/*- * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * machdep.c * * Machine dependant functions for kernel setup * * This file needs a lot of work. * * Created : 17/09/94 */ #include "opt_msgbuf.h" #include "opt_ddb.h" #include "opt_at91.h" #include __FBSDID("$FreeBSD$"); #define _ARM32_BUS_DMA_PRIVATE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERN 1 #define KERNEL_PT_KERN_NUM 22 #define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM /* L2 table for mapping after kernel */ #define KERNEL_PT_AFKERNEL_NUM 5 /* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */ #define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM) /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #define UND_STACK_SIZE 1 extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; struct pv_addr kernel_pt_table[NUM_KERNEL_PTS]; extern void *_end; extern int *end; struct pcpu __pcpu; struct pcpu *pcpup = &__pcpu; /* Physical and virtual addresses for some global pages */ vm_paddr_t phys_avail[10]; vm_paddr_t dump_avail[4]; vm_offset_t physical_pages; vm_offset_t clean_sva, clean_eva; struct pv_addr systempage; struct pv_addr msgbufpv; struct pv_addr irqstack; struct pv_addr undstack; struct pv_addr abtstack; struct pv_addr kernelstack; struct pv_addr minidataclean; static struct trapframe proc0_tf; /* Static device mappings. */ static const struct pmap_devmap kb920x_devmap[] = { /* * Map the on-board devices VA == PA so that we can access them * with the MMU on or off. */ { /* * This at least maps the interrupt controller, the UART * and the timer. Other devices should use newbus to * map their memory anyway. */ 0xfff00000, 0xfff00000, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, #if 0 { /* * Add the ohci controller, and anything else that might be * on this chip select for a VA/PA mapping. */ AT91RM92_OHCI_BASE, AT91RM92_OHCI_BASE, AT91RM92_OHCI_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, #endif { 0, 0, 0, 0, 0, } }; #define SDRAM_START 0xa0000000 #ifdef DDB extern vm_offset_t ksym_start, ksym_end; #endif static long ramsize(void) { uint32_t *SDRAMC = (uint32_t *)(AT91RM92_BASE + AT91RM92_SDRAMC_BASE); uint32_t cr, mr; int banks, rows, cols, bw; cr = SDRAMC[AT91RM92_SDRAMC_CR / 4]; mr = SDRAMC[AT91RM92_SDRAMC_MR / 4]; bw = (mr & AT91RM92_SDRAMC_MR_DBW_16) ? 1 : 2; banks = (cr & AT91RM92_SDRAMC_CR_NB_4) ? 2 : 1; rows = ((cr & AT91RM92_SDRAMC_CR_NR_MASK) >> 2) + 11; cols = (cr & AT91RM92_SDRAMC_CR_NC_MASK) + 8; return (1 << (cols + rows + banks + bw)); } static long board_init(void) { /* * Since the USART supprots RS-485 multidrop mode, it allows the * TX pins to float. However, for RS-232 operations, we don't want * these pins to float. Instead, they should be pulled up to avoid * mismatches. Linux does something similar when it configures the * TX lines. This implies that we also allow the RX lines to float * rather than be in the state they are left in by the boot loader. * Since they are input pins, I think that this is the right thing * to do. */ /* PIOA's A periph: Turn USART 0 and 2's TX/RX pins */ at91_pio_use_periph_a(AT91RM92_PIOA_BASE, AT91C_PA18_RXD0 | AT91C_PA22_RXD2, 0); at91_pio_use_periph_a(AT91RM92_PIOA_BASE, AT91C_PA17_TXD0 | AT91C_PA23_TXD2, 1); /* PIOA's B periph: Turn USART 3's TX/RX pins */ at91_pio_use_periph_b(AT91RM92_PIOA_BASE, AT91C_PA6_RXD3, 0); at91_pio_use_periph_b(AT91RM92_PIOA_BASE, AT91C_PA5_TXD3, 1); #if AT91_TSC /* We're using TC0's A1 and A2 input */ at91_pio_use_periph_b(AT91RM92_PIOA_BASE, AT91C_PA19_TIOA1 | AT91C_PA21_TIOA2, 0); #endif /* PIOB's A periph: Turn USART 1's TX/RX pins */ at91_pio_use_periph_a(AT91RM92_PIOB_BASE, AT91C_PB21_RXD1, 0); at91_pio_use_periph_a(AT91RM92_PIOB_BASE, AT91C_PB20_TXD1, 1); /* Pin assignment */ #if AT91_TSC /* Assert PA24 low -- talk