/*- * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ETHER_HEADER_COPY(dst, src) \ memcpy(dst, src, sizeof(struct ether_header)) void ieee80211_superg_attach(struct ieee80211com *ic) { } void ieee80211_superg_detach(struct ieee80211com *ic) { } void ieee80211_superg_vattach(struct ieee80211vap *vap) { if (vap->iv_caps & IEEE80211_C_FF) vap->iv_flags |= IEEE80211_F_FF; /* NB: we only implement sta mode */ if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_caps & IEEE80211_C_TURBOP)) vap->iv_flags |= IEEE80211_F_TURBOP; } void ieee80211_superg_vdetach(struct ieee80211vap *vap) { } #define ATH_OUI_BYTES 0x00, 0x03, 0x7f /* * Add a WME information element to a frame. */ uint8_t * ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix) { static const struct ieee80211_ath_ie info = { .ath_id = IEEE80211_ELEMID_VENDOR, .ath_len = sizeof(struct ieee80211_ath_ie) - 2, .ath_oui = { ATH_OUI_BYTES }, .ath_oui_type = ATH_OUI_TYPE, .ath_oui_subtype= ATH_OUI_SUBTYPE, .ath_version = ATH_OUI_VERSION, }; struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm; memcpy(frm, &info, sizeof(info)); ath->ath_capability = caps; if (defkeyix != IEEE80211_KEYIX_NONE) { ath->ath_defkeyix[0] = (defkeyix & 0xff); ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff); } else { ath->ath_defkeyix[0] = 0xff; ath->ath_defkeyix[1] = 0x7f; } return frm + sizeof(info); } #undef ATH_OUI_BYTES uint8_t * ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss) { const struct ieee80211vap *vap = bss->ni_vap; return ieee80211_add_ath(frm, vap->iv_flags & IEEE80211_F_ATHEROS, ((vap->iv_flags & IEEE80211_F_WPA) == 0 && bss->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); } void ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie) { const struct ieee80211_ath_ie *ath = (const struct ieee80211_ath_ie *) ie; ni->ni_ath_flags = ath->ath_capability; ni->ni_ath_defkeyix = LE_READ_2(&ath->ath_defkeyix); } int ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm, const struct ieee80211_frame *wh) { struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_ath_ie *ath; u_int len = frm[1]; int capschanged; uint16_t defkeyix; if (len < sizeof(struct ieee80211_ath_ie)-2) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG, wh, "Atheros", "too short, len %u", len); return -1; } ath = (const struct ieee80211_ath_ie *)frm; capschanged = (ni->ni_ath_flags != ath->ath_capability); defkeyix = LE_READ_2(ath->ath_defkeyix); if (capschanged || defkeyix != ni->ni_ath_defkeyix) { ni->ni_ath_flags = ath->ath_capability; ni->ni_ath_defkeyix = defkeyix; IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "ath ie change: new caps 0x%x defkeyix 0x%x", ni->ni_ath_flags, ni->ni_ath_defkeyix); } if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) { uint16_t curflags, newflags; /* * Check for turbo mode switch. Calculate flags * for the new mode and effect the switch. */ newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags; /* NB: BOOST is not in ic_flags, so get it from the ie */ if (ath->ath_capability & ATHEROS_CAP_BOOST) newflags |= IEEE80211_CHAN_TURBO; else newflags &= ~IEEE80211_CHAN_TURBO; if (newflags != curflags) ieee80211_dturbo_switch(vap, newflags); } return capschanged; } /* * Decap the encapsulated frame pair and dispatch the first * for delivery. The second frame is returned for delivery * via the normal path. */ struct mbuf * ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m) { #define FF_LLC_SIZE (sizeof(struct ether_header) + sizeof(struct llc)) #define MS(x,f) (((x) & f) >> f##_S) struct ieee80211vap *vap = ni->ni_vap; struct llc *llc; uint32_t ath; struct mbuf *n; int framelen; /* NB: we assume caller does this check for us */ KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF), ("ff not negotiated")); /* * Check for fast-frame tunnel encapsulation. */ if (m->m_pkthdr.len < 3*FF_LLC_SIZE) return m; if (m->m_len < FF_LLC_SIZE && (m = m_pullup(m, FF_LLC_SIZE)) == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "m_pullup(llc) failed"); vap->iv_stats.is_rx_tooshort++; return NULL; } llc = (struct llc *)(mtod(m, uint8_t *) + sizeof(struct ether_header)); if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE)) return m; m_adj(m, FF_LLC_SIZE); m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath); if (MS(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "unsupport tunnel protocol, header 0x%x", ath); vap->iv_stats.is_ff_badhdr++; m_freem(m); return NULL; } /* NB: skip header and alignment padding */ m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2); vap->iv_stats.is_ff_decap++; /* * Decap the first frame, bust it apart from the * second and deliver; then decap the second frame * and return it to the caller for normal delivery. */ m = ieee80211_decap1(m, &framelen); if (m == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "first decap failed"); vap->iv_stats.is_ff_tooshort++; return NULL; } n = m_split(m, framelen, M_NOWAIT); if (n == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "unable to split encapsulated frames"); vap->iv_stats.is_ff_split++; m_freem(m); /* NB: must reclaim */ return NULL; } /* XXX not right for WDS */ vap->iv_deliver_data(vap, ni, m); /* 1st of pair */ /* * Decap second frame. */ m_adj(n, roundup2(framelen, 4) - framelen); /* padding */ n = ieee80211_decap1(n, &framelen); if (n == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "second decap failed"); vap->iv_stats.is_ff_tooshort++; } /* XXX verify framelen against mbuf contents */ return n; /* 2nd delivered by caller */ #undef MS #undef FF_LLC_SIZE } /* * Do Ethernet-LLC encapsulation for each payload in a fast frame * tunnel encapsulation. The frame is assumed to have an Ethernet * header at the front that must be stripped before prepending the * LLC followed by the Ethernet header passed in (with an Ethernet * type that specifies the payload size). */ static struct mbuf * ff_encap1(struct ieee80211vap *vap, struct mbuf *m, const struct ether_header *eh) { struct llc *llc; uint16_t payload; /* XXX optimize by combining m_adj+M_PREPEND */ m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); llc = mtod(m, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh->ether_type; payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); if (m == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for ether_header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } ETHER_HEADER_COPY(mtod(m, void *), eh); mtod(m, struct ether_header *)->ether_type = htons(payload); return m; } /* * Fast frame encapsulation. There must be two packets * chained with m_nextpkt. We do header adjustment for * each, add the tunnel encapsulation, and then concatenate * the mbuf chains to form a single frame for transmission. */ struct mbuf * ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, struct ieee80211_key *key) { struct mbuf *m2; struct ether_header eh1, eh2; struct llc *llc; struct mbuf *m; int pad; m2 = m1->m_nextpkt; if (m2 == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: only one frame\n", __func__); goto bad; } m1->m_nextpkt = NULL; /* * Include fast frame headers in adjusting header * layout; this allocates space according to what * ff_encap will do. */ m1 = ieee80211_mbuf_adjust(vap, hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 + sizeof(struct ether_header), key, m1); if (m1 == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ m_freem(m2); goto bad; } /* * Copy second frame's Ethernet header out of line * and adjust for encapsulation headers. Note that * we make room for padding in case there isn't room * at the end of first frame. */ KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); m2 = ieee80211_mbuf_adjust(vap, ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header), NULL, m2); if (m2 == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ goto bad; } /* * Now do tunnel encapsulation. First, each * frame gets a standard encapsulation. */ m1 = ff_encap1(vap, m1, &eh1); if (m1 == NULL) goto bad; m2 = ff_encap1(vap, m2, &eh2); if (m2 == NULL) goto bad; /* * Pad leading frame to a 4-byte boundary. If there * is space at the end of the first frame, put it * there; otherwise prepend to the front of the second * frame. We know doing the second will always work * because we reserve space above. We prefer appending * as this typically has better DMA alignment properties. */ for (m = m1; m->m_next != NULL; m = m->m_next) ; pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; if (pad) { if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ m2->m_data -= pad; m2->m_len += pad; m2->m_pkthdr.len += pad; } else { /* append to first */ m->m_len += pad; m1->m_pkthdr.len += pad; } } /* * Now, stick 'em together and prepend the tunnel headers; * first the Atheros tunnel header (all zero for now) and * then a special fast frame LLC. * * XXX optimize by prepending together */ m->m_next = m2; /* NB: last mbuf from above */ m1->m_pkthdr.len += m2->m_pkthdr.len; M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT); if (m1 == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for tunnel header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } memset(mtod(m1, void *), 0, sizeof(uint32_t)+2); M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT); if (m1 == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for llc header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } llc = mtod(m1, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0; llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1; llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2; llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE); vap->iv_stats.is_ff_encap++; return m1; bad: if (m1 != NULL) m_freem(m1); if (m2 != NULL) m_freem(m2); return NULL; } /* * Switch between turbo and non-turbo operating modes. * Use the specified channel flags to locate the new * channel, update 802.11 state, and then call back into * the driver to effect the change. */ void ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_channel *chan; chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags); if (chan == NULL) { /* XXX should not happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no channel with freq %u flags 0x%x\n", __func__, ic->ic_bsschan->ic_freq, newflags); return; } IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: %s -> %s (freq %u flags 0x%x)\n", __func__, ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)], ieee80211_phymode_name[ieee80211_chan2mode(chan)], chan->ic_freq, chan->ic_flags); ic->ic_bsschan = chan; ic->ic_prevchan = ic->ic_curchan; ic->ic_curchan = chan; ic->ic_set_channel(ic); /* NB: do not need to reset ERP state 'cuz we're in sta mode */ } /* * Return the current ``state'' of an Atheros capbility. * If associated in station mode report the negotiated * setting. Otherwise report the current setting. */ static int getathcap(struct ieee80211vap *vap, int cap) { if (vap->iv_opmode == IEEE80211_M_STA && vap->iv_state == IEEE80211_S_RUN) return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0; else return (vap->iv_flags & cap) != 0; } static int superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq) { switch (ireq->i_type) { case IEEE80211_IOC_FF: ireq->i_val = getathcap(vap, IEEE80211_F_FF); break; case IEEE80211_IOC_TURBOP: ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP); break; default: return ENOSYS; } return 0; } IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211); static int superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq) { switch (ireq->i_type) { case IEEE80211_IOC_FF: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_FF) == 0) return EOPNOTSUPP; vap->iv_flags |= IEEE80211_F_FF; } else vap->iv_flags &= ~IEEE80211_F_FF; return ERESTART; case IEEE80211_IOC_TURBOP: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0) return EOPNOTSUPP; vap->iv_flags |= IEEE80211_F_TURBOP; } else vap->iv_flags &= ~IEEE80211_F_TURBOP; return ENETRESET; default: return ENOSYS; } return 0; } IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211);