/* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Aironet 4500/4800 series cards some in PCMCIA, ISA and PCI form. * This driver supports all three device types (PCI devices are supported * through an extra PCI shim: /sys/pci/if_an_p.c). ISA devices can be * supported either using hard-coded IO port/IRQ settings or via Plug * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates. * The 4800 devices support 1, 2, 5.5 and 11Mbps rates. * * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are * a couple of important differences though: * * - Lucent doesn't currently offer a PCI card, however Aironet does * - Lucent ISA card looks to the host like a PCMCIA controller with * a PCMCIA WaveLAN card inserted. This means that even desktop * machines need to be configured with PCMCIA support in order to * use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand * actually look like normal ISA and PCI devices to the host, so * no PCMCIA controller support is needed * * The latter point results in a small gotcha. The Aironet PCMCIA * cards can be configured for one of two operating modes depending * on how the Vpp1 and Vpp2 programming voltages are set when the * card is activated. In order to put the card in proper PCMCIA * operation (where the CIS table is visible and the interface is * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages, * which leaves the card in ISA/PCI mode, which prevents it from * being activated as an PCMCIA device. Consequently, /sys/pccard/pccard.c * has to be patched slightly in order to enable the Vpp voltages in * order to make the Aironet PCMCIA cards work. * * Note that some PCMCIA controller software packages for Windows NT * fail to set the voltages as well. * * The Aironet devices can operate in both station mode and access point * mode. Typically, when programmed for station mode, the card can be set * to automatically perform encapsulation/decapsulation of Ethernet II * and 802.3 frames within 802.11 frames so that the host doesn't have * to do it itself. This driver doesn't program the card that way: the * driver handles all of the encapsulation/decapsulation itself. */ #include "opt_inet.h" #ifdef INET #define ANCACHE /* enable signal strength cache */ #endif #include #include #include #include #include #include #include #ifdef ANCACHE #include #include #endif #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #endif #include #include #include #include #include #if !defined(lint) static const char rcsid[] = "$FreeBSD$"; #endif /* These are global because we need them in sys/pci/if_an_p.c. */ static void an_reset __P((struct an_softc *)); static int an_ioctl __P((struct ifnet *, u_long, caddr_t)); static void an_init __P((void *)); static int an_init_tx_ring __P((struct an_softc *)); static void an_start __P((struct ifnet *)); static void an_watchdog __P((struct ifnet *)); static void an_rxeof __P((struct an_softc *)); static void an_txeof __P((struct an_softc *, int)); static void an_promisc __P((struct an_softc *, int)); static int an_cmd __P((struct an_softc *, int, int)); static int an_read_record __P((struct an_softc *, struct an_ltv_gen *)); static int an_write_record __P((struct an_softc *, struct an_ltv_gen *)); static int an_read_data __P((struct an_softc *, int, int, caddr_t, int)); static int an_write_data __P((struct an_softc *, int, int, caddr_t, int)); static int an_seek __P((struct an_softc *, int, int, int)); static int an_alloc_nicmem __P((struct an_softc *, int, int *)); static void an_stats_update __P((void *)); static void an_setdef __P((struct an_softc *, struct an_req *)); #ifdef ANCACHE static void an_cache_store __P((struct an_softc *, struct ether_header *, struct mbuf *, unsigned short)); #endif /* * We probe for an Aironet 4500/4800 card by attempting to * read the default SSID list. On reset, the first entry in * the SSID list will contain the name "tsunami." If we don't * find this, then there's no card present. */ int an_probe(dev) device_t dev; { struct an_softc *sc = device_get_softc(dev); struct an_ltv_ssidlist ssid; int error; bzero((char *)&ssid, sizeof(ssid)); error = an_alloc_port(dev, 0, AN_IOSIZ); if (error) return (0); /* can't do autoprobing */ if (rman_get_start(sc->port_res) == -1) return(0); /* * We need to fake up a softc structure long enough * to be able to issue commands and call some of the * other routines. */ sc->an_bhandle = rman_get_bushandle(sc->port_res); sc->an_btag = rman_get_bustag(sc->port_res); sc->an_unit = device_get_unit(dev); ssid.an_len = sizeof(ssid); ssid.an_type = AN_RID_SSIDLIST; /* Make sure interrupts are disabled. */ CSR_WRITE_2(sc, AN_INT_EN, 0); CSR_WRITE_2(sc, AN_EVENT_ACK, 0xFFFF); an_reset(sc); if (an_cmd(sc, AN_CMD_READCFG, 0)) return(0); if (an_read_record(sc, (struct an_ltv_gen *)&ssid)) return(0); /* See if the ssid matches what we expect. */ if (strcmp(ssid.an_ssid1, AN_DEF_SSID)) return(0); return(AN_IOSIZ); } /* * Allocate a port resource with the given resource id. */ int an_alloc_port(dev, rid, size) device_t dev; int rid; int size; { struct an_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid, 0ul, ~0ul, size, RF_ACTIVE); if (res) { sc->port_rid = rid; sc->port_res = res; return (0); } else { return (ENOENT); } } /* * Allocate an irq resource with the given resource id. */ int an_alloc_irq(dev, rid, flags) device_t dev; int rid; int flags; { struct an_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0ul, ~0ul, 1, (RF_ACTIVE | flags)); if (res) { sc->irq_rid = rid; sc->irq_res = res; return (0); } else { return (ENOENT); } } /* * Release all resources */ void an_release_resources(dev) device_t dev; { struct an_softc *sc = device_get_softc(dev); if (sc->port_res) { bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid, sc->port_res); sc->port_res = 0; } if (sc->irq_res) { bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq_res); sc->irq_res = 0; } } int an_attach(sc, unit, flags) struct an_softc *sc; int unit; int flags; { struct ifnet *ifp = &sc->arpcom.ac_if; sc->an_gone = 0; sc->an_associated = 0; /* Reset the NIC. */ an_reset(sc); /* Load factory config */ if (an_cmd(sc, AN_CMD_READCFG, 0)) { printf("an%d: failed to load config data\n", sc->an_unit); return(EIO); } /* Read the current configuration */ sc->an_config.an_type = AN_RID_GENCONFIG; sc->an_config.an_len = sizeof(struct an_ltv_genconfig); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) { printf("an%d: read record failed\n", sc->an_unit); return(EIO); } /* Read the card capabilities */ sc->an_caps.an_type = AN_RID_CAPABILITIES; sc->an_caps.an_len = sizeof(struct an_ltv_caps); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) { printf("an%d: read record failed\n", sc->an_unit); return(EIO); } /* Read ssid list */ sc->an_ssidlist.an_type = AN_RID_SSIDLIST; sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) { printf("an%d: read record failed\n", sc->an_unit); return(EIO); } /* Read AP list */ sc->an_aplist.an_type = AN_RID_APLIST; sc->an_aplist.an_len = sizeof(struct an_ltv_aplist); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) { printf("an%d: read record failed\n", sc->an_unit); return(EIO); } bcopy((char *)&sc->an_caps.an_oemaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); printf("an%d: Ethernet address: %6D\n", sc->an_unit, sc->arpcom.ac_enaddr, ":"); ifp->if_softc = sc; ifp->if_unit = sc->an_unit = unit; ifp->if_name = "an"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = an_ioctl; ifp->if_output = ether_output; ifp->if_start = an_start; ifp->if_watchdog = an_watchdog; ifp->if_init = an_init; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename)); bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename, sizeof(AN_DEFAULT_NODENAME) - 1); bzero(sc->an_ssidlist.an_ssid1, sizeof(sc->an_ssidlist.an_ssid1)); bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_ssid1, sizeof(AN_DEFAULT_NETNAME) - 1); sc->an_ssidlist.an_ssid1_len = strlen(AN_DEFAULT_NETNAME); sc->an_config.an_opmode = AN_OPMODE_IBSS_ADHOC; sc->an_tx_rate = 0; bzero((char *)&sc->an_stats, sizeof(sc->an_stats)); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); callout_handle_init(&sc->an_stat_ch); bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); return(0); } static void an_rxeof(sc) struct an_softc *sc; { struct ifnet *ifp; struct ether_header *eh; #ifdef ANCACHE struct an_rxframe rx_frame; #endif struct an_rxframe_802_3 rx_frame_802_3; struct mbuf *m; int id, error = 0; ifp = &sc->arpcom.ac_if; id = CSR_READ_2(sc, AN_RX_FID); MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.rcvif = ifp; eh = mtod(m, struct ether_header *); #ifdef ANCACHE /* Read NIC frame header */ if (an_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } #endif /* Read in the 802_3 frame header */ if (an_read_data(sc, id, 0x34, (caddr_t)&rx_frame_802_3, sizeof(rx_frame_802_3))) { ifp->if_ierrors++; return; } if (rx_frame_802_3.an_rx_802_3_status != 0) { ifp->if_ierrors++; return; } /* Check for insane frame length */ if (rx_frame_802_3.an_rx_802_3_payload_len > MCLBYTES) { ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = rx_frame_802_3.an_rx_802_3_payload_len + 12; bcopy((char *)&rx_frame_802_3.an_rx_dst_addr, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame_802_3.an_rx_src_addr, (char *)&eh->ether_shost, ETHER_ADDR_LEN); /* in mbuf header type is just before payload */ error = an_read_data(sc, id, 0x44, (caddr_t)&(eh->ether_type), rx_frame_802_3.an_rx_802_3_payload_len); if (error) { m_freem(m); ifp->if_ierrors++; return; } ifp->if_ipackets++; /* Handle BPF listeners. */ if (ifp->if_bpf) { bpf_mtap(ifp, m); if (ifp->if_flags & IFF_PROMISC && (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN) && (eh->ether_dhost[0] & 1) == 0)) { m_freem(m); return; } } /* Receive packet. */ m_adj(m, sizeof(struct ether_header)); #ifdef ANCACHE an_cache_store(sc, eh, m, rx_frame.an_rx_signal_strength); #endif ether_input(ifp, eh, m); return; } static void an_txeof(sc, status) struct an_softc *sc; int status; { struct ifnet *ifp; int id; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; id = CSR_READ_2(sc, AN_TX_CMP_FID); if (status & AN_EV_TX_EXC) { ifp->if_oerrors++; } else ifp->if_opackets++; if (id != sc->an_rdata.an_tx_ring[sc->an_rdata.an_tx_cons]) printf("an%d: id mismatch: expected %x, got %x\n", sc->an_unit, sc->an_rdata.an_tx_ring[sc->an_rdata.an_tx_cons], id); sc->an_rdata.an_tx_ring[sc->an_rdata.an_tx_cons] = 0; AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT); return; } /* * We abuse the stats updater to check the current NIC status. This * is important because we don't want to allow transmissions until * the NIC has synchronized to the current cell (either as the master * in an ad-hoc group, or as a station connected to an access point). */ void an_stats_update(xsc) void *xsc; { struct an_softc *sc; struct ifnet *ifp; int s; s = splimp(); sc = xsc; ifp = &sc->arpcom.ac_if; sc->an_status.an_type = AN_RID_STATUS; sc->an_status.an_len = sizeof(struct an_ltv_status); an_read_record(sc, (struct an_ltv_gen *)&sc->an_status); if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC) sc->an_associated = 1; else sc->an_associated = 0; /* Don't do this while we're transmitting */ if (ifp->if_flags & IFF_OACTIVE) { splx(s); sc->an_stat_ch = timeout(an_stats_update, sc, hz); return; } sc->an_stats.an_len = sizeof(struct an_ltv_stats); sc->an_stats.an_type = AN_RID_32BITS_CUM; an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len); splx(s); sc->an_stat_ch = timeout(an_stats_update, sc, hz); return; } void an_intr(xsc) void *xsc; { struct an_softc *sc; struct ifnet *ifp; u_int16_t status; sc = (struct an_softc*)xsc; if (sc->an_gone) return; ifp = &sc->arpcom.ac_if; if (!