/*- * Copyright (c) 1997, Stefan Esser * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #include #endif /* * Describe an interrupt thread. There is one of these per interrupt event. */ struct intr_thread { struct intr_event *it_event; struct thread *it_thread; /* Kernel thread. */ int it_flags; /* (j) IT_* flags. */ int it_need; /* Needs service. */ }; /* Interrupt thread flags kept in it_flags */ #define IT_DEAD 0x000001 /* Thread is waiting to exit. */ struct intr_entropy { struct thread *td; uintptr_t event; }; struct intr_event *clk_intr_event; struct intr_event *tty_intr_event; void *softclock_ih; void *vm_ih; static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads"); static int intr_storm_threshold = 500; TUNABLE_INT("hw.intr_storm_threshold", &intr_storm_threshold); SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RW, &intr_storm_threshold, 0, "Number of consecutive interrupts before storm protection is enabled"); static TAILQ_HEAD(, intr_event) event_list = TAILQ_HEAD_INITIALIZER(event_list); static void intr_event_update(struct intr_event *ie); static struct intr_thread *ithread_create(const char *name); static void ithread_destroy(struct intr_thread *ithread); static void ithread_execute_handlers(struct proc *p, struct intr_event *ie); static void ithread_loop(void *); static void ithread_update(struct intr_thread *ithd); static void start_softintr(void *); /* Map an interrupt type to an ithread priority. */ u_char intr_priority(enum intr_type flags) { u_char pri; flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET | INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV); switch (flags) { case INTR_TYPE_TTY: pri = PI_TTYLOW; break; case INTR_TYPE_BIO: /* * XXX We need to refine this. BSD/OS distinguishes * between tape and disk priorities. */ pri = PI_DISK; break; case INTR_TYPE_NET: pri = PI_NET; break; case INTR_TYPE_CAM: pri = PI_DISK; /* XXX or PI_CAM? */ break; case INTR_TYPE_AV: /* Audio/video */ pri = PI_AV; break; case INTR_TYPE_CLK: pri = PI_REALTIME; break; case INTR_TYPE_MISC: pri = PI_DULL; /* don't care */ break; default: /* We didn't specify an interrupt level. */ panic("intr_priority: no interrupt type in flags"); } return pri; } /* * Update an ithread based on the associated intr_event. */ static void ithread_update(struct intr_thread *ithd) { struct intr_event *ie; struct thread *td; u_char pri; ie = ithd->it_event; td = ithd->it_thread; /* Determine the overall priority of this event. */ if (TAILQ_EMPTY(&ie->ie_handlers)) pri = PRI_MAX_ITHD; else pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri; /* Update name and priority. */ strlcpy(td->td_proc->p_comm, ie->ie_fullname, sizeof(td->td_proc->p_comm)); mtx_lock_spin(&sched_lock); sched_prio(td, pri); mtx_unlock_spin(&sched_lock); } /* * Regenerate the full name of an interrupt event and update its priority. */ static void intr_event_update(struct intr_event *ie) { struct intr_handler *ih; char *last; int missed, space; /* Start off with no entropy and just the name of the event. */ mtx_assert(&ie->ie_lock, MA_OWNED); strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname)); ie->ie_flags &= ~IE_ENTROPY; missed = 0; space = 1; /* Run through all the handlers updating values. */ TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 < sizeof(ie->ie_fullname)) { strcat(ie->ie_fullname, " "); strcat(ie->ie_fullname, ih->ih_name); space = 0; } else missed++; if (ih->ih_flags & IH_ENTROPY) ie->ie_flags |= IE_ENTROPY; } /* * If the handler names were too long, add +'s to indicate missing * names. If we run out of room and still have +'s to add, change * the last character from a + to a *. */ last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2]; while (missed-- > 0) { if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) { if (*last == '+') { *last = '*'; break; } else *last = '+'; } else if (space) { strcat(ie->ie_fullname, " +"); space = 0; } else strcat(ie->ie_fullname, "+"); } /* * If this event has an ithread, update it's priority and * name. */ if (ie->ie_thread != NULL) ithread_update(ie->ie_thread); CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname); } int intr_event_create(struct intr_event **event, void *source, int flags, void (*enable)(void *), const char *fmt, ...) { struct intr_event *ie; va_list