/*- * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate * adapters and others. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The * RX filter uses a 512-bit multicast hash table, single perfect entry * for the station address, and promiscuous mode. Unlike the ADMtek * and KLSI chips, the CATC ASIC supports read and write combining * mode where multiple packets can be transfered using a single bulk * transaction, which helps performance a great deal. */ #include "usbdevs.h" #include #include #include #define USB_DEBUG_VAR cue_debug #include #include #include #include #include #include #include #include #include /* * Various supported device vendors/products. */ /* Belkin F5U111 adapter covered by NETMATE entry */ static const struct usb2_device_id cue_devs[] = { {USB_VPI(USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE, 0)}, {USB_VPI(USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2, 0)}, {USB_VPI(USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK, 0)}, }; /* prototypes */ static device_probe_t cue_probe; static device_attach_t cue_attach; static device_detach_t cue_detach; static device_shutdown_t cue_shutdown; static usb2_callback_t cue_bulk_read_callback; static usb2_callback_t cue_bulk_write_callback; static usb2_ether_fn_t cue_attach_post; static usb2_ether_fn_t cue_init; static usb2_ether_fn_t cue_stop; static usb2_ether_fn_t cue_start; static usb2_ether_fn_t cue_tick; static usb2_ether_fn_t cue_setmulti; static usb2_ether_fn_t cue_setpromisc; static uint8_t cue_csr_read_1(struct cue_softc *, uint16_t); static uint16_t cue_csr_read_2(struct cue_softc *, uint8_t); static int cue_csr_write_1(struct cue_softc *, uint16_t, uint16_t); static int cue_mem(struct cue_softc *, uint8_t, uint16_t, void *, int); static int cue_getmac(struct cue_softc *, void *); static uint32_t cue_mchash(const uint8_t *); static void cue_reset(struct cue_softc *); #if USB_DEBUG static int cue_debug = 0; SYSCTL_NODE(_hw_usb2, OID_AUTO, cue, CTLFLAG_RW, 0, "USB cue"); SYSCTL_INT(_hw_usb2_cue, OID_AUTO, debug, CTLFLAG_RW, &cue_debug, 0, "Debug level"); #endif static const struct usb2_config cue_config[CUE_N_TRANSFER] = { [CUE_BULK_DT_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .mh.bufsize = (MCLBYTES + 2), .mh.flags = {.pipe_bof = 1,}, .mh.callback = cue_bulk_write_callback, .mh.timeout = 10000, /* 10 seconds */ }, [CUE_BULK_DT_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .mh.bufsize = (MCLBYTES + 2), .mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .mh.callback = cue_bulk_read_callback, }, }; static device_method_t cue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, cue_probe), DEVMETHOD(device_attach, cue_attach), DEVMETHOD(device_detach, cue_detach), DEVMETHOD(device_shutdown, cue_shutdown), {0, 0} }; static driver_t cue_driver = { .name = "cue", .methods = cue_methods, .size = sizeof(struct cue_softc), }; static devclass_t cue_devclass; DRIVER_MODULE(cue, uhub, cue_driver, cue_devclass, NULL, 0); MODULE_DEPEND(cue, uether, 1, 1, 1); MODULE_DEPEND(cue, usb, 1, 1, 1); MODULE_DEPEND(cue, ether, 1, 1, 1); static const struct usb2_ether_methods cue_ue_methods = { .ue_attach_post = cue_attach_post, .ue_start = cue_start, .ue_init = cue_init, .ue_stop = cue_stop, .ue_tick = cue_tick, .ue_setmulti = cue_setmulti, .ue_setpromisc = cue_setpromisc, }; #define CUE_SETBIT(sc, reg, x) \ cue_csr_write_1(sc, reg, cue_csr_read_1(sc, reg) | (x)) #define CUE_CLRBIT(sc, reg, x) \ cue_csr_write_1(sc, reg, cue_csr_read_1(sc, reg) & ~(x)) static uint8_t cue_csr_read_1(struct cue_softc *sc, uint16_t reg) { struct usb2_device_request req; uint8_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 1); if (usb2_ether_do_request(&sc->sc_ue, &req, &val, 1000)) { /* ignore any errors */ } return (val); } static uint16_t cue_csr_read_2(struct cue_softc *sc, uint8_t reg) { struct usb2_device_request req; uint16_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 2); (void)usb2_ether_do_request(&sc->sc_ue, &req, &val, 1000); return (le16toh(val)); } static int cue_csr_write_1(struct cue_softc *sc, uint16_t reg, uint16_t val) { struct usb2_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); return (usb2_ether_do_request(&sc->sc_ue, &req, NULL, 1000)); } static int cue_mem(struct cue_softc *sc, uint8_t cmd, uint16_t addr, void *buf, int len) { struct usb2_device_request req; if (cmd == CUE_CMD_READSRAM) req.bmRequestType = UT_READ_VENDOR_DEVICE; else req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = cmd; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); return (usb2_ether_do_request(&sc->sc_ue, &req, buf, 1000)); } static int cue_getmac(struct cue_softc *sc, void *buf) { struct usb2_device_request req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_GET_MACADDR; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, ETHER_ADDR_LEN); return (usb2_ether_do_request(&sc->sc_ue, &req, buf, 1000)); } #define CUE_BITS 9 static uint32_t cue_mchash(const uint8_t *addr) { uint32_t crc; /* Compute CRC for the address value. */ crc = ether_crc32_le(addr, ETHER_ADDR_LEN); return (crc & ((1 << CUE_BITS) - 1)); } static void cue_setpromisc(struct usb2_ether *ue) { struct cue_softc *sc = usb2_ether_getsc(ue); struct ifnet *ifp = usb2_ether_getifp(ue); CUE_LOCK_ASSERT(sc, MA_OWNED); /* if we want promiscuous mode, set the allframes bit */ if (ifp->if_flags & IFF_PROMISC) CUE_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC); else CUE_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC); /* write multicast hash-bits */ cue_setmulti(ue); } static void cue_setmulti(struct usb2_ether *ue) { struct cue_softc *sc = usb2_ether_getsc(ue); struct ifnet *ifp = usb2_ether_getifp(ue); struct ifmultiaddr *ifma; uint32_t h = 0, i; uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; CUE_LOCK_ASSERT(sc, MA_OWNED); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { for (i = 0; i < 8; i++) hashtbl[i] = 0xff; cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR, &hashtbl, 8); return; } /* now program new ones */ IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = cue_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); hashtbl[h >> 3] |= 1 << (h & 0x7); } IF_ADDR_UNLOCK(ifp); /* * Also include the broadcast address in the filter * so we can receive broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { h = cue_mchash(ifp->if_broadcastaddr); hashtbl[h >> 3] |= 1 << (h & 0x7); } cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR, &hashtbl, 8); } static void cue_reset(struct cue_softc *sc) { struct usb2_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_RESET; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, 0); if (usb2_ether_do_request(&sc->sc_ue, &req, NULL, 1000)) { /* ignore any errors */ } /* * wait a little while for the chip to get its brains in order: */ usb2_ether_pause(&sc->sc_ue, hz / 100); } static void cue_attach_post(struct usb2_ether *ue) { struct cue_softc *sc = usb2_ether_getsc(ue); cue_getmac(sc, ue->ue_eaddr); } static int cue_probe(device_t dev) { struct usb2_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb2_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != CUE_CONFIG_IDX) return (ENXIO); if (uaa->info.bIfaceIndex != CUE_IFACE_IDX) return (ENXIO); return (usb2_lookup_id_by_uaa(cue_devs, sizeof(cue_devs), uaa)); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int cue_attach(device_t dev) { struct usb2_attach_arg *uaa = device_get_ivars(dev); struct cue_softc *sc = device_get_softc(dev); struct usb2_ether *ue = &sc->sc_ue; uint8_t iface_index; int error; device_set_usb2_desc(dev); mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF); iface_index = CUE_IFACE_IDX; error = usb2_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, cue_config, CUE_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(dev, "allocating USB transfers failed!\n"); goto detach; } ue->ue_sc = sc; ue->ue_dev = dev; ue->ue_udev = uaa->device; ue->ue_mtx = &sc->sc_mtx; ue->ue_methods = &cue_ue_methods; error = usb2_ether_ifattach(ue); if (error) { device_printf(dev, "could not attach interface\n"); goto detach; } return (0); /* success */ detach: cue_detach(dev); return (ENXIO); /* failure */ } static int cue_detach(device_t dev) { struct cue_softc *sc = device_get_softc(dev); struct usb2_ether *ue = &sc->sc_ue; usb2_transfer_unsetup(sc->sc_xfer, CUE_N_TRANSFER); usb2_ether_ifdetach(ue); mtx_destroy(&sc->sc_mtx); return (0); } static void cue_bulk_read_callback(struct usb2_xfer *xfer) { struct cue_softc *sc = xfer->priv_sc; struct usb2_ether *ue = &sc->sc_ue; struct ifnet *ifp = usb2_ether_getifp(ue); uint8_t buf[2]; int len; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: if (xfer->actlen <= (2 + sizeof(struct ether_header))) { ifp->if_ierrors++; goto tr_setup; } usb2_copy_out(xfer->frbuffers, 0, buf, 2); xfer->actlen -= 2; len = buf[0] | (buf[1] << 8); len = min(xfer->actlen, len); usb2_ether_rxbuf(ue, xfer->frbuffers, 2, len); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: xfer->frlengths[0] = xfer->max_data_length; usb2_start_hardware(xfer); usb2_ether_rxflush(ue); return; default: /* Error */ DPRINTF("bulk read error, %s\n", usb2_errstr(xfer->error)); if (xfer->error != USB_ERR_CANCELLED) { /* try to clear stall first */ xfer->flags.stall_pipe = 1; goto tr_setup; } return; } } static void cue_bulk_write_callback(struct usb2_xfer *xfer) { struct cue_softc *sc = xfer->priv_sc; struct ifnet *ifp = usb2_ether_getifp(&sc->sc_ue); struct mbuf *m; uint8_t buf[2]; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete\n"); ifp->if_opackets++; /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) return; if (m->m_pkthdr.len > MCLBYTES) m->m_pkthdr.len = MCLBYTES; xfer->frlengths[0] = (m->m_pkthdr.len + 2); /* the first two bytes are the frame length */ buf[0] = (uint8_t)(m->m_pkthdr.len); buf[1] = (uint8_t)(m->m_pkthdr.len >> 8); usb2_copy_in(xfer->frbuffers, 0, buf, 2); usb2_m_copy_in(xfer->frbuffers, 2, m, 0, m->m_pkthdr.len); /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m); m_freem(m); usb2_start_hardware(xfer); return; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usb2_errstr(xfer->error)); ifp->if_oerrors++; if (xfer->error != USB_ERR_CANCELLED) { /* try to clear stall first */ xfer->flags.stall_pipe = 1; goto tr_setup; } return; } } static void cue_tick(struct usb2_ether *ue) { struct cue_softc *sc = usb2_ether_getsc(ue); struct ifnet *ifp = usb2_ether_getifp(ue); CUE_LOCK_ASSERT(sc, MA_OWNED); ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_SINGLECOLL); ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_MULTICOLL); ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_EXCESSCOLL); if (cue_csr_read_2(sc, CUE_RX_FRAMEERR)) ifp->if_ierrors++; } static void cue_start(struct usb2_ether *ue) { struct cue_softc *sc = usb2_ether_getsc(ue); /* * start the USB transfers, if not already started: */ usb2_transfer_start(sc->sc_xfer[CUE_BULK_DT_RD]); usb2_transfer_start(sc->sc_xfer[CUE_BULK_DT_WR]); } static void cue_init(struct usb2_ether *ue) { struct cue_softc *sc = usb2_ether_getsc(ue); struct ifnet *ifp = usb2_ether_getifp(ue); int i; CUE_LOCK_ASSERT(sc, MA_OWNED); /* * Cancel pending I/O and free all RX/TX buffers. */ cue_stop(ue); #if 0 cue_reset(sc); #endif /* Set MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) cue_csr_write_1(sc, CUE_PAR0 - i, IF_LLADDR(ifp)[i]); /* Enable RX logic. */ cue_csr_write_1(sc, CUE_ETHCTL, CUE_ETHCTL_RX_ON | CUE_ETHCTL_MCAST_ON); /* Load the multicast filter */ cue_setpromisc(ue); /* * Set the number of RX and TX buffers that we want * to reserve inside the ASIC. */ cue_csr_write_1(sc, CUE_RX_BUFPKTS, CUE_RX_FRAMES); cue_csr_write_1(sc, CUE_TX_BUFPKTS, CUE_TX_FRAMES); /* Set advanced operation modes. */ cue_csr_write_1(sc, CUE_ADVANCED_OPMODES, CUE_AOP_EMBED_RXLEN | 0x01);/* 1 wait state */ /* Program the LED operation. */ cue_csr_write_1(sc, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK); usb2_transfer_set_stall(sc->sc_xfer[CUE_BULK_DT_WR]); ifp->if_drv_flags |= IFF_DRV_RUNNING; cue_start(ue); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void cue_stop(struct usb2_ether *ue) { struct cue_softc *sc = usb2_ether_getsc(ue); struct ifnet *ifp = usb2_ether_getifp(ue); CUE_LOCK_ASSERT(sc, MA_OWNED); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* * stop all the transfers, if not already stopped: */ usb2_transfer_stop(sc->sc_xfer[CUE_BULK_DT_WR]); usb2_transfer_stop(sc->sc_xfer[CUE_BULK_DT_RD]); cue_csr_write_1(sc, CUE_ETHCTL, 0); cue_reset(sc); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int cue_shutdown(device_t dev) { struct cue_softc *sc = device_get_softc(dev); usb2_ether_ifshutdown(&sc->sc_ue); return (0); }