(ifp->if_flags & IFF_UP)) { CSR_WRITE_2(sc, AN_EVENT_ACK, 0xFFFF); CSR_WRITE_2(sc, AN_INT_EN, 0); return; } /* Disable interrupts. */ CSR_WRITE_2(sc, AN_INT_EN, 0); status = CSR_READ_2(sc, AN_EVENT_STAT); CSR_WRITE_2(sc, AN_EVENT_ACK, ~AN_INTRS); if (status & AN_EV_AWAKE) { CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_AWAKE); } if (status & AN_EV_LINKSTAT) { if (CSR_READ_2(sc, AN_LINKSTAT) == AN_LINKSTAT_ASSOCIATED) sc->an_associated = 1; else sc->an_associated = 0; CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT); } if (status & AN_EV_RX) { an_rxeof(sc); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); } if (status & AN_EV_TX) { an_txeof(sc, status); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_TX); } if (status & AN_EV_TX_EXC) { an_txeof(sc, status); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_TX_EXC); } if (status & AN_EV_ALLOC) CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC); /* Re-enable interrupts. */ CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS); if (ifp->if_snd.ifq_head != NULL) an_start(ifp); return; } static int an_cmd(sc, cmd, val) struct an_softc *sc; int cmd; int val; { int i, s = 0; CSR_WRITE_2(sc, AN_PARAM0, val); CSR_WRITE_2(sc, AN_PARAM1, 0); CSR_WRITE_2(sc, AN_PARAM2, 0); CSR_WRITE_2(sc, AN_COMMAND, cmd); for (i = 0; i < AN_TIMEOUT; i++) { if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD) break; else { if (CSR_READ_2(sc, AN_COMMAND) == cmd) CSR_WRITE_2(sc, AN_COMMAND, cmd); } } for (i = 0; i < AN_TIMEOUT; i++) { CSR_READ_2(sc, AN_RESP0); CSR_READ_2(sc, AN_RESP1); CSR_READ_2(sc, AN_RESP2); s = CSR_READ_2(sc, AN_STATUS); if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE)) break; } /* Ack the command */ CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); if (i == AN_TIMEOUT) return(ETIMEDOUT); return(0); } /* * This reset sequence may look a little strange, but this is the * most reliable method I've found to really kick the NIC in the * head and force it to reboot correctly. */ static void an_reset(sc) struct an_softc *sc; { if (sc->an_gone) return; an_cmd(sc, AN_CMD_ENABLE, 0); an_cmd(sc, AN_CMD_FW_RESTART, 0); an_cmd(sc, AN_CMD_NOOP2, 0); if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) printf("an%d: reset failed\n", sc->an_unit); an_cmd(sc, AN_CMD_DISABLE, 0); return; } /* * Read an LTV record from the NIC. */ static int an_read_record(sc, ltv) struct an_softc *sc; struct an_ltv_gen *ltv; { u_int16_t *ptr; int i, len; if (ltv->an_len == 0 || ltv->an_type == 0) return(EINVAL); /* Tell the NIC to enter record read mode. */ if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) { printf("an%d: RID access failed\n", sc->an_unit); return(EIO); } /* Seek to the record. */ if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) { printf("an%d: seek to record failed\n", sc->an_unit); return(EIO); } /* * Read the length and record type and make sure they * match what we expect (this verifies that we have enough * room to hold all of the returned data). */ len = CSR_READ_2(sc, AN_DATA1); if (len > ltv->an_len) { printf("an%d: record length mismatch -- expected %d, " "got %d\n", sc->an_unit, ltv->an_len, len); return(ENOSPC); } ltv->an_len = len; /* Now read the data. */ ptr = <v->an_val; for (i = 0; i < (ltv->an_len - 1) >> 1; i++) ptr[i] = CSR_READ_2(sc, AN_DATA1); return(0); } /* * Same as read, except we inject data instead of reading it. */ static int an_write_record(sc, ltv) struct an_softc *sc; struct an_ltv_gen *ltv; { u_int16_t *ptr; int i; if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) return(EIO); if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) return(EIO); CSR_WRITE_2(sc, AN_DATA1, ltv->an_len); ptr = <v->an_val; for (i = 0; i < (ltv->an_len - 1) >> 1; i++) CSR_WRITE_2(sc, AN_DATA1, ptr[i]); if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type)) return(EIO); return(0); } static int an_seek(sc, id, off, chan) struct an_softc *sc; int id, off, chan; { int i; int selreg, offreg; switch (chan) { case AN_BAP0: selreg = AN_SEL0; offreg = AN_OFF0; break; case AN_BAP1: selreg = AN_SEL1; offreg = AN_OFF1; break; default: printf("an%d: invalid data path: %x\n", sc->an_unit, chan); return(EIO); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = 0; i < AN_TIMEOUT; i++) { if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR))) break; } if (i == AN_TIMEOUT) return(ETIMEDOUT); return(0); } static int an_read_data(sc, id, off, buf, len) struct an_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; u_int8_t *ptr2; if (off != -1) { if (an_seek(sc, id, off, AN_BAP1)) return(EIO); } ptr = (u_int16_t *)buf; for (i = 0; i < len / 2; i++) ptr[i] = CSR_READ_2(sc, AN_DATA1); i*=2; if (ian_unit, len); return(ENOMEM); } for (i = 0; i < AN_TIMEOUT; i++) { if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC) break; } if (i == AN_TIMEOUT) return(ETIMEDOUT); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC); *id = CSR_READ_2(sc, AN_ALLOC_FID); if (an_seek(sc, *id, 0, AN_BAP0)) return(EIO); for (i = 0; i < len / 2; i++) CSR_WRITE_2(sc, AN_DATA0, 0); return(0); } static void an_setdef(sc, areq) struct an_softc *sc; struct an_req *areq; { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifnet *ifp; struct an_ltv_genconfig *cfg; struct an_ltv_ssidlist *ssid; struct an_ltv_aplist *ap; struct an_ltv_gen *sp; ifp = &sc->arpcom.ac_if; switch (areq->an_type) { case AN_RID_GENCONFIG: cfg = (struct an_ltv_genconfig *)areq; ifa = ifnet_addrs[ifp->if_index - 1]; sdl = (struct sockaddr_dl *)ifa->ifa_addr; bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); bcopy((char *)&cfg->an_macaddr, LLADDR(sdl), ETHER_ADDR_LEN); bcopy((char *)cfg, (char *)&sc->an_config, sizeof(struct an_ltv_genconfig)); break; case AN_RID_SSIDLIST: ssid = (struct an_ltv_ssidlist *)areq; bcopy((char *)ssid, (char *)&sc->an_ssidlist, sizeof(struct an_ltv_ssidlist)); break; case AN_RID_APLIST: ap = (struct an_ltv_aplist *)areq; bcopy((char *)ap, (char *)&sc->an_aplist, sizeof(struct an_ltv_aplist)); break; case AN_RID_TX_SPEED: sp = (struct an_ltv_gen *)areq; sc->an_tx_rate = sp->an_val; break; default: printf("an%d: unknown RID: %x\n", sc->an_unit, areq->an_type); return; break; } /* Reinitialize the card. */ if (ifp->if_flags & IFF_UP) an_init(sc); return; } /* * We can't change the NIC configuration while the MAC is enabled, * so in order to turn on RX monitor mode, we have to turn the MAC * off first. */ static void an_promisc(sc, promisc) struct an_softc *sc; int promisc; { /* Disable the MAC. */ an_cmd(sc, AN_CMD_DISABLE, 0); /* Set RX mode. */ if (promisc && !