ap; /* The only valid flag during creation is IE_SOFT. */ if ((flags & ~IE_SOFT) != 0) return (EINVAL); ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO); ie->ie_source = source; ie->ie_enable = enable; ie->ie_flags = flags; TAILQ_INIT(&ie->ie_handlers); mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF); va_start(ap, fmt); vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap); va_end(ap); strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname)); mtx_pool_lock(mtxpool_sleep, &event_list); TAILQ_INSERT_TAIL(&event_list, ie, ie_list); mtx_pool_unlock(mtxpool_sleep, &event_list); if (event != NULL) *event = ie; CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name); return (0); } int intr_event_destroy(struct intr_event *ie) { mtx_lock(&ie->ie_lock); if (!TAILQ_EMPTY(&ie->ie_handlers)) { mtx_unlock(&ie->ie_lock); return (EBUSY); } mtx_pool_lock(mtxpool_sleep, &event_list); TAILQ_REMOVE(&event_list, ie, ie_list); mtx_pool_unlock(mtxpool_sleep, &event_list); #ifndef notyet if (ie->ie_thread != NULL) { ithread_destroy(ie->ie_thread); ie->ie_thread = NULL; } #endif mtx_unlock(&ie->ie_lock); mtx_destroy(&ie->ie_lock); free(ie, M_ITHREAD); return (0); } static struct intr_thread * ithread_create(const char *name) { struct intr_thread *ithd; struct thread *td; struct proc *p; int error; ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO); error = kthread_create(ithread_loop, ithd, &p, RFSTOPPED | RFHIGHPID, 0, "%s", name); if (error) panic("kthread_create() failed with %d", error); td = FIRST_THREAD_IN_PROC(p); /* XXXKSE */ mtx_lock_spin(&sched_lock); sched_class(td, PRI_ITHD); TD_SET_IWAIT(td); mtx_unlock_spin(&sched_lock); td->td_pflags |= TDP_ITHREAD; ithd->it_thread = td; CTR2(KTR_INTR, "%s: created %s", __func__, name); return (ithd); } static void ithread_destroy(struct intr_thread *ithread) { struct thread *td; CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name); td = ithread->it_thread; mtx_lock_spin(&sched_lock); ithread->it_flags |= IT_DEAD; if (TD_AWAITING_INTR(td)) { TD_CLR_IWAIT(td); sched_add(td, SRQ_INTR); } mtx_unlock_spin(&sched_lock); } int intr_event_add_handler(struct intr_event *ie, const char *name, driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri, enum intr_type flags, void **cookiep) { struct intr_handler *ih, *temp_ih; struct intr_thread *it; if (ie == NULL || name == NULL || (handler == NULL && filter == NULL)) return (EINVAL); /* Allocate and populate an interrupt handler structure. */ ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO); ih->ih_filter = filter; ih->ih_handler = handler; ih->ih_argument = arg; ih->ih_name = name; ih->ih_event = ie; ih->ih_pri = pri; if (flags & INTR_EXCL) ih->ih_flags = IH_EXCLUSIVE; if (flags & INTR_MPSAFE) ih->ih_flags |= IH_MPSAFE; if (flags & INTR_ENTROPY) ih->ih_flags |= IH_ENTROPY; /* We can only have one exclusive handler in a event. */ mtx_lock(&ie->ie_lock); if (!TAILQ_EMPTY(&ie->ie_handlers)) { if ((flags & INTR_EXCL) || (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) { mtx_unlock(&ie->ie_lock); free(ih, M_ITHREAD); return (EINVAL); } } /* Add the new handler to the event in priority order. */ TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) { if (temp_ih->ih_pri > ih->ih_pri) break; } if (temp_ih == NULL) TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next); else TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next); intr_event_update(ie); /* Create a thread if we need one. */ while (ie->ie_thread == NULL && handler != NULL) { if (ie->ie_flags & IE_ADDING_THREAD) msleep(ie, &ie->ie_lock, 0, "ithread", 0); else { ie->ie_flags |= IE_ADDING_THREAD; mtx_unlock(&ie->ie_lock); it = ithread_create("intr: newborn"); mtx_lock(&ie->ie_lock); ie->ie_flags &= ~IE_ADDING_THREAD; ie->ie_thread = it; it->it_event = ie; ithread_update(it); wakeup(ie); } } CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name, ie->ie_name); mtx_unlock(&ie->ie_lock); if (cookiep != NULL) *cookiep = ih; return (0); } /* * Return the ie_source field from the intr_event an intr_handler is * associated with. */ void * intr_handler_source(void *cookie) { struct intr_handler *ih; struct intr_event *ie; ih = (struct intr_handler *)cookie; if (ih == NULL) return (NULL); ie = ih->ih_event; KASSERT(ie != NULL, ("interrupt handler \"%s\" has a NULL interrupt event", ih->ih_name)); return (ie->ie_source); } int intr_event_remove_handler(void *cookie) { struct intr_handler *handler = (struct intr_handler *)cookie; struct intr_event *ie; #ifdef INVARIANTS struct intr_handler *ih; #endif #ifdef notyet int dead; #endif if (handler == NULL) return (EINVAL); ie = handler->ih_event; KASSERT(ie != NULL, ("interrupt handler \"%s\" has a NULL interrupt event", handler->ih_name)); mtx_lock(&ie->ie_lock); CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name, ie->ie_name); #ifdef INVARIANTS TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) if (ih == handler) goto ok; mtx_unlock(&ie->ie_lock); panic("interrupt handler \"%s\" not found in interrupt event \"%s\"", ih->ih_name, ie->ie_name); ok: #endif /* * If there is no ithread, then just remove the handler and return. * XXX: Note that an INTR_FAST handler might be running on another * CPU! */ if (ie->ie_thread == NULL) { TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next); mtx_unlock(&ie->ie_lock); free(handler, M_ITHREAD); return (0); } /* * If the interrupt thread is already running, then just mark this * handler as being dead and let the ithread do the actual removal. * * During a cold boot while cold is set, msleep() does not sleep, * so we have to remove the handler here rather than letting the * thread do it. */ mtx_lock_spin(&sched_lock); if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) { handler->ih_flags |= IH_DEAD; /* * Ensure that the thread will process the handler list * again and remove this handler if it has already passed * it on the list. */ ie->ie_thread->it_need = 1; } else TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next); mtx_unlock_spin(&sched_lock); while (handler->ih_flags & IH_DEAD) msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0); intr_event_update(ie); #ifdef notyet /* * XXX: This could be bad in the case of ppbus(8). Also, I think * this could lead to races of stale data when servicing an * interrupt. */ dead = 1; TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { if (!(ih->ih_flags & IH_FAST)) { dead = 0; break; } } if (dead) { ithread_destroy(ie->ie_thread); ie->ie_thread = NULL; } #endif mtx_unlock(&ie->ie_lock); free(handler, M_ITHREAD); return (0); } int intr_event_schedule_thread(struct intr_event *ie) { struct intr_entropy entropy; struct intr_thread *it; struct thread *td; struct thread *ctd; struct proc *p; /* * If no ithread or no handlers, then we have a stray interrupt. */ if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || ie->ie_thread == NULL) return (EINVAL); ctd = curthread; it = ie->ie_thread; td = it->it_thread; p = td->td_proc; /* * If any of the handlers for this ithread claim to be good * sources of entropy, then gather some. */ if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) { CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__, p->p_pid, p->p_comm); entropy.event = (uintptr_t)ie; entropy.td = ctd; random_harvest(&entropy, sizeof(entropy), 2, 0, RANDOM_INTERRUPT); } KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name)); /* * Set it_need to tell the thread to keep running if it is already * running. Then, grab sched_lock and see if we actually need to * put this thread on the runqueue. */ it->it_need = 1; mtx_lock_spin(&sched_lock); if (TD_AWAITING_INTR(td)) { CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid, p->p_comm); TD_CLR_IWAIT(td); sched_add(td, SRQ_INTR); } else { CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d", __func__, p->p_pid, p->p_comm, it->it_need, td->td_state); } mtx_unlock_spin(&sched_lock); return (0); } /* * Add a software interrupt handler to a specified event. If a given event * is not specified, then a new event is created. */ int swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler, void *arg, int pri, enum intr_type flags, void **cookiep) { struct intr_event *ie; int error; if (flags & (INTR_FAST | INTR_ENTROPY)) return (EINVAL); ie = (eventp != NULL) ? *eventp : NULL; if (ie != NULL) { if (!(ie->ie_flags & IE_SOFT)) return (EINVAL); } else { error = intr_event_create(&ie, NULL, IE_SOFT, NULL, "swi%d:", pri); if (error) return (error); if (eventp != NULL) *eventp = ie; } return (intr_event_add_handler(ie, name, NULL, handler, arg, (pri * RQ_PPQ) + PI_SOFT, flags, cookiep)); /* XXKSE.. think of a better way to get separate queues */ } /* * Schedule a software interrupt thread. */ void swi_sched(void *cookie, int flags) { struct intr_handler *ih = (struct intr_handler *)cookie; struct intr_event *ie = ih->ih_event; int error; CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name, ih->ih_need); /* * Set ih_need for this handler so that if the ithread is already * running it will execute this handler on the next pass. Otherwise, * it will execute it the next time it runs. */ atomic_store_rel_int(&ih->ih_need, 1); if (!(flags & SWI_DELAY)) { PCPU_LAZY_INC(cnt.v_soft); error = intr_event_schedule_thread(ie); KASSERT(error == 0, ("stray software interrupt")); } } /* * Remove a software interrupt handler. Currently this code does not * remove the associated interrupt event if it becomes empty. Calling code * may do so manually via intr_event_destroy(), but that's not really * an optimal interface. */ int swi_remove(void *cookie) { return (intr_event_remove_handler(cookie)); } static void ithread_execute_handlers(struct proc *p, struct intr_event *ie) { struct intr_handler *ih, *ihn; /* Interrupt handlers should not sleep. */ if (!(ie->ie_flags & IE_SOFT)) THREAD_NO_SLEEPING(); TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) { /* * If this handler is marked for death, remove it from * the list of handlers and wake up the sleeper. */ if (ih->ih_flags & IH_DEAD) { mtx_lock(&ie->ie_lock); TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next); ih->ih_flags &= ~IH_DEAD; wakeup(ih); mtx_unlock(&ie->ie_lock); continue; } /* * For software interrupt threads, we only execute * handlers that have their need flag set. Hardware * interrupt threads always invoke all of their handlers. */ if (ie->ie_flags & IE_SOFT) { if (!ih->ih_need) continue; else atomic_store_rel_int(&ih->ih_need, 0); } /* Execute this handler. */ CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x", __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument, ih->ih_name, ih->ih_flags); if (!(ih->ih_flags & IH_MPSAFE)) mtx_lock(&Giant); ih->ih_handler(ih->ih_argument); if (!(ih->ih_flags & IH_MPSAFE)) mtx_unlock(&Giant); } if (!(ie->ie_flags & IE_SOFT)) THREAD_SLEEPING_OK(); /* * Interrupt storm handling: * * If this interrupt source is currently storming, then throttle * it to only fire the handler once per clock tick. * * If this interrupt source is not currently storming, but the * number of back to back interrupts exceeds the storm threshold, * then enter storming mode. */ if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold) { if (ie->ie_warned == 0) { printf( "Interrupt storm detected on \"%s\"; throttling interrupt source\n", ie->ie_name); ie->ie_warned = 1; } tsleep(&ie->ie_count, 0, "istorm", 1); } else ie->ie_count++; /* * Now that all the handlers have had a chance to run, reenable * the interrupt source. */ if (ie->ie_enable != NULL) ie->ie_enable(ie->ie_source); } /* * This is the main code for interrupt threads. */ static void ithread_loop(void *arg) { struct intr_thread *ithd; struct intr_event *ie; struct thread *td; struct proc *p; td = curthread; p = td->td_proc; ithd = (struct intr_thread *)arg; KASSERT(ithd->it_thread == td, ("%s: ithread and proc linkage out of sync", __func__)); ie = ithd->it_event; ie->ie_count = 0; /* * As long as we have interrupts outstanding, go through the * list of handlers, giving each one a go at it. */ for (;;) { /* * If we are an orphaned thread, then just die. */ if (ithd->it_flags & IT_DEAD) { CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__, p->p_pid, p->p_comm); free(ithd, M_ITHREAD); kthread_exit(0); } /* * Service interrupts. If another interrupt arrives while * we are running, it will set it_need to note that we * should make another pass. */ while (ithd->it_need) { /* * This might need a full read and write barrier * to make sure that this write posts before any * of the memory or device accesses in the * handlers. */ atomic_store_rel_int(&ithd->it_need, 0); ithread_execute_handlers(p, ie); } WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread"); mtx_assert(&Giant, MA_NOTOWNED); /* * Processed all our interrupts. Now get the sched * lock. This may take a while and it_need may get * set again, so we have to check it again. */ mtx_lock_spin(&sched_lock); if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) { TD_SET_IWAIT(td); ie->ie_count = 0; mi_switch(SW_VOL, NULL); } mtx_unlock_spin(&sched_lock); } } #ifdef DDB /* * Dump details about an interrupt handler */ static void db_dump_intrhand(struct intr_handler *ih) { int comma; db_printf("\t%-10s ", ih->ih_name); switch (ih->ih_pri) { case PI_REALTIME: db_printf("CLK "); break; case PI_AV: db_printf("AV "); break; case PI_TTYHIGH: case PI_TTYLOW: db_printf("TTY "); break; case PI_TAPE: db_printf("TAPE"); break; case PI_NET: db_printf("NET "); break; case PI_DISK: case PI_DISKLOW: db_printf("DISK"); break; case PI_DULL: db_printf("DULL"); break; default: if (ih->ih_pri >= PI_SOFT) db_printf("SWI "); else db_printf("%4u", ih->ih_pri); break; } db_printf(" "); db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC); db_printf("(%p)", ih->ih_argument); if (ih->ih_need || (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD | IH_MPSAFE)) != 0) { db_printf(" {"); comma = 0; if (ih->ih_flags & IH_EXCLUSIVE) { if (comma) db_printf(", "); db_printf("EXCL"); comma = 1; } if (ih->ih_flags & IH_ENTROPY) { if (comma) db_printf(", "); db_printf("ENTROPY"); comma = 1; } if (ih->ih_flags & IH_DEAD) { if (comma) db_printf(", "); db_printf("DEAD"); comma = 1; } if (ih->ih_flags & IH_MPSAFE) { if (comma) db_printf(", "); db_printf("MPSAFE"); comma = 1; } if (ih->ih_need) { if (comma) db_printf(", "); db_printf("NEED"); } db_printf("}"); } db_printf("\n"); } /* * Dump details about a event. */ void db_dump_intr_event(struct intr_event *ie, int handlers) { struct intr_handler *ih; struct intr_thread *it; int comma; db_printf("%s ", ie->ie_fullname); it = ie->ie_thread; if (it != NULL) db_printf("(pid %d)", it->it_thread->td_proc->p_pid); else db_printf("(no thread)"); if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 || (it != NULL && it->it_need)) { db_printf(" {"); comma = 0; if (ie->ie_flags & IE_SOFT) { db_printf("SOFT"); comma = 1; } if (ie->ie_flags & IE_ENTROPY) { if (comma) db_printf(", "); db_printf("ENTROPY"); comma = 1; } if (ie->ie_flags & IE_ADDING_THREAD) { if (comma) db_printf(", "); db_printf("ADDING_THREAD"); comma = 1; } if (it != NULL && it->it_need) { if (comma) db_printf(", "); db_printf("NEED"); } db_printf("}"); } db_printf("\n"); if (handlers) TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) db_dump_intrhand(ih); } /* * Dump data about interrupt handlers */ DB_SHOW_COMMAND(intr, db_show_intr) { struct intr_event *ie; int all, verbose; verbose = index(modif, 'v') != NULL; all = index(modif, 'a') != NULL; TAILQ_FOREACH(ie, &event_list, ie_list) { if (!all && TAILQ_EMPTY(&ie->ie_handlers)) continue; db_dump_intr_event(ie, verbose); if (db_pager_quit) break; } } #endif /* DDB */ /* * Start standard software interrupt threads */ static void start_softintr(void *dummy) { struct proc *p; if (swi_add(&clk_intr_event, "clock", softclock, NULL, SWI_CLOCK, INTR_MPSAFE, &softclock_ih) || swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih)) panic("died while creating standard software ithreads"); p = clk_intr_event->ie_thread->it_thread->td_proc; PROC_LOCK(p); p->p_flag |= P_NOLOAD; PROC_UNLOCK(p); } SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr, NULL) /* * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. * The data for this machine dependent, and the declarations are in machine * dependent code. The layout of intrnames and intrcnt however is machine * independent. * * We do not know the length of intrcnt and intrnames at compile time, so * calculate things at run time. */ static int sysctl_intrnames(SYSCTL_HANDLER_ARGS) { return (sysctl_handle_opaque(oidp, intrnames, eintrnames - intrnames, req)); } SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, sysctl_intrnames, "", "Interrupt Names"); static int sysctl_intrcnt(SYSCTL_HANDLER_ARGS) { return (sysctl_handle_opaque(oidp, intrcnt, (char *)eintrcnt - (char *)intrcnt, req)); } SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); #ifdef DDB /* * DDB command to dump the interrupt statistics. */ DB_SHOW_COMMAND(intrcnt, db_show_intrcnt) { u_long *i; char *cp; cp = intrnames; for (i = intrcnt; i != eintrcnt && !db_pager_quit; i++) { if (*cp == '\0') break; if (*i != 0) db_printf("%s\t%lu\n", cp, *i); cp += strlen(cp) + 1; } } #endif