# # NOTES -- Lines that can be cut/pasted into kernel and hints configs. # # Lines that begin with 'device', 'options', 'machine', 'ident', 'maxusers', # 'makeoptions', 'hints' etc go into the kernel configuration that you # run config(8) with. # # Lines that begin with 'hints.' are NOT for config(8), they go into your # hints file. See /boot/device.hints and/or the 'hints' config(8) directive. # # Please use ``make LINT'' to create an old-style LINT file if you want to # do kernel test-builds. # # $FreeBSD$ # # # This directive is mandatory; it defines the architecture to be # configured for; in this case, the 386 family based IBM-PC and # compatibles. # machine i386 # # This is the ``identification'' of the kernel. Usually this should # be the same as the name of your kernel. # ident LINT # # The `maxusers' parameter controls the static sizing of a number of # internal system tables by a formula defined in subr_param.c. # maxusers 10 # # We want LINT to cover profiling as well profile 2 # # The `makeoptions' parameter allows variables to be passed to the # generated Makefile in the build area. # # CONF_CFLAGS gives some extra compiler flags that are added to ${CFLAGS} # after most other flags. Here we use it to inhibit use of non-optimal # gcc builtin functions (e.g., memcmp). # # DEBUG happens to be magic. # The following is equivalent to 'config -g KERNELNAME' and creates # 'kernel.debug' compiled with -g debugging as well as a normal # 'kernel'. Use 'make install.debug' to install the debug kernel # but that isn't normally necessary as the debug symbols are not loaded # by the kernel and are not useful there anyway. # # KERNEL can be overridden so that you can change the default name of your # kernel. # makeoptions CONF_CFLAGS=-fno-builtin #Don't allow use of memcmp, etc. #makeoptions DEBUG=-g #Build kernel with gdb(1) debug symbols #makeoptions KERNEL=foo #Build kernel "foo" and install "/foo" # # Certain applications can grow to be larger than the 512M limit # that FreeBSD initially imposes. Below are some options to # allow that limit to grow to 1GB, and can be increased further # with changing the parameters. MAXDSIZ is the maximum that the # limit can be set to, and the DFLDSIZ is the default value for # the limit. MAXSSIZ is the maximum that the stack limit can be # set to. You might want to set the default lower than the max, # and explicitly set the maximum with a shell command for processes # that regularly exceed the limit like INND. # options MAXDSIZ="(1024UL*1024*1024)" options MAXSSIZ="(128UL*1024*1024)" options DFLDSIZ="(1024UL*1024*1024)" # # BLKDEV_IOSIZE sets the default block size used in user block # device I/O. Note that this value will be overriden by the label # when specifying a block device from a label with a non-0 # partition blocksize. The default is PAGE_SIZE. # options BLKDEV_IOSIZE=8192 # Options for the VM subsystem options PQ_CACHESIZE=512 # color for 512k/16k cache options KSTACK_PAGES=3 # number of 4k stack pages per process # Deprecated options supported for backwards compatibility #options PQ_NOOPT # No coloring #options PQ_LARGECACHE # color for 512k/16k cache #options PQ_HUGECACHE # color for 1024k/16k cache #options PQ_MEDIUMCACHE # color for 256k/16k cache #options PQ_NORMALCACHE # color for 64k/16k cache # This allows you to actually store this configuration file into # the kernel binary itself, where it may be later read by saying: # strings -n 3 /boot/kernel/kernel | sed -n 's/^___//p' > MYKERNEL # options INCLUDE_CONFIG_FILE # Include this file in kernel # # The root device and filesystem type can be compiled in; # this provides a fallback option if the root device cannot # be correctly guesst by the bootstrap code, or an override if # the RB_DFLTROOT flag (-r) is specified when booting the kernel. # options ROOTDEVNAME=\"ufs:da0s2e\" ##################################################################### # SMP OPTIONS: # # SMP enables building of a Symmetric MultiProcessor Kernel. # APIC_IO enables the use of the IO APIC for Symmetric I/O. # # Notes: # # An SMP kernel will ONLY run on an Intel MP spec. qualified