(sc->an_config.an_rxmode & AN_RXMODE_LAN_MONITOR_CURBSS) ) { sc->an_rxmode = sc->an_config.an_rxmode; sc->an_config.an_rxmode |= AN_RXMODE_LAN_MONITOR_CURBSS; } else { sc->an_config.an_rxmode = sc->an_rxmode; } /* Transfer the configuration to the NIC */ sc->an_config.an_len = sizeof(struct an_ltv_genconfig); sc->an_config.an_type = AN_RID_GENCONFIG; if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) { printf("an%d: failed to set configuration\n", sc->an_unit); return; } /* Turn the MAC back on. */ an_cmd(sc, AN_CMD_ENABLE, 0); return; } static int an_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { int s, error = 0; struct an_softc *sc; struct an_req areq; struct ifreq *ifr; s = splimp(); sc = ifp->if_softc; ifr = (struct ifreq *)data; if (sc->an_gone) return(ENODEV); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->an_if_flags & IFF_PROMISC)) { an_promisc(sc, 1); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->an_if_flags & IFF_PROMISC) { an_promisc(sc, 0); } else an_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) an_stop(sc); } sc->an_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: /* The Aironet has no multicast filter. */ error = 0; break; case SIOCGAIRONET: error = copyin(ifr->ifr_data, &areq, sizeof(areq)); if (error) break; #ifdef ANCACHE if (areq.an_type == AN_RID_ZERO_CACHE) { sc->an_sigitems = sc->an_nextitem = 0; break; } else if (areq.an_type == AN_RID_READ_CACHE) { char *pt = (char *)&areq.an_val; bcopy((char *)&sc->an_sigitems, (char *)pt, sizeof(int)); pt += sizeof(int); areq.an_len = sizeof(int) / 2; bcopy((char *)&sc->an_sigcache, (char *)pt, sizeof(struct an_sigcache) * sc->an_sigitems); areq.an_len += ((sizeof(struct an_sigcache) * sc->an_sigitems) / 2) + 1; } else #endif if (an_read_record(sc, (struct an_ltv_gen *)&areq)) { error = EINVAL; break; } error = copyout(&areq, ifr->ifr_data, sizeof(areq)); break; case SIOCSAIRONET: error = copyin(ifr->ifr_data, &areq, sizeof(areq)); if (error) break; an_setdef(sc, &areq); break; default: error = EINVAL; break; } splx(s); return(error); } static int an_init_tx_ring(sc) struct an_softc *sc; { int i; int id; if (sc->an_gone) return (0); for (i = 0; i < AN_TX_RING_CNT; i++) { if (an_alloc_nicmem(sc, 1518 + 0x44, &id)) return(ENOMEM); sc->an_rdata.an_tx_fids[i] = id; sc->an_rdata.an_tx_ring[i] = 0; } sc->an_rdata.an_tx_prod = 0; sc->an_rdata.an_tx_cons = 0; return(0); } static void an_init(xsc) void *xsc; { struct an_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int s; if (sc->an_gone) return; s = splimp(); if (ifp->if_flags & IFF_RUNNING) an_stop(sc); sc->an_associated = 0; /* Allocate the TX buffers */ if (an_init_tx_ring(sc)) { an_reset(sc); if (an_init_tx_ring(sc)) { printf("an%d: tx buffer allocation " "failed\n", sc->an_unit); splx(s); return; } } /* Set our MAC address. */ bcopy((char *)&sc->arpcom.ac_enaddr, (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN); if (ifp->if_flags & IFF_BROADCAST) sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR; else sc->an_config.an_rxmode = AN_RXMODE_ADDR; if (ifp->if_flags & IFF_MULTICAST) sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR; /* Initialize promisc mode. */ if (ifp->if_flags & IFF_PROMISC) sc->an_config.an_rxmode |= AN_RXMODE_LAN_MONITOR_CURBSS; sc->an_rxmode = sc->an_config.an_rxmode; /* Set the ssid list */ sc->an_ssidlist.an_type = AN_RID_SSIDLIST; sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist); if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) { printf("an%d: failed to set ssid list\n", sc->an_unit); splx(s); return; } /* Set the AP list */ sc->an_aplist.an_type = AN_RID_APLIST; sc->an_aplist.an_len = sizeof(struct an_ltv_aplist); if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) { printf("an%d: failed to set AP list\n", sc->an_unit); splx(s); return; } /* Set the configuration in the NIC */ sc->an_config.an_len = sizeof(struct an_ltv_genconfig); sc->an_config.an_type = AN_RID_GENCONFIG; if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) { printf("an%d: failed to set