to rubidium */ at91_pio_use_gpio(AT91RM92_PIOA_BASE, AT91C_PIO_PA24); at91_pio_gpio_output(AT91RM92_PIOA_BASE, AT91C_PIO_PA24, 0); at91_pio_gpio_clear(AT91RM92_PIOA_BASE, AT91C_PIO_PA24); #endif return (ramsize()); } void * initarm(void *arg, void *arg2) { struct pv_addr kernel_l1pt; int loop; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t afterkern; int i = 0; uint32_t fake_preload[35]; uint32_t memsize; vm_offset_t lastaddr; #ifdef DDB vm_offset_t zstart = 0, zend = 0; #endif i = 0; set_cpufuncs(); fake_preload[i++] = MODINFO_NAME; fake_preload[i++] = strlen("elf kernel") + 1; strcpy((char*)&fake_preload[i++], "elf kernel"); i += 2; fake_preload[i++] = MODINFO_TYPE; fake_preload[i++] = strlen("elf kernel") + 1; strcpy((char*)&fake_preload[i++], "elf kernel"); i += 2; fake_preload[i++] = MODINFO_ADDR; fake_preload[i++] = sizeof(vm_offset_t); fake_preload[i++] = KERNBASE; fake_preload[i++] = MODINFO_SIZE; fake_preload[i++] = sizeof(uint32_t); fake_preload[i++] = (uint32_t)&end - KERNBASE; #ifdef DDB if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) { fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM; fake_preload[i++] = sizeof(vm_offset_t); fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4); fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM; fake_preload[i++] = sizeof(vm_offset_t); fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8); lastaddr = *(uint32_t *)(KERNVIRTADDR + 8); zend = lastaddr; zstart = *(uint32_t *)(KERNVIRTADDR + 4); ksym_start = zstart; ksym_end = zend; } else #endif lastaddr = (vm_offset_t)&end; fake_preload[i++] = 0; fake_preload[i] = 0; preload_metadata = (void *)fake_preload; pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); #define KERNEL_TEXT_BASE (KERNBASE) freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_va, (np)); \ (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR); #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += (np * PAGE_SIZE); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_va = freemempos - (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_pa = kernel_pt_table[loop].pv_va - KERNVIRTADDR + KERNPHYSADDR; } i++; } /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); alloc_pages(minidataclean.pv_pa, 1); valloc_pages(msgbufpv, round_page(MSGBUF_SIZE) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_LOW, &kernel_pt_table[KERNEL_PT_SYS]); for (i = 0; i < KERNEL_PT_KERN_NUM; i++) pmap_link_l2pt(l1pagetable, KERNBASE + i * 0x100000, &kernel_pt_table[KERNEL_PT_KERN + i]); pmap_map_chunk(l1pagetable, KERNBASE, KERNPHYSADDR, (((uint32_t)(lastaddr) - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa, MSGBUF_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } pmap_devmap_bootstrap(l1pagetable, kb920x_devmap); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); cninit(); memsize = board_init(); physmem = memsize / PAGE_SIZE; /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross reloations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); proc_linkup(&proc0, &ksegrp0, &thread0); thread0.td_kstack = kernelstack.pv_va; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; arm_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + 0x100000 * (KERNEL_PT_KERN_NUM - 1); pmap_bootstrap(freemempos, KERNVIRTADDR + 3 * memsize, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, MSGBUF_SIZE); mutex_init(); i = 0; dump_avail[0] = KERNPHYSADDR; dump_avail[1] = KERNPHYSADDR + memsize; dump_avail[2] = 0; dump_avail[3] = 0; phys_avail[0] = freemempos - KERNVIRTADDR + KERNPHYSADDR; phys_avail[1] = KERNPHYSADDR + memsize; phys_avail[2] = 0; phys_avail[3] = 0; /* Do basic tuning, hz etc */ init_param1(); init_param2(physmem); avail_end = KERNPHYSADDR + memsize - 1; kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }