/* $FreeBSD$ */ /*- * Copyright (c) 2005 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2500 chipset driver * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RAL_DEBUG #define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0) int ral_debug = 0; SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level"); #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif MODULE_DEPEND(ral, wlan, 1, 1, 1); static void ral_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int ral_alloc_tx_ring(struct ral_softc *, struct ral_tx_ring *, int); static void ral_reset_tx_ring(struct ral_softc *, struct ral_tx_ring *); static void ral_free_tx_ring(struct ral_softc *, struct ral_tx_ring *); static int ral_alloc_rx_ring(struct ral_softc *, struct ral_rx_ring *, int); static void ral_reset_rx_ring(struct ral_softc *, struct ral_rx_ring *); static void ral_free_rx_ring(struct ral_softc *, struct ral_rx_ring *); static struct ieee80211_node *ral_node_alloc( struct ieee80211_node_table *); static int ral_key_alloc(struct ieee80211com *, const struct ieee80211_key *); static int ral_media_change(struct ifnet *); static void ral_next_scan(void *); static void ral_iter_func(void *, struct ieee80211_node *); static void ral_update_rssadapt(void *); static int ral_newstate(struct ieee80211com *, enum ieee80211_state, int); static uint16_t ral_eeprom_read(struct ral_softc *, uint8_t); static void ral_encryption_intr(struct ral_softc *); static void ral_tx_intr(struct ral_softc *); static void ral_prio_intr(struct ral_softc *); static void ral_decryption_intr(struct ral_softc *); static void ral_rx_intr(struct ral_softc *); static void ral_beacon_expire(struct ral_softc *); static void ral_wakeup_expire(struct ral_softc *); static void ral_intr(void *); static int ral_ack_rate(int); static uint16_t ral_txtime(int, int, uint32_t); static uint8_t ral_plcp_signal(int); static void ral_setup_tx_desc(struct ral_softc *, struct ral_tx_desc *, uint32_t, int, int, int, bus_addr_t); static int ral_tx_bcn(struct ral_softc *, struct mbuf *, struct ieee80211_node *); static int ral_tx_mgt(struct ral_softc *, struct mbuf *, struct ieee80211_node *); static struct mbuf *ral_get_rts(struct ral_softc *, struct ieee80211_frame *, uint16_t); static int ral_tx_data(struct ral_softc *, struct mbuf *, struct ieee80211_node *); static void ral_start(struct ifnet *); static void ral_watchdog(struct ifnet *); static int ral_reset(struct ifnet *); static int ral_ioctl(struct ifnet *, u_long, caddr_t); static void ral_bbp_write(struct ral_softc *, uint8_t, uint8_t); static uint8_t ral_bbp_read(struct ral_softc *, uint8_t); static void ral_rf_write(struct ral_softc *, uint8_t, uint32_t); static void ral_set_chan(struct ral_softc *, struct ieee80211_channel *); #if 0 static void ral_disable_rf_tune(struct ral_softc *); #endif static void ral_enable_tsf_sync(struct ral_softc *); static void ral_update_plcp(struct ral_softc *); static void ral_update_slot(struct ifnet *); static void ral_update_led(struct ral_softc *, int, int); static void ral_set_bssid(struct ral_softc *, uint8_t *); static void ral_set_macaddr(struct ral_softc *, uint8_t *); static void ral_get_macaddr(struct ral_softc *, uint8_t *); static void ral_update_promisc(struct ral_softc *); static const char *ral_get_rf(int); static void ral_read_eeprom(struct ral_softc *); static int ral_bbp_init(struct ral_softc *); static void ral_set_txantenna(struct ral_softc *, int); static void ral_set_rxantenna(struct ral_softc *, int); static void ral_init(void *); devclass_t ral_devclass; /* * Supported rates for 802.11a/b/g modes (in 500Kbps unit). */ static const struct ieee80211_rateset ral_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset ral_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset ral_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; /* * Default values for MAC registers; values taken from the reference driver. */ static const struct { uint32_t reg; uint32_t val; } ral_def_mac[] = { { RAL_PSCSR0, 0x00020002 }, { RAL_PSCSR1, 0x00000002 }, { RAL_PSCSR2, 0x00020002 }, { RAL_PSCSR3, 0x00000002 }, { RAL_TIMECSR, 0x00003f21 }, { RAL_CSR9, 0x00000780 }, { RAL_CSR11, 0x07041483 }, { RAL_CNT3, 0x00000000 }, { RAL_TXCSR1, 0x07614562 }, { RAL_ARSP_PLCP_0, 0x8c8d8b8a }, { RAL_ACKPCTCSR, 0x7038140a }, { RAL_ARTCSR1, 0x1d21252d }, { RAL_ARTCSR2, 0x1919191d }, { RAL_RXCSR0, 0xffffffff }, { RAL_RXCSR3, 0xb3aab3af }, { RAL_PCICSR, 0x000003b8 }, { RAL_PWRCSR0, 0x3f3b3100 }, { RAL_GPIOCSR, 0x0000ff00 }, { RAL_TESTCSR, 0x000000f0 }, { RAL_PWRCSR1, 0x000001ff }, { RAL_MACCSR0, 0x00213223 }, { RAL_MACCSR1, 0x00235518 }, { RAL_RLPWCSR, 0x00000040 }, { RAL_RALINKCSR, 0x9a009a11 }, { RAL_CSR7, 0xffffffff }, { RAL_BBPCSR1, 0x82188200 }, { RAL_TXACKCSR0, 0x00000020 }, { RAL_SECCSR3, 0x0000e78f } }; /* * Default values for BBP registers; values taken from the reference driver. */ static const struct { uint8_t reg; uint8_t val; } ral_def_bbp[] = { { 3, 0x02 }, { 4, 0x19 }, { 14, 0x1c }, { 15, 0x30 }, { 16, 0xac }, { 17, 0x48 }, { 18, 0x18 }, { 19, 0xff }, { 20, 0x1e }, { 21, 0x08 }, { 22, 0x08 }, { 23, 0x08 }, { 24, 0x80 }, { 25, 0x50 }, { 26, 0x08 }, { 27, 0x23 }, { 30, 0x10 }, { 31, 0x2b }, { 32, 0xb9 }, { 34, 0x12 }, { 35, 0x50 }, { 39, 0xc4 }, { 40, 0x02 }, { 41, 0x60 }, { 53, 0x10 }, { 54, 0x18 }, { 56, 0x08 }, { 57, 0x10 }, { 58, 0x08 }, { 61, 0x60 }, { 62, 0x10 }, { 75, 0xff } }; /* * Default values for RF register R2 indexed by channel numbers; values taken * from the reference driver. */ static const uint32_t ral_rf2522_r2[] = { 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e }; static const uint32_t ral_rf2523_r2[] = { 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 }; static const uint32_t ral_rf2524_r2[] = { 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 }; static const uint32_t ral_rf2525_r2[] = { 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 }; static const uint32_t ral_rf2525_hi_r2[] = { 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e }; static const uint32_t ral_rf2525e_r2[] = { 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b }; static const uint32_t ral_rf2526_hi_r2[] = { 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 }; static const uint32_t ral_rf2526_r2[] = { 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d }; /* * For dual-band RF, RF registers R1 and R4 also depend on channel number; * values taken from the reference driver. */ static const struct { uint8_t chan; uint32_t r1; uint32_t r2; uint32_t r4; } ral_rf5222[] = { /* channels in the 2.4GHz band */ { 1, 0x08808, 0x0044d, 0x00282 }, { 2, 0x08808, 0x0044e, 0x00282 }, { 3, 0x08808, 0x0044f, 0x00282 }, { 4, 0x08808, 0x00460, 0x00282 }, { 5, 0x08808, 0x00461, 0x00282 }, { 6, 0x08808, 0x00462, 0x00282 }, { 7, 0x08808, 0x00463, 0x00282 }, { 8, 0x08808, 0x00464, 0x00282 }, { 9, 0x08808, 0x00465, 0x00282 }, { 10, 0x08808, 0x00466, 0x00282 }, { 11, 0x08808, 0x00467, 0x00282 }, { 12, 0x08808, 0x00468, 0x00282 }, { 13, 0x08808, 0x00469, 0x00282 }, { 14, 0x08808, 0x0046b, 0x00286 }, /* channels in the 5.2GHz band */ { 36, 0x08804, 0x06225, 0x00287 }, { 40, 0x08804, 0x06226, 0x00287 }, { 44, 0x08804, 0x06227, 0x00287 }, { 48, 0x08804, 0x06228, 0x00287 }, { 52, 0x08804, 0x06229, 0x00287 }, { 56, 0x08804, 0x0622a, 0x00287 }, { 60, 0x08804, 0x0622b, 0x00287 }, { 64, 0x08804, 0x0622c, 0x00287 }, { 100, 0x08804, 0x02200, 0x00283 }, { 104, 0x08804, 0x02201, 0x00283 }, { 108, 0x08804, 0x02202, 0x00283 }, { 112, 0x08804, 0x02203, 0x00283 }, { 116, 0x08804, 0x02204, 0x00283 }, { 120, 0x08804, 0x02205, 0x00283 }, { 124, 0x08804, 0x02206, 0x00283 }, { 128, 0x08804, 0x02207, 0x00283 }, { 132, 0x08804, 0x02208, 0x00283 }, { 136, 0x08804, 0x02209, 0x00283 }, { 140, 0x08804, 0x0220a, 0x00283 }, { 149, 0x08808, 0x02429, 0x00281 }, { 153, 0x08808, 0x0242b, 0x00281 }, { 157, 0x08808, 0x0242d, 0x00281 }, { 161, 0x08808, 0x0242f, 0x00281 } }; int ral_attach(device_t dev) { struct ral_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->sc_arp.ac_if; struct ieee80211com *ic = &sc->sc_ic; int error, i; sc->sc_dev = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE); /* retrieve RT2560 rev. no */ sc->asic_rev = RAL_READ(sc, RAL_CSR0); /* retrieve MAC address */ ral_get_macaddr(sc, ic->ic_myaddr); /* retrieve RF rev. no and various other things from EEPROM */ ral_read_eeprom(sc); device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->asic_rev, ral_get_rf(sc->rf_rev)); /* * Allocate Tx and Rx rings. */ if (ral_alloc_tx_ring(sc, &sc->txq, RAL_TX_RING_COUNT) != 0) { device_printf(sc->sc_dev, "could not allocate Tx ring\n"); goto fail1; } if (ral_alloc_tx_ring(sc, &sc->atimq, RAL_ATIM_RING_COUNT) != 0) { device_printf(sc->sc_dev, "could not allocate ATIM ring\n"); goto fail2; } if (ral_alloc_tx_ring(sc, &sc->prioq, RAL_PRIO_RING_COUNT) != 0) { device_printf(sc->sc_dev, "could not allocate Prio ring\n"); goto fail3; } if (ral_alloc_tx_ring(sc, &sc->bcnq, RAL_BEACON_RING_COUNT) != 0) { device_printf(sc->sc_dev, "could not allocate Beacon ring\n"); goto fail4; } if (ral_alloc_rx_ring(sc, &sc->rxq, RAL_RX_RING_COUNT) != 0) { device_printf(sc->sc_dev, "could not allocate Rx ring\n"); goto fail5; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = ral_init; ifp->if_ioctl = ral_ioctl; ifp->if_start = ral_start; ifp->if_watchdog = ral_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | IEEE80211_C_SHSLOT | IEEE80211_C_PMGT | IEEE80211_C_TXPMGT | IEEE80211_C_WPA; if (sc->rf_rev == RAL_RF_5222) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ral_rateset_11a; /* set supported .11a channels */ for (i = 36; i <= 64; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 100; i <= 140; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 161; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ral_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ral_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ieee80211_ifattach(ic); ic->ic_node_alloc = ral_node_alloc; ic->ic_updateslot = ral_update_slot; ic->ic_reset = ral_reset; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = ral_newstate; ic->ic_crypto.cs_key_alloc = ral_key_alloc; ieee80211_media_init(ic, ral_media_change, ieee80211_media_status); bpfattach2(ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT); /* * Add a few sysctl knobs. */ sc->dwelltime = 200; SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell", CTLFLAG_RW, &sc->dwelltime, 0, "channel dwell time (ms) for AP/station scanning"); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, ral_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "could not set up interrupt\n"); goto fail6; } if (bootverbose) ieee80211_announce(ic); return 0; fail6: bpfdetach(ifp); ieee80211_ifdetach(ic); ral_free_rx_ring(sc, &sc->rxq); fail5: ral_free_tx_ring(sc, &sc->bcnq); fail4: ral_free_tx_ring(sc, &sc->prioq); fail3: ral_free_tx_ring(sc, &sc->atimq); fail2: ral_free_tx_ring(sc, &sc->txq); fail1: mtx_destroy(&sc->sc_mtx); return ENXIO; } int ral_detach(device_t dev) { struct ral_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; callout_stop(&sc->scan_ch); callout_stop(&sc->rssadapt_ch); bpfdetach(ifp); ieee80211_ifdetach(ic); ral_free_tx_ring(sc, &sc->txq); ral_free_tx_ring(sc, &sc->atimq); ral_free_tx_ring(sc, &sc->prioq); ral_free_tx_ring(sc, &sc->bcnq); ral_free_rx_ring(sc, &sc->rxq); bus_teardown_intr(dev, sc->irq, sc->sc_ih); ral_free(dev); mtx_destroy(&sc->sc_mtx); return 0; } void ral_shutdown(device_t dev) { struct ral_softc *sc = device_get_softc(dev); ral_stop(sc); } int ral_alloc(device_t dev, int rid) { struct ral_softc *sc = device_get_softc(dev); sc->mem_rid = rid; sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "could not allocate memory resource\n"); return ENXIO; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); sc->irq_rid = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, RF_ACTIVE | RF_SHAREABLE); if (sc->irq == NULL) { device_printf(dev, "could not allocate interrupt resource\n"); ral_free(dev); return ENXIO; } return 0; } void ral_free(device_t dev) { struct ral_softc *sc = device_get_softc(dev); if (sc->irq != NULL) { bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); sc->irq = NULL; } if (sc->mem != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); sc->mem = NULL; } } static void ral_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int ral_alloc_tx_ring(struct ral_softc *sc, struct ral_tx_ring *ring, int count) { int i, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; ring->cur_encrypt = ring->next_encrypt = 0; error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * RAL_TX_DESC_SIZE, 1, count * RAL_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * RAL_TX_DESC_SIZE, ral_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct ral_tx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RAL_MAX_SCATTER, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { error = bus_dmamap_create(ring->data_dmat, 0, &ring->data[i].map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } } return 0; fail: ral_free_tx_ring(sc, ring); return error; } static void ral_reset_tx_ring(struct ral_softc *sc, struct ral_tx_ring *ring) { struct ral_tx_desc *desc; struct ral_tx_data *data; int i; for (i = 0; i < ring->count; i++) { desc = &ring->desc[i]; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } desc->flags = 0; } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = 0; ring->cur_encrypt = ring->next_encrypt = 0; } static void ral_free_tx_ring(struct ral_softc *sc, struct ral_tx_ring *ring) { struct ral_tx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int ral_alloc_rx_ring(struct ral_softc *sc, struct ral_rx_ring *ring, int count) { struct ral_rx_desc *desc; struct ral_rx_data *data; bus_addr_t physaddr; int i, error; ring->count = count; ring->cur = ring->next = 0; ring->cur_decrypt = 0; error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * RAL_RX_DESC_SIZE, 1, count * RAL_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * RAL_RX_DESC_SIZE, ral_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct ral_rx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } /* * Pre-allocate Rx buffers and populate Rx ring. */ error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { desc = &sc->rxq.desc[i]; data = &sc->rxq.data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MCLBYTES, ral_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } desc->flags = htole32(RAL_RX_BUSY); desc->physaddr = htole32(physaddr); } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); return 0; fail: ral_free_rx_ring(sc, ring); return error; } static void ral_reset_rx_ring(struct ral_softc *sc, struct ral_rx_ring *ring) { int i; for (i = 0; i < ring->count; i++) { ring->desc[i].flags = htole32(RAL_RX_BUSY); ring->data[i].drop = 0; } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; ring->cur_decrypt = 0; } static void ral_free_rx_ring(struct ral_softc *sc, struct ral_rx_ring *ring) { struct ral_rx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static struct ieee80211_node * ral_node_alloc(struct ieee80211_node_table *nt) { struct ral_node *rn; rn = malloc(sizeof (struct ral_node), M_80211_NODE, M_NOWAIT | M_ZERO); return (rn != NULL) ? &rn->ni : NULL; } static int ral_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k) { if (k >= ic->ic_nw_keys && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID]) return k - ic->ic_nw_keys; return IEEE80211_KEYIX_NONE; } static int ral_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ral_init(ifp); return 0; } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ static void ral_next_scan(void *arg) { struct ral_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ic); } /* * This function is called for each node present in the node station table. */ static void ral_iter_func(void *arg, struct ieee80211_node *ni) { struct ral_node *rn = (struct ral_node *)ni; ral_rssadapt_updatestats(&rn->rssadapt); } /* * This function is called periodically (every 100ms) in RUN state to update * the rate adaptation statistics. */ static void ral_update_rssadapt(void *arg) { struct ral_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; RAL_LOCK(sc); ieee80211_iterate_nodes(&ic->ic_sta, ral_iter_func, arg); callout_reset(&sc->rssadapt_ch, hz / 10, ral_update_rssadapt, sc); RAL_UNLOCK(sc); } static int ral_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ral_softc *sc = ic->ic_ifp->if_softc; struct mbuf *m; enum ieee80211_state ostate; int error = 0; ostate = ic->ic_state; callout_stop(&sc->scan_ch); switch (nstate) { case IEEE80211_S_INIT: callout_stop(&sc->rssadapt_ch); if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ RAL_WRITE(sc, RAL_CSR14, 0); /* turn association led off */ ral_update_led(sc, 0, 0); } break; case IEEE80211_S_SCAN: ral_set_chan(sc, ic->ic_bss->ni_chan); callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000, ral_next_scan, sc); break; case IEEE80211_S_AUTH: ral_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_ASSOC: ral_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_RUN: ral_set_chan(sc, ic->ic_bss->ni_chan); if (ic->ic_opmode != IEEE80211_M_MONITOR) ral_set_bssid(sc, ic->ic_bss->ni_bssid); if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS) { m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); if (m == NULL) { device_printf(sc->sc_dev, "could not allocate beacon\n"); error = ENOBUFS; break; } ieee80211_ref_node(ic->ic_bss); error = ral_tx_bcn(sc, m, ic->ic_bss); if (error != 0) break; } /* turn assocation led on */ ral_update_led(sc, 1, 0); if (ic->ic_opmode != IEEE80211_M_MONITOR) { callout_reset(&sc->rssadapt_ch, hz / 10, ral_update_rssadapt, sc); ral_enable_tsf_sync(sc); } break; } return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); } /* * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or * 93C66). */ static uint16_t ral_eeprom_read(struct ral_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ RAL_EEPROM_CTL(sc, 0); RAL_EEPROM_CTL(sc, RAL_EEPROM_S); RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_C); RAL_EEPROM_CTL(sc, RAL_EEPROM_S); /* write start bit (1) */ RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D); RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D | RAL_EEPROM_C); /* write READ opcode (10) */ RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D); RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D | RAL_EEPROM_C); RAL_EEPROM_CTL(sc, RAL_EEPROM_S); RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_C); /* write address (A5-A0 or A7-A0) */ n = (RAL_READ(sc, RAL_CSR21) & RAL_EEPROM_93C46) ? 5 : 7; for (; n >= 0; n--) { RAL_EEPROM_CTL(sc, RAL_EEPROM_S | (((addr >> n) & 1) << RAL_EEPROM_SHIFT_D)); RAL_EEPROM_CTL(sc, RAL_EEPROM_S | (((addr >> n) & 1) << RAL_EEPROM_SHIFT_D) | RAL_EEPROM_C); } RAL_EEPROM_CTL(sc, RAL_EEPROM_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_C); tmp = RAL_READ(sc, RAL_CSR21); val |= ((tmp & RAL_EEPROM_Q) >> RAL_EEPROM_SHIFT_Q) << n; RAL_EEPROM_CTL(sc, RAL_EEPROM_S); } RAL_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ RAL_EEPROM_CTL(sc, RAL_EEPROM_S); RAL_EEPROM_CTL(sc, 0); RAL_EEPROM_CTL(sc, RAL_EEPROM_C); return le16toh(val); } /* * Some frames were processed by the hardware cipher engine and are ready for * transmission. */ static void ral_encryption_intr(struct ral_softc *sc) { struct ral_tx_desc *desc; int hw; /* retrieve last descriptor index processed by cipher engine */ hw = (RAL_READ(sc, RAL_SECCSR1) - sc->txq.physaddr) / RAL_TX_DESC_SIZE; bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_POSTREAD); for (; sc->txq.next_encrypt != hw;) { desc = &sc->txq.desc[sc->txq.next_encrypt]; if ((le32toh(desc->flags) & RAL_TX_BUSY) || (le32toh(desc->flags) & RAL_TX_CIPHER_BUSY)) break; /* for TKIP, swap eiv field to fix a bug in ASIC */ if ((le32toh(desc->flags) & RAL_TX_CIPHER_MASK) == RAL_TX_CIPHER_TKIP) desc->eiv = bswap32(desc->eiv); /* mark the frame ready for transmission */ desc->flags |= htole32(RAL_TX_BUSY | RAL_TX_VALID); DPRINTFN(15, ("encryption done idx=%u\n", sc->txq.next_encrypt)); sc->txq.next_encrypt = (sc->txq.next_encrypt + 1) % RAL_TX_RING_COUNT; } bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_PREWRITE); /* kick Tx */ RAL_WRITE(sc, RAL_TXCSR0, RAL_KICK_TX); } static void ral_tx_intr(struct ral_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct ral_tx_desc *desc; struct ral_tx_data *data; struct ral_node *rn; bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &sc->txq.desc[sc->txq.next]; data = &sc->txq.data[sc->txq.next]; if ((le32toh(desc->flags) & RAL_TX_BUSY) || (le32toh(desc->flags) & RAL_TX_CIPHER_BUSY) || !(le32toh(desc->flags) & RAL_TX_VALID)) break; rn = (struct ral_node *)data->ni; switch (le32toh(desc->flags) & RAL_TX_RESULT_MASK) { case RAL_TX_SUCCESS: DPRINTFN(10, ("data frame sent successfully\n")); if (data->id.id_node != NULL) { ral_rssadapt_raise_rate(ic, &rn->rssadapt, &data->id); } ifp->if_opackets++; break; case RAL_TX_SUCCESS_RETRY: DPRINTFN(9, ("data frame sent after %u retries\n", (le32toh(desc->flags) >> 5) & 0x7)); ifp->if_opackets++; break; case RAL_TX_FAIL_RETRY: DPRINTFN(9, ("sending data frame failed (too much " "retries)\n")); if (data->id.id_node != NULL) { ral_rssadapt_lower_rate(ic, data->ni, &rn->rssadapt, &data->id); } ifp->if_oerrors++; break; case RAL_TX_FAIL_INVALID: case RAL_TX_FAIL_OTHER: default: device_printf(sc->sc_dev, "sending data frame failed " "0x%08x\n", le32toh(desc->flags)); ifp->if_oerrors++; } bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txq.data_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_free_node(data->ni); data->ni = NULL; /* descriptor is no longer valid */ desc->flags &= ~htole32(RAL_TX_VALID); DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next)); sc->txq.queued--; sc->txq.next = (sc->txq.next + 1) % RAL_TX_RING_COUNT; } bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_PREWRITE); sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; ral_start(ifp); } static void ral_prio_intr(struct ral_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct ral_tx_desc *desc; struct ral_tx_data *data; bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &sc->prioq.desc[sc->prioq.next]; data = &sc->prioq.data[sc->prioq.next]; if ((le32toh(desc->flags) & RAL_TX_BUSY) || !(le32toh(desc->flags) & RAL_TX_VALID)) break; switch (le32toh(desc->flags) & RAL_TX_RESULT_MASK) { case RAL_TX_SUCCESS: DPRINTFN(10, ("mgt frame sent successfully\n")); break; case RAL_TX_SUCCESS_RETRY: DPRINTFN(9, ("mgt frame sent after %u retries\n", (le32toh(desc->flags) >> 5) & 0x7)); break; case RAL_TX_FAIL_RETRY: DPRINTFN(9, ("sending mgt frame failed (too much " "retries)\n")); break; case RAL_TX_FAIL_INVALID: case RAL_TX_FAIL_OTHER: default: device_printf(sc->sc_dev, "sending mgt frame failed " "0x%08x\n", le32toh(desc->flags)); } bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->prioq.data_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_free_node(data->ni); data->ni = NULL; /* descriptor is no longer valid */ desc->flags &= ~htole32(RAL_TX_VALID); DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next)); sc->prioq.queued--; sc->prioq.next = (sc->prioq.next + 1) % RAL_PRIO_RING_COUNT; } bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_PREWRITE); sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; ral_start(ifp); } /* * Some frames were processed by the hardware cipher engine and are ready for * transmission to the IEEE802.11 layer. */ static void ral_decryption_intr(struct ral_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct ral_rx_desc *desc; struct ral_rx_data *data; bus_addr_t physaddr; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct ral_node *rn; struct mbuf *m; int hw, error; /* retrieve last decriptor index processed by cipher engine */ hw = (RAL_READ(sc, RAL_SECCSR0) - sc->rxq.physaddr) / RAL_RX_DESC_SIZE; bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_POSTREAD); for (; sc->rxq.cur_decrypt != hw;) { desc = &sc->rxq.desc[sc->rxq.cur_decrypt]; data = &sc->rxq.data[sc->rxq.cur_decrypt]; if ((le32toh(desc->flags) & RAL_RX_BUSY) || (le32toh(desc->flags) & RAL_RX_CIPHER_BUSY)) break; if (data->drop) { ifp->if_ierrors++; goto skip; } if ((le32toh(desc->flags) & RAL_RX_CIPHER_MASK) != 0 && (le32toh(desc->flags) & RAL_RX_ICV_ERROR)) { ifp->if_ierrors++; goto skip; } bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxq.data_dmat, data->map); /* finalize mbuf */ m = data->m; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; if (sc->sc_drvbpf != NULL) { struct ral_rx_radiotap_header *tap = &sc->sc_rxtap; uint32_t tsf_lo, tsf_hi; /* get timestamp (low and high 32 bits) */ tsf_lo = RAL_READ(sc, RAL_CSR16); tsf_hi = RAL_READ(sc, RAL_CSR17); tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = desc->rssi; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); } wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); /* send the frame to the 802.11 layer */ ieee80211_input(ic, m, ni, desc->rssi, 0); /* give rssi to the rate adatation algorithm */ rn = (struct ral_node *)ni; ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi); /* node is no longer needed */ ieee80211_free_node(ni); data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); break; } error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(data->m, void *), MCLBYTES, ral_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map\n"); m_freem(data->m); data->m = NULL; break; } desc->physaddr = htole32(physaddr); skip: desc->flags = htole32(RAL_RX_BUSY); DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt)); sc->rxq.cur_decrypt = (sc->rxq.cur_decrypt + 1) % RAL_RX_RING_COUNT; } bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_PREWRITE); } /* * Some frames were received. Pass them to the hardware cipher engine before * sending them to the 802.11 layer. */ static void ral_rx_intr(struct ral_softc *sc) { struct ral_rx_desc *desc; struct ral_rx_data *data; bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &sc->rxq.desc[sc->rxq.cur]; data = &sc->rxq.data[sc->rxq.cur]; if ((le32toh(desc->flags) & RAL_RX_BUSY) || (le32toh(desc->flags) & RAL_RX_CIPHER_BUSY)) break; data->drop = 0; if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) || (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) { /* * This should not happen since we did not request * to receive those frames when we filled RXCSR0. */ DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", le32toh(desc->flags))); data->drop = 1; } if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) { DPRINTFN(5, ("bad length\n")); data->drop = 1; } /* mark the frame for decryption */ desc->flags |= htole32(RAL_RX_CIPHER_BUSY); DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); sc->rxq.cur = (sc->rxq.cur + 1) % RAL_RX_RING_COUNT; } bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_PREWRITE); /* kick decrypt */ RAL_WRITE(sc, RAL_SECCSR0, RAL_KICK_DECRYPT); } /* * This function is called periodically in IBSS mode when a new beacon must be * sent out. */ static void ral_beacon_expire(struct ral_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ral_tx_data *data; if (ic->ic_opmode != IEEE80211_M_IBSS && ic->ic_opmode != IEEE80211_M_HOSTAP) return; data = &sc->bcnq.data[sc->bcnq.next]; bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bcnq.data_dmat, data->map); ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1); if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, data->m); ral_tx_bcn(sc, data->m, data->ni); DPRINTFN(15, ("beacon expired\n")); sc->bcnq.next = (sc->bcnq.next + 1) % RAL_BEACON_RING_COUNT; } static void ral_wakeup_expire(struct ral_softc *sc) { DPRINTFN(2, ("wakeup expired\n")); } static void ral_intr(void *arg) { struct ral_softc *sc = arg; uint32_t r; RAL_LOCK(sc); /* disable interrupts */ RAL_WRITE(sc, RAL_CSR8, 0xffffffff); r = RAL_READ(sc, RAL_CSR7); RAL_WRITE(sc, RAL_CSR7, r); if (r & RAL_BEACON_EXPIRE) ral_beacon_expire(sc); if (r & RAL_WAKEUP_EXPIRE) ral_wakeup_expire(sc); if (r & RAL_ENCRYPTION_DONE) ral_encryption_intr(sc); if (r & RAL_TX_DONE) ral_tx_intr(sc); if (r & RAL_PRIO_DONE) ral_prio_intr(sc); if (r & RAL_DECRYPTION_DONE) ral_decryption_intr(sc); if (r & RAL_RX_DONE) ral_rx_intr(sc); /* re-enable interrupts */ RAL_WRITE(sc, RAL_CSR8, RAL_INTR_MASK); RAL_UNLOCK(sc); } /* quickly determine if a given rate is CCK or OFDM */ #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ #define RAL_SIFS 10 /* * Return the expected ack rate for a frame transmitted at rate `rate'. * XXX: this should depend on the destination node basic rate set. */ static int ral_ack_rate(int rate) { switch (rate) { /* CCK rates */ case 2: return 2; case 4: case 11: case 22: return 4; /* OFDM rates */ case 12: case 18: return 12; case 24: case 36: return 24; case 48: case 72: case 96: case 108: return 48; } /* default to 1Mbps */ return 2; } /* * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. * The function automatically determines the operating mode depending on the * given rate. `flags' indicates whether short preamble is in use or not. */ static uint16_t ral_txtime(int len, int rate, uint32_t flags) { uint16_t txtime; int ceil, dbps; if (RAL_RATE_IS_OFDM(rate)) { /* * OFDM TXTIME calculation. * From IEEE Std 802.11a-1999, pp. 37. */ dbps = rate * 2; /* data bits per OFDM symbol */ ceil = (16 + 8 * len + 6) / dbps; if ((16 + 8 * len + 6) % dbps != 0) ceil++; txtime = 16 + 4 + 4 * ceil + 6; } else { /* * High Rate TXTIME calculation. * From IEEE Std 802.11b-1999, pp. 28. */ ceil = (8 * len * 2) / rate; if ((8 * len * 2) % rate != 0) ceil++; if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) txtime = 72 + 24 + ceil; else txtime = 144 + 48 + ceil; } return txtime; } static uint8_t ral_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } static void ral_setup_tx_desc(struct ral_softc *sc, struct ral_tx_desc *desc, uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(len << 16); desc->flags |= encrypt ? htole32(RAL_TX_CIPHER_BUSY) : htole32(RAL_TX_BUSY | RAL_TX_VALID); if (RAL_RATE_IS_OFDM(rate)) desc->flags |= htole32(RAL_TX_OFDM); desc->physaddr = htole32(physaddr); desc->wme = htole16(RAL_LOGCWMAX(8) | RAL_LOGCWMIN(3) | RAL_AIFSN(2)); /* * Fill PLCP fields. */ desc->plcp_service = 4; len += 4; /* account for FCS */ if (RAL_RATE_IS_OFDM(rate)) { /* * PLCP length field (LENGTH). * From IEEE Std 802.11a-1999, pp. 14. */ plcp_length = len & 0xfff; desc->plcp_length = htole16((plcp_length >> 6) << 8 | (plcp_length & 0x3f)); } else { /* * Long PLCP LENGTH field. * From IEEE Std 802.11b-1999, pp. 16. */ plcp_length = (8 * len * 2) / rate; remainder = (8 * len * 2) % rate; if (remainder != 0) { if (rate == 22 && (rate - remainder) / 16 != 0) desc->plcp_service |= RAL_PLCP_LENGEXT; plcp_length++; } desc->plcp_length = htole16(plcp_length); } desc->plcp_signal = ral_plcp_signal(rate); if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } static int ral_tx_bcn(struct ral_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ral_tx_desc *desc; struct ral_tx_data *data; bus_dma_segment_t segs[RAL_MAX_SCATTER]; int nsegs, rate, error; desc = &sc->bcnq.desc[sc->bcnq.cur]; data = &sc->bcnq.data[sc->bcnq.cur]; rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4; error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (sc->sc_drvbpf != NULL) { struct ral_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wt_antenna = sc->tx_ant; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } data->m = m0; data->ni = ni; ral_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr); DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->bcnq.cur, rate)); bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map, BUS_DMASYNC_PREWRITE); sc->bcnq.cur = (sc->bcnq.cur + 1) % RAL_BEACON_RING_COUNT; return 0; } static int ral_tx_mgt(struct ral_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ral_tx_desc *desc; struct ral_tx_data *data; struct ieee80211_frame *wh; bus_dma_segment_t segs[RAL_MAX_SCATTER]; uint16_t dur; uint32_t flags = 0; int nsegs, rate, error; desc = &sc->prioq.desc[sc->prioq.cur]; data = &sc->prioq.data[sc->prioq.cur]; rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4; error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (sc->sc_drvbpf != NULL) { struct ral_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wt_antenna = sc->tx_ant; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } data->m = m0; data->ni = ni; wh = mtod(m0, struct ieee80211_frame *); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RAL_TX_ACK; dur = ral_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS; *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT && (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= RAL_TX_TIMESTAMP; } ral_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, segs->ds_addr); bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->prioq.cur, rate)); /* kick prio */ sc->prioq.queued++; sc->prioq.cur = (sc->prioq.cur + 1) % RAL_PRIO_RING_COUNT; RAL_WRITE(sc, RAL_TXCSR0, RAL_KICK_PRIO); return 0; } /* * Build a RTS control frame. */ static struct mbuf * ral_get_rts(struct ral_softc *sc, struct ieee80211_frame *wh, uint16_t dur) { struct ieee80211_frame_rts *rts; struct mbuf *m; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { sc->sc_ic.ic_stats.is_tx_nobuf++; device_printf(sc->sc_dev, "could not allocate RTS frame\n"); return NULL; } rts = mtod(m, struct ieee80211_frame_rts *); rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(uint16_t *)rts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); return m; } static int ral_tx_data(struct ral_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ral_tx_desc *desc; struct ral_tx_data *data; struct ral_node *rn; struct ieee80211_rateset *rs; struct ieee80211_frame *wh; struct ieee80211_key *k; struct mbuf *mnew; bus_dma_segment_t segs[RAL_MAX_SCATTER]; uint16_t dur; uint32_t flags = 0; int nsegs, rate, error; wh = mtod(m0, struct ieee80211_frame *); if (ic->ic_fixed_rate != -1) { rs = &ic->ic_sup_rates[ic->ic_curmode]; rate = rs->rs_rates[ic->ic_fixed_rate]; } else { rs = &ni->ni_rates; rn = (struct ral_node *)ni; ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh, m0->m_pkthdr.len, NULL, 0); rate = rs->rs_rates[ni->ni_txrate]; } rate &= IEEE80211_RATE_VAL; if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) return ENOBUFS; /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } /* * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange * for directed frames only when the length of the MPDU is greater * than the length threshold indicated by [...]" ic_rtsthreshold. */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && m0->m_pkthdr.len > ic->ic_rtsthreshold) { struct mbuf *m; uint16_t dur; int rtsrate, ackrate; rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4; ackrate = ral_ack_rate(rate); dur = ral_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + ral_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + ral_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 3 * RAL_SIFS; m = ral_get_rts(sc, wh, dur); desc = &sc->txq.desc[sc->txq.cur_encrypt]; data = &sc->txq.data[sc->txq.cur_encrypt]; error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m); m_freem(m0); return error; } /* avoid multiple free() of the same node for each fragment */ ieee80211_ref_node(ni); data->m = m; data->ni = ni; /* RTS frames are not taken into account for rssadapt */ data->id.id_node = NULL; ral_setup_tx_desc(sc, desc, RAL_TX_ACK | RAL_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1, segs->ds_addr); bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); sc->txq.queued++; sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RAL_TX_RING_COUNT; /* * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the * asynchronous data frame shall be transmitted after the CTS * frame and a SIFS period. */ flags |= RAL_TX_LONG_RETRY | RAL_TX_IFS_SIFS; } data = &sc->txq.data[sc->txq.cur_encrypt]; desc = &sc->txq.desc[sc->txq.cur_encrypt]; mnew = m_defrag(m0, M_DONTWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOMEM; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (sc->sc_drvbpf != NULL) { struct ral_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wt_antenna = sc->tx_ant; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } data->m = m0; data->ni = ni; /* remember link conditions for rate adaptation algorithm */ if (ic->ic_fixed_rate == -1) { data->id.id_len = m0->m_pkthdr.len; data->id.id_rateidx = ni->ni_txrate; data->id.id_node = ni; data->id.id_rssi = ni->ni_rssi; } else data->id.id_node = NULL; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RAL_TX_ACK; dur = ral_txtime(RAL_ACK_SIZE, ral_ack_rate(rate), ic->ic_flags) + RAL_SIFS; *(uint16_t *)wh->i_dur = htole16(dur); } ral_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, segs->ds_addr); bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->txq.cur_encrypt, rate)); /* kick encrypt */ sc->txq.queued++; sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RAL_TX_RING_COUNT; RAL_WRITE(sc, RAL_SECCSR1, RAL_KICK_ENCRYPT); return 0; } static void ral_start(struct ifnet *ifp) { struct ral_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m0; struct ether_header *eh; struct ieee80211_node *ni; RAL_LOCK(sc); for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->prioq.queued >= RAL_PRIO_RING_COUNT) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); if (ral_tx_mgt(sc, m0, ni) != 0) break; } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->txq.queued >= RAL_TX_RING_COUNT - 1) { IFQ_DRV_PREPEND(&ifp->if_snd, m0); ifp->if_flags |= IFF_OACTIVE; break; } if (m0->m_len < sizeof (struct ether_header) && !(m0 = m_pullup(m0, sizeof (struct ether_header)))) continue; eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); continue; } BPF_MTAP(ifp, m0); m0 = ieee80211_encap(ic, m0, ni); if (m0 == NULL) continue; if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); if (ral_tx_data(sc, m0, ni) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } } sc->sc_tx_timer = 5; ifp->if_timer = 1; } RAL_UNLOCK(sc); } static void ral_watchdog(struct ifnet *ifp) { struct ral_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; RAL_LOCK(sc); ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); ral_init(sc); ifp->if_oerrors++; RAL_UNLOCK(sc); return; } ifp->if_timer = 1; } ieee80211_watchdog(ic); RAL_UNLOCK(sc); } /* * This function allows for fast channel switching in monitor mode (used by * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to * generate a new beacon frame. */ static int ral_reset(struct ifnet *ifp) { struct ral_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_opmode != IEEE80211_M_MONITOR) return ENETRESET; ral_set_chan(sc, ic->ic_ibss_chan); return 0; } static int ral_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ral_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int error = 0; RAL_LOCK(sc); switch (cmd) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) ral_update_promisc(sc); else ral_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) ral_stop(sc); } break; default: error = ieee80211_ioctl(ic, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ral_init(sc); error = 0; } RAL_UNLOCK(sc); return error; } static void ral_bbp_write(struct ral_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RAL_BBPCSR) & RAL_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to BBP\n"); return; } tmp = RAL_BBP_WRITE | RAL_BBP_BUSY | reg << 8 | val; RAL_WRITE(sc, RAL_BBPCSR, tmp); DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); } static uint8_t ral_bbp_read(struct ral_softc *sc, uint8_t reg) { uint32_t val; int ntries; val = RAL_BBP_BUSY | reg << 8; RAL_WRITE(sc, RAL_BBPCSR, val); for (ntries = 0; ntries < 100; ntries++) { val = RAL_READ(sc, RAL_BBPCSR); if (!(val & RAL_BBP_BUSY)) return val & 0xff; DELAY(1); } device_printf(sc->sc_dev, "could not read from BBP\n"); return 0; } static void ral_rf_write(struct ral_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RAL_RFCSR) & RAL_RF_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); RAL_WRITE(sc, RAL_RFCSR, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); } static void ral_set_chan(struct ral_softc *sc, struct ieee80211_channel *c) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct ieee80211com *ic = &sc->sc_ic; uint8_t power, tmp; u_int i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; if (IEEE80211_IS_CHAN_2GHZ(c)) power = min(sc->txpow[chan - 1], 31); else power = 31; DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); switch (sc->rf_rev) { case RAL_RF_2522: ral_rf_write(sc, RAL_RF1, 0x00814); ral_rf_write(sc, RAL_RF2, ral_rf2522_r2[chan - 1]); ral_rf_write(sc, RAL_RF3, power << 7 | 0x00040); break; case RAL_RF_2523: ral_rf_write(sc, RAL_RF1, 0x08804); ral_rf_write(sc, RAL_RF2, ral_rf2523_r2[chan - 1]); ral_rf_write(sc, RAL_RF3, power << 7 | 0x38044); ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2524: ral_rf_write(sc, RAL_RF1, 0x0c808); ral_rf_write(sc, RAL_RF2, ral_rf2524_r2[chan - 1]); ral_rf_write(sc, RAL_RF3, power << 7 | 0x00040); ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2525: ral_rf_write(sc, RAL_RF1, 0x08808); ral_rf_write(sc, RAL_RF2, ral_rf2525_hi_r2[chan - 1]); ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); ral_rf_write(sc, RAL_RF1, 0x08808); ral_rf_write(sc, RAL_RF2, ral_rf2525_r2[chan - 1]); ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2525E: ral_rf_write(sc, RAL_RF1, 0x08808); ral_rf_write(sc, RAL_RF2, ral_rf2525e_r2[chan - 1]); ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); break; case RAL_RF_2526: ral_rf_write(sc, RAL_RF2, ral_rf2526_hi_r2[chan - 1]); ral_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); ral_rf_write(sc, RAL_RF1, 0x08804); ral_rf_write(sc, RAL_RF2, ral_rf2526_r2[chan - 1]); ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ral_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); break; /* dual-band RF */ case RAL_RF_5222: for (i = 0; i < N(ral_rf5222); i++) if (ral_rf5222[i].chan == chan) break; if (i < N(ral_rf5222)) { ral_rf_write(sc, RAL_RF1, ral_rf5222[i].r1); ral_rf_write(sc, RAL_RF2, ral_rf5222[i].r2); ral_rf_write(sc, RAL_RF3, power << 7 | 0x00040); ral_rf_write(sc, RAL_RF4, ral_rf5222[i].r4); } break; } if (ic->ic_state != IEEE80211_S_SCAN) { /* set Japan filter bit for channel 14 */ tmp = ral_bbp_read(sc, 70); tmp &= ~RAL_JAPAN_FILTER; if (chan == 14) tmp |= RAL_JAPAN_FILTER; ral_bbp_write(sc, 70, tmp); /* clear CRC errors */ RAL_READ(sc, RAL_CNT0); } #undef N } #if 0 /* * Disable RF auto-tuning. */ static void ral_disable_rf_tune(struct ral_softc *sc) { uint32_t tmp; if (sc->rf_rev != RAL_RF_2523) { tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; ral_rf_write(sc, RAL_RF1, tmp); } tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; ral_rf_write(sc, RAL_RF3, tmp); DPRINTFN(2, ("disabling RF autotune\n")); } #endif /* * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF * synchronization. */ static void ral_enable_tsf_sync(struct ral_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t logcwmin, preload; uint32_t tmp; /* first, disable TSF synchronization */ RAL_WRITE(sc, RAL_CSR14, 0); tmp = 16 * ic->ic_bss->ni_intval; RAL_WRITE(sc, RAL_CSR12, tmp); RAL_WRITE(sc, RAL_CSR13, 0); logcwmin = 5; preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024; tmp = logcwmin << 16 | preload; RAL_WRITE(sc, RAL_BCNOCSR, tmp); /* finally, enable TSF synchronization */ tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RAL_ENABLE_TSF_SYNC(1); else tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; RAL_WRITE(sc, RAL_CSR14, tmp); DPRINTF(("enabling TSF synchronization\n")); } static void ral_update_plcp(struct ral_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* no short preamble for 1Mbps */ RAL_WRITE(sc, RAL_PLCP1MCSR, 0x00700400); if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { /* values taken from the reference driver */ RAL_WRITE(sc, RAL_PLCP2MCSR, 0x00380401); RAL_WRITE(sc, RAL_PLCP5p5MCSR, 0x00150402); RAL_WRITE(sc, RAL_PLCP11MCSR, 0x000b8403); } else { /* same values as above or'ed 0x8 */ RAL_WRITE(sc, RAL_PLCP2MCSR, 0x00380409); RAL_WRITE(sc, RAL_PLCP5p5MCSR, 0x0015040a); RAL_WRITE(sc, RAL_PLCP11MCSR, 0x000b840b); } DPRINTF(("updating PLCP for %s preamble\n", (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long")); } /* * This function can be called by ieee80211_set_shortslottime(). Refer to * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. */ static void ral_update_slot(struct ifnet *ifp) { struct ral_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t slottime; uint16_t sifs, pifs, difs, eifs; uint32_t tmp; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; /* update the MAC slot boundaries */ sifs = RAL_SIFS; pifs = sifs + slottime; difs = sifs + 2 * slottime; eifs = sifs + ral_txtime(RAL_ACK_SIZE, (ic->ic_curmode == IEEE80211_MODE_11A) ? 12 : 2, 0) + difs; tmp = RAL_READ(sc, RAL_CSR11); tmp = (tmp & ~0x1f00) | slottime << 8; RAL_WRITE(sc, RAL_CSR11, tmp); tmp = pifs << 16 | sifs; RAL_WRITE(sc, RAL_CSR18, tmp); tmp = eifs << 16 | difs; RAL_WRITE(sc, RAL_CSR19, tmp); DPRINTF(("setting slottime to %uus\n", slottime)); } static void ral_update_led(struct ral_softc *sc, int led1, int led2) { uint32_t tmp; /* set ON period to 70ms and OFF period to 30ms */ tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; RAL_WRITE(sc, RAL_LEDCSR, tmp); } static void ral_set_bssid(struct ral_softc *sc, uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; RAL_WRITE(sc, RAL_CSR5, tmp); tmp = bssid[4] | bssid[5] << 8; RAL_WRITE(sc, RAL_CSR6, tmp); DPRINTF(("setting BSSID to %6D\n", bssid, ":")); } static void ral_set_macaddr(struct ral_softc *sc, uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; RAL_WRITE(sc, RAL_CSR3, tmp); tmp = addr[4] | addr[5] << 8; RAL_WRITE(sc, RAL_CSR4, tmp); DPRINTF(("setting MAC address to %6D\n", addr, ":")); } static void ral_get_macaddr(struct ral_softc *sc, uint8_t *addr) { uint32_t tmp; tmp = RAL_READ(sc, RAL_CSR3); addr[0] = tmp & 0xff; addr[1] = (tmp >> 8) & 0xff; addr[2] = (tmp >> 16) & 0xff; addr[3] = (tmp >> 24); tmp = RAL_READ(sc, RAL_CSR4); addr[4] = tmp & 0xff; addr[5] = (tmp >> 8) & 0xff; } static void ral_update_promisc(struct ral_softc *sc) { struct ifnet *ifp = sc->sc_ic.ic_ifp; uint32_t tmp; tmp = RAL_READ(sc, RAL_RXCSR0); tmp &= ~RAL_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RAL_DROP_NOT_TO_ME; RAL_WRITE(sc, RAL_RXCSR0, tmp); DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving")); } static const char * ral_get_rf(int rev) { switch (rev) { case RAL_RF_2522: return "RT2522"; case RAL_RF_2523: return "RT2523"; case RAL_RF_2524: return "RT2524"; case RAL_RF_2525: return "RT2525"; case RAL_RF_2525E: return "RT2525e"; case RAL_RF_2526: return "RT2526"; case RAL_RF_5222: return "RT5222"; default: return "unknown"; } } static void ral_read_eeprom(struct ral_softc *sc) { uint16_t val; int i; val = ral_eeprom_read(sc, RAL_EEPROM_CONFIG0); sc->rf_rev = (val >> 11) & 0x7; sc->hw_radio = (val >> 10) & 0x1; sc->led_mode = (val >> 6) & 0x7; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; /* read default values for BBP registers */ for (i = 0; i < 16; i++) { val = ral_eeprom_read(sc, RAL_EEPROM_BBP_BASE + i); sc->bbp_prom[i].reg = val >> 8; sc->bbp_prom[i].val = val & 0xff; } /* read Tx power for all b/g channels */ for (i = 0; i < 14 / 2; i++) { val = ral_eeprom_read(sc, RAL_EEPROM_TXPOWER + i); sc->txpow[i * 2] = val >> 8; sc->txpow[i * 2 + 1] = val & 0xff; } } static int ral_bbp_init(struct ral_softc *sc) { #define N(a) (sizeof (a) / sizeof ((a)[0])) int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { if (ral_bbp_read(sc, RAL_BBP_VERSION) != 0) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < N(ral_def_bbp); i++) ral_bbp_write(sc, ral_def_bbp[i].reg, ral_def_bbp[i].val); #if 0 /* initialize BBP registers to values stored in EEPROM */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0xff) continue; ral_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } #endif return 0; #undef N } static void ral_set_txantenna(struct ral_softc *sc, int antenna) { uint32_t tmp; uint8_t tx; tx = ral_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; if (antenna == 1) tx |= RAL_BBP_ANTA; else if (antenna == 2) tx |= RAL_BBP_ANTB; else tx |= RAL_BBP_DIVERSITY; /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || sc->rf_rev == RAL_RF_5222) tx |= RAL_BBP_FLIPIQ; ral_bbp_write(sc, RAL_BBP_TX, tx); /* update values for CCK and OFDM in BBPCSR1 */ tmp = RAL_READ(sc, RAL_BBPCSR1) & ~0x00070007; tmp |= (tx & 0x7) << 16 | (tx & 0x7); RAL_WRITE(sc, RAL_BBPCSR1, tmp); } static void ral_set_rxantenna(struct ral_softc *sc, int antenna) { uint8_t rx; rx = ral_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; if (antenna == 1) rx |= RAL_BBP_ANTA; else if (antenna == 2) rx |= RAL_BBP_ANTB; else rx |= RAL_BBP_DIVERSITY; /* need to force no I/Q flip for RF 2525e and 2526 */ if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) rx &= ~RAL_BBP_FLIPIQ; ral_bbp_write(sc, RAL_BBP_RX, rx); } static void ral_init(void *priv) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct ral_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; uint32_t tmp; int i; ral_stop(sc); /* setup tx rings */ tmp = RAL_PRIO_RING_COUNT << 24 | RAL_ATIM_RING_COUNT << 16 | RAL_TX_RING_COUNT << 8 | RAL_TX_DESC_SIZE; /* rings _must_ be initialized in this _exact_ order! */ RAL_WRITE(sc, RAL_TXCSR2, tmp); RAL_WRITE(sc, RAL_TXCSR3, sc->txq.physaddr); RAL_WRITE(sc, RAL_TXCSR5, sc->prioq.physaddr); RAL_WRITE(sc, RAL_TXCSR4, sc->atimq.physaddr); RAL_WRITE(sc, RAL_TXCSR6, sc->bcnq.physaddr); /* setup rx ring */ tmp = RAL_RX_RING_COUNT << 8 | RAL_RX_DESC_SIZE; RAL_WRITE(sc, RAL_RXCSR1, tmp); RAL_WRITE(sc, RAL_RXCSR2, sc->rxq.physaddr); /* initialize MAC registers to default values */ for (i = 0; i < N(ral_def_mac); i++) RAL_WRITE(sc, ral_def_mac[i].reg, ral_def_mac[i].val); IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); ral_set_macaddr(sc, ic->ic_myaddr); /* set supported basic rates (1, 2, 6, 12, 24) */ RAL_WRITE(sc, RAL_ARSP_PLCP_1, 0x153); ral_set_txantenna(sc, sc->tx_ant); ral_set_rxantenna(sc, sc->rx_ant); ral_update_slot(ifp); ral_update_plcp(sc); ral_update_led(sc, 0, 0); RAL_WRITE(sc, RAL_CSR1, RAL_RESET_ASIC); RAL_WRITE(sc, RAL_CSR1, RAL_HOST_READY); if (ral_bbp_init(sc) != 0) { ral_stop(sc); return; } /* set default BSS channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; ral_set_chan(sc, ic->ic_bss->ni_chan); /* kick Rx */ tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RAL_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RAL_DROP_NOT_TO_ME; } RAL_WRITE(sc, RAL_RXCSR0, tmp); /* clear old FCS and Rx FIFO errors */ RAL_READ(sc, RAL_CNT0); RAL_READ(sc, RAL_CNT4); /* clear any pending interrupts */ RAL_WRITE(sc, RAL_CSR7, 0xffffffff); /* enable interrupts */ RAL_WRITE(sc, RAL_CSR8, RAL_INTR_MASK); ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); #undef N } void ral_stop(void *priv) { struct ral_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* abort Tx */ RAL_WRITE(sc, RAL_TXCSR0, RAL_ABORT_TX); /* disable Rx */ RAL_WRITE(sc, RAL_RXCSR0, RAL_DISABLE_RX); /* reset ASIC (imply reset BBP) */ RAL_WRITE(sc, RAL_CSR1, RAL_RESET_ASIC); RAL_WRITE(sc, RAL_CSR1, 0); /* disable interrupts */ RAL_WRITE(sc, RAL_CSR8, 0xffffffff); /* reset Tx and Rx rings */ ral_reset_tx_ring(sc, &sc->txq); ral_reset_tx_ring(sc, &sc->atimq); ral_reset_tx_ring(sc, &sc->prioq); ral_reset_tx_ring(sc, &sc->bcnq); ral_reset_rx_ring(sc, &sc->rxq); }