configuration\n", sc->an_unit); splx(s); return; } /* Enable the MAC */ if (an_cmd(sc, AN_CMD_ENABLE, 0)) { printf("an%d: failed to enable MAC\n", sc->an_unit); splx(s); return; } /* enable interrupts */ CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS); splx(s); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->an_stat_ch = timeout(an_stats_update, sc, hz); return; } static void an_start(ifp) struct ifnet *ifp; { struct an_softc *sc; struct mbuf *m0 = NULL; struct an_txframe_802_3 tx_frame_802_3; struct ether_header *eh; int id; int idx; unsigned char txcontrol; sc = ifp->if_softc; if (sc->an_gone) return; if (ifp->if_flags & IFF_OACTIVE) return; if (!sc->an_associated) return; idx = sc->an_rdata.an_tx_prod; bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3)); while(sc->an_rdata.an_tx_ring[idx] == 0) { IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; id = sc->an_rdata.an_tx_fids[idx]; eh = mtod(m0, struct ether_header *); bcopy((char *)&eh->ether_dhost, (char *)&tx_frame_802_3.an_tx_dst_addr, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame_802_3.an_tx_src_addr, ETHER_ADDR_LEN); tx_frame_802_3.an_tx_802_3_payload_len = m0->m_pkthdr.len - 12; /* minus src/dest mac & type */ m_copydata(m0, sizeof(struct ether_header) - 2 , tx_frame_802_3.an_tx_802_3_payload_len, (caddr_t)&sc->an_txbuf); txcontrol=AN_TXCTL_8023; /* write the txcontrol only */ an_write_data(sc, id, 0x08, (caddr_t)&txcontrol, sizeof(txcontrol)); /* 802_3 header */ an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3, sizeof(struct an_txframe_802_3)); /* in mbuf header type is just before payload */ an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf, tx_frame_802_3.an_tx_802_3_payload_len); /* * If there's a BPF listner, bounce a copy of * this frame to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m0); m_freem(m0); m0 = NULL; sc->an_rdata.an_tx_ring[idx] = id; if (an_cmd(sc, AN_CMD_TX, id)) printf("an%d: xmit failed\n", sc->an_unit); AN_INC(idx, AN_TX_RING_CNT); } if (m0 != NULL) ifp->if_flags |= IFF_OACTIVE; sc->an_rdata.an_tx_prod = idx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } void an_stop(sc) struct an_softc *sc; { struct ifnet *ifp; int i; if (sc->an_gone) return; ifp = &sc->arpcom.ac_if; an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0); CSR_WRITE_2(sc, AN_INT_EN, 0); an_cmd(sc, AN_CMD_DISABLE, 0); for (i = 0; i < AN_TX_RING_CNT; i++) an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]); untimeout(an_stats_update, sc, sc->an_stat_ch); ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); return; } static void an_watchdog(ifp) struct ifnet *ifp; { struct an_softc *sc; sc = ifp->if_softc; if (sc->an_gone) return; printf("an%d: device timeout\n", sc->an_unit); an_reset(sc); an_init(sc); ifp->if_oerrors++; return; } void an_shutdown(dev) device_t dev; { struct an_softc *sc; sc = device_get_softc(dev); an_stop(sc); return; } #ifdef ANCACHE /* Aironet signal strength cache code. * store signal/noise/quality on per MAC src basis in * a small fixed cache. The cache wraps if > MAX slots * used. The cache may be zeroed out to start over. * Two simple filters exist to reduce computation: * 1. ip only (literally 0x800) which may be used * to ignore some packets. It defaults to ip only. * it could be used to focus on broadcast, non-IP 802.11 beacons. * 2. multicast/broadcast only. This may be used to * ignore unicast packets and only cache signal strength * for multicast/broadcast packets (beacons); e.g., Mobile-IP * beacons and not unicast traffic. * * The cache stores (MAC src(index), IP src (major clue), signal, * quality, noise) * * No apologies for storing IP src here. It's easy and saves much * trouble elsewhere. The cache is assumed to be