/* * ---------------------------------------------------------------------------- * "THE BEER-WARE LICENSE" (Revision 42): * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * ---------------------------------------------------------------------------- */ #include __FBSDID("$FreeBSD$"); #include "opt_geom.h" #include #include #include #include #include #include /*- * Disk error is the preface to plaintive error messages * about failing disk transfers. It prints messages of the form * "hp0g: BLABLABLA cmd=read fsbn 12345 of 12344-12347" * blkdone should be -1 if the position of the error is unknown. * The message is printed with printf. */ void disk_err(struct bio *bp, const char *what, int blkdone, int nl) { daddr_t sn; if (bp->bio_dev != NULL) printf("%s: %s ", devtoname(bp->bio_dev), what); else if (bp->bio_disk != NULL) printf("%s%d: %s ", bp->bio_disk->d_name, bp->bio_disk->d_unit, what); else printf("disk??: %s ", what); switch(bp->bio_cmd) { case BIO_READ: printf("cmd=read "); break; case BIO_WRITE: printf("cmd=write "); break; case BIO_DELETE: printf("cmd=delete "); break; case BIO_GETATTR: printf("cmd=getattr "); break; default: printf("cmd=%x ", bp->bio_cmd); break; } sn = bp->bio_blkno; if (bp->bio_bcount <= DEV_BSIZE) { printf("fsbn %jd%s", (intmax_t)sn, nl ? "\n" : ""); return; } if (blkdone >= 0) { sn += blkdone; printf("fsbn %jd of ", (intmax_t)sn); } printf("%jd-%jd", (intmax_t)bp->bio_blkno, (intmax_t)(bp->bio_blkno + (bp->bio_bcount - 1) / DEV_BSIZE)); if (nl) printf("\n"); } /* * BIO queue implementation */ void bioq_init(struct bio_queue_head *head) { TAILQ_INIT(&head->queue); head->last_pblkno = 0; head->insert_point = NULL; head->switch_point = NULL; } void bioq_remove(struct bio_queue_head *head, struct bio *bp) { if (bp == head->switch_point) head->switch_point = TAILQ_NEXT(bp, bio_queue); if (bp == head->insert_point) { head->insert_point = TAILQ_PREV(bp, bio_queue, bio_queue); if (head->insert_point == NULL) head->last_pblkno = 0; } else if (bp == TAILQ_FIRST(&head->queue)) head->last_pblkno = bp->bio_pblkno; TAILQ_REMOVE(&head->queue, bp, bio_queue); if (TAILQ_FIRST(&head->queue) == head->switch_point) head->switch_point = NULL; } void bioq_flush(struct bio_queue_head *head, struct devstat *stp, int error) { struct bio *bp; for (;;) { bp = bioq_first(head); if (bp == NULL) break; bioq_remove(head, bp); biofinish(bp, stp, error); } } void bioq_insert_tail(struct bio_queue_head *head, struct bio *bp) { TAILQ_INSERT_TAIL(&head->queue, bp, bio_queue); } struct bio * bioq_first(struct bio_queue_head *head) { return (TAILQ_FIRST(&head->queue)); } /* * Seek sort for disks. * * The buf_queue keep two queues, sorted in ascending block order. The first * queue holds those requests which are positioned after the current block * (in the first request); the second, which starts at queue->switch_point, * holds requests which came in after their block number was passed. Thus * we implement a one way scan, retracting after reaching the end of the drive * to the first request on the second queue, at which time it becomes the * first queue. * * A one-way scan is natural because of the way UNIX read-ahead blocks are * allocated. */ void bioq_disksort(bioq, bp) struct bio_queue_head *bioq; struct bio *bp; { struct bio *bq; struct bio *bn; struct bio *be; be = TAILQ_LAST(&bioq->queue, bio_queue); /* * If the queue is empty or we are an * ordered transaction, then it's easy. */ if ((bq = bioq_first(bioq)) == NULL) { bioq_insert_tail(bioq, bp); return; } else if (bioq->insert_point != NULL) { /* * A certain portion of the list is * "locked" to preserve ordering, so * we can only insert after the insert * point. */ bq = bioq->insert_point; } else { /* * If we lie before the last removed (currently active) * request, and are not inserting ourselves into the * "locked" portion of the list, then we must add ourselves * to the second request list. */ if (bp->bio_pblkno < bioq->last_pblkno) { bq = bioq->switch_point; /* * If we are starting a new secondary list, * then it's easy. */ if (bq == NULL) { bioq->switch_point = bp; bioq_insert_tail(bioq, bp); return; } /* * If we lie ahead of the current switch point, * insert us before the switch point and move * the switch point. */ if (bp->bio_pblkno < bq->bio_pblkno) { bioq->switch_point = bp; TAILQ_INSERT_BEFORE(bq, bp, bio_queue); return; } } else { if (bioq->switch_point != NULL) be = TAILQ_PREV(bioq->switch_point, bio_queue, bio_queue); /* * If we lie between last_pblkno and bq, * insert before bq. */ if (bp->bio_pblkno < bq->bio_pblkno) { TAILQ_INSERT_BEFORE(bq, bp, bio_queue); return; } } } /* * Request is at/after our current position in the list. * Optimize for sequential I/O by seeing if we go at the tail. */ if (bp->bio_pblkno > be->bio_pblkno) { TAILQ_INSERT_AFTER(&bioq->queue, be, bp, bio_queue); return; } /* Otherwise, insertion sort */ while ((bn = TAILQ_NEXT(bq, bio_queue)) != NULL) { /* * We want to go after the current request if it is the end * of the first request list, or if the next request is a * larger cylinder than our request. */ if (bn == bioq->switch_point || bp->bio_pblkno < bn->bio_pblkno) break; bq = bn; } TAILQ_INSERT_AFTER(&bioq->queue, bq, bp, bio_queue); }