *)addr; struct toc *toc = &cdp->toc; struct toc buf; u_int32_t len; u_int8_t starting_track = te->starting_track; if (!cdp->toc.hdr.ending_track) { error = EIO; break; } if (te->data_len < sizeof(toc->tab[0]) || (te->data_len % sizeof(toc->tab[0])) != 0 || (te->address_format != CD_MSF_FORMAT && te->address_format != CD_LBA_FORMAT)) { error = EINVAL; break; } if (!starting_track) starting_track = toc->hdr.starting_track; else if (starting_track == 170) starting_track = toc->hdr.ending_track + 1; else if (starting_track < toc->hdr.starting_track || starting_track > toc->hdr.ending_track + 1) { error = EINVAL; break; } len = ((toc->hdr.ending_track + 1 - starting_track) + 1) * sizeof(toc->tab[0]); if (te->data_len < len) len = te->data_len; if (len > sizeof(toc->tab)) { error = EINVAL; break; } if (te->address_format == CD_MSF_FORMAT) { struct cd_toc_entry *entry; buf = cdp->toc; toc = &buf; entry = toc->tab + (toc->hdr.ending_track + 1 - toc->hdr.starting_track) + 1; while (--entry >= toc->tab) lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute, &entry->addr.msf.second, &entry->addr.msf.frame); } error = copyout(toc->tab + starting_track - toc->hdr.starting_track, te->data, len); break; } case CDIOREADTOCENTRY: { struct ioc_read_toc_single_entry *te = (struct ioc_read_toc_single_entry *)addr; struct toc *toc = &cdp->toc; struct toc buf; u_int8_t track = te->track; if (!cdp->toc.hdr.ending_track) { error = EIO; break; } if (te->address_format != CD_MSF_FORMAT && te->address_format != CD_LBA_FORMAT) { error = EINVAL; break; } if (!track) track = toc->hdr.starting_track; else if (track == 170) track = toc->hdr.ending_track + 1; else if (track < toc->hdr.starting_track || track > toc->hdr.ending_track + 1) { error = EINVAL; break; } if (te->address_format == CD_MSF_FORMAT) { struct cd_toc_entry *entry; buf = cdp->toc; toc = &buf; entry = toc->tab + (track - toc->hdr.starting_track); lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute, &entry->addr.msf.second, &entry->addr.msf.frame); } bcopy(toc->tab + track - toc->hdr.starting_track, &te->entry, sizeof(struct cd_toc_entry)); } break; case CDIOCREADSUBCHANNEL: { struct ioc_read_subchannel *args = (struct ioc_read_subchannel *)addr; struct cd_sub_channel_info data; u_int32_t len = args->data_len; int32_t abslba, rellba; int8_t ccb[16] = { ATAPI_READ_SUBCHANNEL, 0, 0x40, 1, 0, 0, 0, sizeof(cdp->subchan)>>8, sizeof(cdp->subchan), 0, 0, 0, 0, 0, 0, 0 }; if (len > sizeof(data) || len < sizeof(struct cd_sub_channel_header)) { error = EINVAL; break; } if ((error = atapi_queue_cmd(cdp->atp, ccb, &cdp->subchan, sizeof(cdp->subchan), A_READ, 10, NULL, NULL, NULL))) { break; } abslba = cdp->subchan.abslba; rellba = cdp->subchan.rellba; if (args->address_format == CD_MSF_FORMAT) { lba2msf(ntohl(abslba), &data.what.position.absaddr.msf.minute, &data.what.position.absaddr.msf.second, &data.what.position.absaddr.msf.frame); lba2msf(ntohl(rellba), &data.what.position.reladdr.msf.minute, &data.what.position.reladdr.msf.second, &data.what.position.reladdr.msf.frame); } else { data.what.position.absaddr.lba = abslba; data.what.position.reladdr.lba = rellba; } data.header.audio_status = cdp->subchan.audio_status; data.what.position.control = cdp->subchan.control & 0xf; data.what.position.addr_type = cdp->subchan.control >> 4; data.what.position.track_number = cdp->subchan.track; data.what.position.index_number = cdp->subchan.indx; error = copyout(&data, args->data, len); break; } case CDIOCPLAYMSF: { struct ioc_play_msf *args = (struct ioc_play_msf *)addr; int8_t ccb[16] = { ATAPI_PLAY_MSF, 0, 0, args->start_m, args->start_s, args->start_f, args->end_m, args->end_s, args->end_f, 0, 0, 0, 0, 0, 0, 0 }; error = atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 10, NULL, NULL, NULL); break; } case CDIOCPLAYBLOCKS: { struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr; int8_t ccb[16] = { ATAPI_PLAY_BIG, 0, args->blk>>24, args->blk>>16, args->blk>>8, args->blk, args->len>>24, args->len>>16, args->len>>8, args->len, 0, 0, 0, 0, 0, 0 }; error = atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 10, NULL, NULL, NULL); break; } case CDIOCPLAYTRACKS: { struct ioc_play_track *args = (struct ioc_play_track *)addr; u_int32_t start, len; int32_t t1, t2; int8_t ccb[16]; if (!cdp->toc.hdr.ending_track) { error = EIO; break; } if (args->end_track < cdp->toc.hdr.ending_track + 1) ++args->end_track; if (args->end_track > cdp->toc.hdr.ending_track + 1) args->end_track = cdp->toc.hdr.ending_track + 1; t1 = args->start_track - cdp->toc.hdr.starting_track; t2 = args->end_track - cdp->toc.hdr.starting_track; if (t1 < 0 || t2 < 0) { error = EINVAL; break; } start = ntohl(cdp->toc.tab[t1].addr.lba); len = ntohl(cdp->toc.tab[t2].addr.lba) - start; bzero(ccb, sizeof(ccb)); ccb[0] = ATAPI_PLAY_BIG; ccb[2] = start>>24; ccb[3] = start>>16; ccb[4] = start>>8; ccb[5] = start; ccb[6] = len>>24; ccb[7] = len>>16; ccb[8] = len>>8; ccb[9] = len; error = atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 10, NULL, NULL, NULL); break; } case CDIOCREADAUDIO: { struct ioc_read_audio *args = (struct ioc_read_audio *)addr; int32_t lba, frames, error = 0; u_int8_t *buffer, *ubuf = args->buffer; int8_t ccb[16]; if (!cdp->toc.hdr.ending_track) { error = EIO; break; } if ((frames = args->nframes) < 0) { error = EINVAL; break; } if (args->address_format == CD_LBA_FORMAT) lba = args->address.lba; else if (args->address_format == CD_MSF_FORMAT) lba = msf2lba(args->address.msf.minute, args->address.msf.second, args->address.msf.frame); else { error = EINVAL; break; } #ifndef CD_BUFFER_BLOCKS #define CD_BUFFER_BLOCKS 13 #endif if (!(buffer = malloc(CD_BUFFER_BLOCKS * 2352, M_ACD, M_NOWAIT))){ error = ENOMEM; break; } bzero(ccb, sizeof(ccb)); while (frames > 0) { int32_t size; u_int8_t blocks; blocks = (frames>CD_BUFFER_BLOCKS) ? CD_BUFFER_BLOCKS : frames; size = blocks * 2352; ccb[0] = ATAPI_READ_CD; ccb[1] = 4; ccb[2] = lba>>24; ccb[3] = lba>>16; ccb[4] = lba>>8; ccb[5] = lba; ccb[8] = blocks; ccb[9] = 0xf0; if ((error = atapi_queue_cmd(cdp->atp, ccb, buffer, size, A_READ, 30, NULL, NULL, NULL))) break; if ((error = copyout(buffer, ubuf, size))) break; ubuf += size; frames -= blocks; lba += blocks; } free(buffer, M_ACD); if (args->address_format == CD_LBA_FORMAT) args->address.lba = lba; else if (args->address_format == CD_MSF_FORMAT) lba2msf(lba, &args->address.msf.minute, &args->address.msf.second, &args->address.msf.frame); break; } case CDIOCGETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE, &cdp->au, sizeof(cdp->au)))) break; if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) { error = EIO; break; } arg->vol[0] = cdp->au.port[0].volume; arg->vol[1] = cdp->au.port[1].volume; arg->vol[2] = cdp->au.port[2].volume; arg->vol[3] = cdp->au.port[3].volume; break; } case CDIOCSETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE, &cdp->au, sizeof(cdp->au)))) break; if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) { error = EIO; break; } if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE_MASK, &cdp->aumask, sizeof(cdp->aumask)))) break; cdp->au.data_length = 0; cdp->au.port[0].channels = CHANNEL_0; cdp->au.port[1].channels = CHANNEL_1; cdp->au.port[0].volume = arg->vol[0] & cdp->aumask.port[0].volume; cdp->au.port[1].volume = arg->vol[1] & cdp->aumask.port[1].volume; cdp->au.port[2].volume = arg->vol[2] & cdp->aumask.port[2].volume; cdp->au.port[3].volume = arg->vol[3] & cdp->aumask.port[3].volume; error = acd_mode_select(cdp, &cdp->au, sizeof(cdp->au)); break; } case CDIOCSETPATCH: { struct ioc_patch *arg = (struct ioc_patch *)addr; error = acd_setchan(cdp, arg->patch[0], arg->patch[1], arg->patch[2], arg->patch[3]); break; } case CDIOCSETMONO: error = acd_setchan(cdp, CHANNEL_0|CHANNEL_1, CHANNEL_0|CHANNEL_1, 0,0); break; case CDIOCSETSTEREO: error = acd_setchan(cdp, CHANNEL_0, CHANNEL_1, 0, 0); break; case CDIOCSETMUTE: error = acd_setchan(cdp, 0, 0, 0, 0); break; case CDIOCSETLEFT: error = acd_setchan(cdp, CHANNEL_0, CHANNEL_0, 0, 0); break; case CDIOCSETRIGHT: error = acd_setchan(cdp, CHANNEL_1, CHANNEL_1, 0, 0); break; case CDRIOCNEXTWRITEABLEADDR: { struct acd_track_info track_info; if ((error = acd_read_track_info(cdp, 0xff, &track_info))) break; if (!track_info.nwa_valid) { error = EINVAL; break; } cdp->next_writeable_addr = track_info.next_writeable_addr; *(int*)addr = track_info.next_writeable_addr; } break; case WORMIOCPREPDISK: { struct wormio_prepare_disk *w = (struct wormio_prepare_disk *)addr; if (w->dummy != 0 && w->dummy != 1) error = EINVAL; else { error = acd_open_disk(cdp, w->dummy); if (error == 0) { cdp->flags |= F_DISK_PREPED; cdp->dummy = w->dummy; } /* set speed in KB/s (approximate) */ acd_set_speed(cdp, w->speed * 177); } break; } case WORMIOCPREPTRACK: { struct wormio_prepare_track *w =(struct wormio_prepare_track *)addr; if (w->audio != 0 && w->audio != 1) error = EINVAL; else if (w->audio == 0 && w->preemp) error = EINVAL; else if ((cdp->flags & F_DISK_PREPED) == 0) { error = EINVAL; printf("acd%d: sequence error (PREP_TRACK)\n", cdp->lun); } else { cdp->flags |= F_TRACK_PREP; cdp->preptrack = *w; } break; } case WORMIOCFINISHTRACK: if ((cdp->flags & F_TRACK_PREPED) != 0) error = acd_close_track(cdp); cdp->flags &= ~(F_TRACK_PREPED | F_TRACK_PREP); break; case WORMIOCFIXATION: { struct wormio_fixation *w = (struct wormio_fixation *)addr; if ((cdp->flags & F_WRITTEN) == 0) error = EINVAL; else if (w->toc_type < 0 /* WORM_TOC_TYPE_AUDIO */ || w->toc_type > 4 /* WORM_TOC_TYPE_CDI */ ) error = EINVAL; else if (w->onp != 0 && w->onp != 1) error = EINVAL; else { /* no fixation needed if dummy write */ if (cdp->dummy == 0) error = acd_close_disk(cdp); cdp->flags &= ~(F_WRITTEN|F_DISK_PREPED|F_TRACK_PREP|F_TRACK_PREPED); } break; } case CDRIOCBLANK: error = acd_blank(cdp); break; default: error = ENOTTY; } return error; } static void acdstrategy(struct buf *bp) { struct acd_softc *cdp = bp->b_dev->si_drv1; int32_t s; #ifdef NOTYET /* allow write only on CD-R/RW media */ /* all for now SOS */ if (!(bp->b_flags & B_READ) && !(writeable_media)) { bp->b_error = EROFS; bp->b_flags |= B_ERROR; biodone(bp); return; } #endif if (bp->b_bcount == 0) { bp->b_resid = 0; biodone(bp); return; } /* check for valid blocksize SOS */ bp->b_pblkno = bp->b_blkno; bp->b_resid = bp->b_bcount; s = splbio(); bufqdisksort(&cdp->buf_queue, bp); acd_start(cdp); splx(s); } static void acd_start(struct acd_softc *cdp) { struct buf *bp = bufq_first(&cdp->buf_queue); u_int32_t lba, count; int8_t ccb[16]; if (!bp) return; bufq_remove(&cdp->buf_queue, bp); /* reject all queued entries if media changed */ if (cdp->atp->flags & ATAPI_F_MEDIA_CHANGED) { bp->b_error = EIO; bp->b_flags |= B_ERROR; biodone(bp); return; } acd_select_slot(cdp); if ((bp->b_flags & B_READ) == B_WRITE) { if ((cdp->flags & F_TRACK_PREPED) == 0) { if ((cdp->flags & F_TRACK_PREP) == 0) { printf("acd%d: sequence error\n", cdp->lun); bp->b_error = EIO; bp->b_flags |= B_ERROR; biodone(bp); return; } else { if (acd_open_track(cdp, &cdp->preptrack) != 0) { biodone(bp); return; } cdp->flags |= F_TRACK_PREPED; } } } bzero(ccb, sizeof(ccb)); if (bp->b_flags & B_READ) { lba = bp->b_blkno / (cdp->block_size / DEV_BSIZE); ccb[0] = ATAPI_READ_BIG; } else { lba = cdp->next_writeable_addr + (bp->b_offset / cdp->block_size); ccb[0] = ATAPI_WRITE_BIG; } count = (bp->b_bcount + (cdp->block_size - 1)) / cdp->block_size; #ifdef ACD_DEBUG printf("acd%d: lba=%d, count=%d\n", cdp->lun, lba, count); #endif ccb[1] = 0; ccb[2] = lba>>24; ccb[3] = lba>>16; ccb[4] = lba>>8; ccb[5] = lba; ccb[7] = count>>8; ccb[8] = count; devstat_start_transaction(cdp->stats); atapi_queue_cmd(cdp->atp, ccb, bp->b_data, bp->b_bcount, (bp->b_flags&B_READ)?A_READ : 0, 30, acd_done, cdp, bp); } static int32_t acd_done(struct atapi_request *request) { struct buf *bp = request->bp; struct acd_softc *cdp = request->driver; int32_t error = request->result; if (error) { bp->b_error = error; bp->b_flags |= B_ERROR; } else { bp->b_resid = request->bytecount; if ((bp->b_flags & B_READ) == B_WRITE) cdp->flags |= F_WRITTEN; } devstat_end_transaction_buf(cdp->stats, bp); biodone(bp); acd_start(cdp); return 0; } static int32_t acd_read_toc(struct acd_softc *cdp) { int32_t ntracks, len; int8_t ccb[16]; bzero(&cdp->toc, sizeof(cdp->toc)); bzero(&cdp->info, sizeof(cdp->info)); bzero(ccb, sizeof(ccb)); acd_select_slot(cdp); atapi_test_ready(cdp->atp); if (cdp->atp->flags & ATAPI_F_MEDIA_CHANGED) cdp->flags &= ~(F_WRITTEN | F_TRACK_PREP | F_TRACK_PREPED); cdp->atp->flags &= ~ATAPI_F_MEDIA_CHANGED; len = sizeof(struct ioc_toc_header) + sizeof(struct cd_toc_entry); ccb[0] = ATAPI_READ_TOC; ccb[7] = len>>8; ccb[8] = len; if (atapi_queue_cmd(cdp->atp, ccb, &cdp->toc, len, A_READ, 30, NULL, NULL, NULL)) { bzero(&cdp->toc, sizeof(cdp->toc)); return 0; } ntracks = cdp->toc.hdr.ending_track - cdp->toc.hdr.starting_track + 1; if (ntracks <= 0 || ntracks > MAXTRK) { bzero(&cdp->toc, sizeof(cdp->toc)); return 0; } len = sizeof(struct ioc_toc_header)+(ntracks+1)*sizeof(struct cd_toc_entry); bzero(ccb, sizeof(ccb)); ccb[0] = ATAPI_READ_TOC; ccb[7] = len>>8; ccb[8] = len; if (atapi_queue_cmd(cdp->atp, ccb, &cdp->toc, len, A_READ, 30, NULL, NULL, NULL)) { bzero(&cdp->toc, sizeof(cdp->toc)); return 0; } cdp->toc.hdr.len = ntohs(cdp->toc.hdr.len); bzero(ccb, sizeof(ccb)); ccb[0] = ATAPI_READ_CAPACITY; if (atapi_queue_cmd(cdp->atp, ccb, &cdp->info, sizeof(cdp->info), A_READ, 30, NULL, NULL, NULL)) bzero(&cdp->info, sizeof(cdp->info)); cdp->info.volsize = ntohl(cdp->info.volsize); cdp->info.blksize = ntohl(cdp->info.blksize); #ifdef ACD_DEBUG if (cdp->info.volsize && cdp->toc.hdr.ending_track) { printf("acd%d: ", cdp->lun); if (cdp->toc.tab[0].control & 4) printf("%dMB ", cdp->info.volsize / 512); else printf("%d:%d audio ", cdp->info.volsize / 75 / 60, cdp->info.volsize / 75 % 60); printf("(%d sectors (%d bytes)), %d tracks\n", cdp->info.volsize, cdp->info.blksize, cdp->toc.hdr.ending_track - cdp->toc.hdr.starting_track + 1); } #endif return 0; } static int32_t acd_setchan(struct acd_softc *cdp, u_int8_t c0, u_int8_t c1, u_int8_t c2, u_int8_t c3) { int32_t error; if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE, &cdp->au, sizeof(cdp->au)))) return error; if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) return EIO; cdp->au.data_length = 0; cdp->au.port[0].channels = c0; cdp->au.port[1].channels = c1; cdp->au.port[2].channels = c2; cdp->au.port[3].channels = c3; return acd_mode_select(cdp, &cdp->au, sizeof(cdp->au)); } static void acd_select_slot(struct acd_softc *cdp) { int8_t ccb[16]; if (cdp->slot < 0 || cdp->changer_info->current_slot == cdp->slot) return; /* unlock (might not be needed but its cheaper than asking) */ acd_prevent_allow(cdp, 0); bzero(ccb, sizeof(ccb)); /* unload the current media from player */ ccb[0] = ATAPI_LOAD_UNLOAD; ccb[1] = 0x01; ccb[4] = 2; ccb[8] = cdp->changer_info->current_slot; atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 10, NULL, NULL, NULL); atapi_wait_ready(cdp->atp, 30); /* load the wanted slot */ ccb[0] = ATAPI_LOAD_UNLOAD; ccb[1] = 0x01; ccb[4] = 3; ccb[8] = cdp->slot; atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 10, NULL, NULL, NULL); atapi_wait_ready(cdp->atp, 30); cdp->changer_info->current_slot = cdp->slot; /* lock the media if needed */ if (cdp->flags & F_LOCKED) acd_prevent_allow(cdp, 1); } static int32_t acd_open_disk(struct acd_softc *cdp, int32_t test) { cdp->next_writeable_addr = 0; return 0; } static int32_t acd_close_disk(struct acd_softc *cdp) { int8_t ccb[16] = { ATAPI_CLOSE_TRACK, 0x01, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int32_t error; error = atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 10, NULL, NULL, NULL); if (error) return error; return atapi_wait_ready(cdp->atp, 10*60); } static int32_t acd_open_track(struct acd_softc *cdp, struct wormio_prepare_track *ptp) { struct write_param param; int32_t error; if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE, ¶m, sizeof(param)))) return error; param.page_code = 0x05; param.page_length = 0x32; param.test_write = cdp->dummy ? 1 : 0; param.write_type = CDR_WTYPE_TRACK; switch (ptp->track_type) { case BLOCK_RAW: if (ptp->preemp) param.track_mode = CDR_TMODE_AUDIO; else param.track_mode = 0; cdp->block_size = 2352; param.data_block_type = CDR_DB_RAW; param.session_format = CDR_SESS_CDROM; break; case BLOCK_MODE_1: cdp->block_size = 2048; param.track_mode = CDR_TMODE_DATA; param.data_block_type = CDR_DB_ROM_MODE1; param.session_format = CDR_SESS_CDROM; break; case BLOCK_MODE_2: cdp->block_size = 2336; param.track_mode = CDR_TMODE_DATA; param.data_block_type = CDR_DB_ROM_MODE2; param.session_format = CDR_SESS_CDROM; break; case BLOCK_MODE_2_FORM_1: cdp->block_size = 2048; param.track_mode = CDR_TMODE_DATA; param.data_block_type = CDR_DB_XA_MODE1; param.session_format = CDR_SESS_CDROM_XA; break; case BLOCK_MODE_2_FORM_1b: cdp->block_size = 2056; param.track_mode = CDR_TMODE_DATA; param.data_block_type = CDR_DB_XA_MODE2_F1; param.session_format = CDR_SESS_CDROM_XA; break; case BLOCK_MODE_2_FORM_2: cdp->block_size = 2324; param.track_mode = CDR_TMODE_DATA; param.data_block_type = CDR_DB_XA_MODE2_F2; param.session_format = CDR_SESS_CDROM_XA; break; case BLOCK_MODE_2_FORM_2b: cdp->block_size = 2332; param.track_mode = CDR_TMODE_DATA; param.data_block_type = CDR_DB_XA_MODE2_MIX; param.session_format = CDR_SESS_CDROM_XA; break; } #if 1 param.multi_session = CDR_MSES_MULTI; #else param.multi_session = CDR_MSES_NONE; #endif param.fp = 0; param.packet_size = 0; return acd_mode_select(cdp, ¶m, sizeof(param)); } static int32_t acd_close_track(struct acd_softc *cdp) { int8_t ccb1[16] = { ATAPI_SYNCHRONIZE_CACHE, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int8_t ccb2[16] = { ATAPI_CLOSE_TRACK, 0x01, 0x01, 0, 0, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int32_t error; error = atapi_queue_cmd(cdp->atp, ccb1, NULL, 0, 0, 10, NULL, NULL, NULL); if (error) return error; error = atapi_wait_ready(cdp->atp, 5*60); if (error) return error; error = atapi_queue_cmd(cdp->atp, ccb2, NULL, 0, 0, 10, NULL, NULL, NULL); if (error) return error; return atapi_wait_ready(cdp->atp, 5*60); } static int32_t acd_read_track_info(struct acd_softc *cdp, int32_t lba, struct acd_track_info *info) { int8_t ccb[16] = { ATAPI_READ_TRACK_INFO, 1, lba>>24, lba>>16, lba>>8, lba, 0, sizeof(*info)>>8, sizeof(*info), 0, 0, 0, 0, 0, 0, 0 }; int32_t error; if ((error = atapi_queue_cmd(cdp->atp, ccb, info, sizeof(*info), A_READ, 30, NULL, NULL, NULL))) return error; info->track_start_addr = ntohl(info->track_start_addr); info->next_writeable_addr = ntohl(info->next_writeable_addr); info->free_blocks = ntohl(info->free_blocks); info->fixed_packet_size = ntohl(info->fixed_packet_size); info->track_length = ntohl(info->track_length); return 0; } static int32_t acd_eject(struct acd_softc *cdp, int32_t close) { int32_t error; acd_select_slot(cdp); if ((error = acd_start_stop(cdp, 0)) == EBUSY) { if (!close) return 0; if ((error = acd_start_stop(cdp, 3))) return error; acd_read_toc(cdp); acd_prevent_allow(cdp, 1); cdp->flags |= F_LOCKED; return 0; } if (error) return error; if (close) return 0; acd_prevent_allow(cdp, 0); cdp->flags &= ~F_LOCKED; cdp->flags &= ~(F_WRITTEN|F_TRACK_PREP|F_TRACK_PREPED); cdp->atp->flags |= ATAPI_F_MEDIA_CHANGED; return acd_start_stop(cdp, 2); } static int32_t acd_blank(struct acd_softc *cdp) { int8_t ccb[16] = { ATAPI_BLANK, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int32_t error; error = atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 60*60, NULL, NULL, NULL); cdp->flags &= ~(F_WRITTEN|F_TRACK_PREP|F_TRACK_PREPED); cdp->atp->flags |= ATAPI_F_MEDIA_CHANGED; return error; } static int32_t acd_prevent_allow(struct acd_softc *cdp, int32_t lock) { int8_t ccb[16] = { ATAPI_PREVENT_ALLOW, 0, 0, 0, lock, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; return atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 30, NULL, NULL, NULL); } static int32_t acd_start_stop(struct acd_softc *cdp, int32_t start) { int8_t ccb[16] = { ATAPI_START_STOP, 0, 0, 0, start, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; return atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 30, NULL, NULL, NULL); } static int32_t acd_pause_resume(struct acd_softc *cdp, int32_t pause) { int8_t ccb[16] = { ATAPI_PAUSE, 0, 0, 0, 0, 0, 0, 0, pause, 0, 0, 0, 0, 0, 0, 0 }; return atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 30, NULL, NULL, NULL); } static int32_t acd_mode_sense(struct acd_softc *cdp, u_int8_t page, void *pagebuf, int32_t pagesize) { int8_t ccb[16] = { ATAPI_MODE_SENSE_BIG, 0, page, 0, 0, 0, 0, pagesize>>8, pagesize, 0, 0, 0, 0, 0, 0, 0 }; int32_t error; error = atapi_queue_cmd(cdp->atp, ccb, pagebuf, pagesize, A_READ, 10, NULL, NULL, NULL); #ifdef ACD_DEBUG atapi_dump("acd: mode sense ", pagebuf, pagesize); #endif return error; } static int32_t acd_mode_select(struct acd_softc *cdp, void *pagebuf, int32_t pagesize) { int8_t ccb[16] = { ATAPI_MODE_SELECT_BIG, 0x10, 0, 0, 0, 0, 0, pagesize>>8, pagesize, 0, 0, 0, 0, 0, 0, 0 }; #ifdef ACD_DEBUG printf("acd: modeselect pagesize=%d\n", pagesize); atapi_dump("acd: mode select ", pagebuf, pagesize); #endif return atapi_queue_cmd(cdp->atp, ccb, pagebuf, pagesize, 0, 30, NULL, NULL, NULL); } static int32_t acd_set_speed(struct acd_softc *cdp, int32_t speed) { int8_t ccb[16] = { ATAPI_SET_SPEED, 0, 0xff, 0xff, speed>>8, speed, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; return atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 30, NULL, NULL, NULL); }