INET dependent, * although it need not be. * * Note: the Aironet only has a single byte of signal strength value * in the rx frame header, and it's not scaled to anything sensible. * This is kind of lame, but it's all we've got. */ #ifdef documentation int an_sigitems; /* number of cached entries */ struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */ int an_nextitem; /* index/# of entries */ #endif /* control variables for cache filtering. Basic idea is * to reduce cost (e.g., to only Mobile-IP agent beacons * which are broadcast or multicast). Still you might * want to measure signal strength anth unicast ping packets * on a pt. to pt. ant. setup. */ /* set true if you want to limit cache items to broadcast/mcast * only packets (not unicast). Useful for mobile-ip beacons which * are broadcast/multicast at network layer. Default is all packets * so ping/unicast anll work say anth pt. to pt. antennae setup. */ static int an_cache_mcastonly = 0; SYSCTL_INT(_machdep, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW, &an_cache_mcastonly, 0, ""); /* set true if you want to limit cache items to IP packets only */ static int an_cache_iponly = 1; SYSCTL_INT(_machdep, OID_AUTO, an_cache_iponly, CTLFLAG_RW, &an_cache_iponly, 0, ""); /* * an_cache_store, per rx packet store signal * strength in MAC (src) indexed cache. */ static void an_cache_store (sc, eh, m, rx_quality) struct an_softc *sc; struct ether_header *eh; struct mbuf *m; unsigned short rx_quality; { struct ip *ip = 0; int i; static int cache_slot = 0; /* use this cache entry */ static int wrapindex = 0; /* next "free" cache entry */ int saanp=0; /* filters: * 1. ip only * 2. configurable filter to throw out unicast packets, * keep multicast only. */ if ((ntohs(eh->ether_type) == 0x800)) { saanp = 1; } /* filter for ip packets only */ if ( an_cache_iponly && !saanp) { return; } /* filter for broadcast/multicast only */ if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) { return; } #ifdef SIGDEBUG printf("an: q value %x (MSB=0x%x, LSB=0x%x) \n", rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff); #endif /* find the ip header. we want to store the ip_src * address. */ if (saanp) { ip = mtod(m, struct ip *); } /* do a linear search for a matching MAC address * in the cache table * . MAC address is 6 bytes, * . var w_nextitem holds total number of entries already cached */ for(i = 0; i < sc->an_nextitem; i++) { if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) { /* Match!, * so we already have this entry, * update the data */ break; } } /* did we find a matching mac address? * if yes, then overwrite a previously existing cache entry */ if (i < sc->an_nextitem ) { cache_slot = i; } /* else, have a new address entry,so * add this new entry, * if table full, then we need to replace LRU entry */ else { /* check for space in cache table * note: an_nextitem also holds number of entries * added in the cache table */ if ( sc->an_nextitem < MAXANCACHE ) { cache_slot = sc->an_nextitem; sc->an_nextitem++; sc->an_sigitems = sc->an_nextitem; } /* no space found, so simply wrap anth wrap index * and "zap" the next entry */ else { if (wrapindex == MAXANCACHE) { wrapindex = 0; } cache_slot = wrapindex++; } } /* invariant: cache_slot now points at some slot * in cache. */ if (cache_slot < 0 || cache_slot >= MAXANCACHE) { log(LOG_ERR, "an_cache_store, bad index: %d of " "[0..%d], gross cache error\n", cache_slot, MAXANCACHE); return; } /* store items in cache * .ip source address * .mac src * .signal, etc. */ if (saanp) { sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr; } bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6); sc->an_sigcache[cache_slot].signal = rx_quality; return; } #endif