motherboard. # # Be sure to disable 'cpu I386_CPU' && 'cpu I486_CPU' for SMP kernels. # # Check the 'Rogue SMP hardware' section to see if additional options # are required by your hardware. # # Mandatory: options SMP # Symmetric MultiProcessor Kernel options APIC_IO # Symmetric (APIC) I/O # # Rogue SMP hardware: # # Bridged PCI cards: # # The MP tables of most of the current generation MP motherboards # do NOT properly support bridged PCI cards. To use one of these # cards you should refer to ??? # SMP Debugging Options: # # MUTEX_DEBUG enables various extra assertions in the mutex code. # WITNESS enables the mutex witness code which detects deadlocks and cycles # during locking operations. # WITNESS_DDB causes the witness code to drop into the kernel debugger if # a lock heirarchy violation occurs or if locks are held when going to # sleep. # WITNESS_SKIPSPIN disables the witness checks on spin mutexes. options MUTEX_DEBUG options WITNESS options WITNESS_DDB options WITNESS_SKIPSPIN ##################################################################### # CPU OPTIONS # # You must specify at least one CPU (the one you intend to run on); # deleting the specification for CPUs you don't need to use may make # parts of the system run faster. # I386_CPU is mutually exclusive with the other CPU types. # #cpu I386_CPU cpu I486_CPU cpu I586_CPU # aka Pentium(tm) cpu I686_CPU # aka Pentium Pro(tm) # # Options for CPU features. # # CPU_BLUELIGHTNING_FPU_OP_CACHE enables FPU operand cache on IBM # BlueLightning CPU. It works only with Cyrix FPU, and this option # should not be used with Intel FPU. # # CPU_BLUELIGHTNING_3X enables triple-clock mode on IBM Blue Lightning # CPU if CPU supports it. The default is double-clock mode on # BlueLightning CPU box. # # CPU_BTB_EN enables branch target buffer on Cyrix 5x86 (NOTE 1). # # CPU_DIRECT_MAPPED_CACHE sets L1 cache of Cyrix 486DLC CPU in direct # mapped mode. Default is 2-way set associative mode. # # CPU_CYRIX_NO_LOCK enables weak locking for the entire address space # of Cyrix 6x86 and 6x86MX CPUs by setting the NO_LOCK bit of CCR1. # Otherwise, the NO_LOCK bit of CCR1 is cleared. (NOTE 3) # # CPU_DISABLE_5X86_LSSER disables load store serialize (i.e. enables # reorder). This option should not be used if you use memory mapped # I/O device(s). # # CPU_ENABLE_SSE enables SSE/MMX2 instructions support. # # CPU_FASTER_5X86_FPU enables faster FPU exception handler. # # CPU_I486_ON_386 enables CPU cache on i486 based CPU upgrade products # for i386 machines. # # CPU_IORT defines I/O clock delay time (NOTE 1). Default values of # I/O clock delay time on Cyrix 5x86 and 6x86 are 0 and 7,respectively # (no clock delay). # # CPU_L2_LATENCY specifed the L2 cache latency value. This option is used # only when CPU_PPRO2CELERON is defined and Mendocino Celeron is detected. # The default value is 5. # # CPU_LOOP_EN prevents flushing the prefetch buffer if the destination # of a jump is already present in the prefetch buffer on Cyrix 5x86(NOTE # 1). # # CPU_PPRO2CELERON enables L2 cache of Mendocino Celeron CPUs. This option # is useful when you use Socket 8 to Socket 370 converter, because most Pentium # Pro BIOSs do not enable L2 cache of Mendocino Celeron CPUs. # # CPU_RSTK_EN enables return stack on Cyrix 5x86 (NOTE 1). # # CPU_SUSP_HLT enables suspend on HALT. If this option is set, CPU # enters suspend mode following execution of HALT instruction. # # CPU_UPGRADE_HW_CACHE eliminates unneeded cache flush instruction(s). # # CPU_WT_ALLOC enables write allocation on Cyrix 6x86/6x86MX and AMD # K5/K6/K6-2 cpus. # # CYRIX_CACHE_WORKS enables CPU cache on Cyrix 486 CPUs with cache # flush at hold state. # # CYRIX_CACHE_REALLY_WORKS enables (1) CPU cache on Cyrix 486 CPUs # without cache flush at hold state, and (2) write-back CPU cache on # Cyrix 6x86 whose revision < 2.7 (NOTE 2). # # NO_F00F_HACK disables the hack that prevents Pentiums (and ONLY # Pentiums) from locking up when a LOCK CMPXCHG8B instruction is # executed. This option is only needed if I586_CPU is also defined, # and should be included for any non-Pentium CPU that defines it. # # NO_MEMORY_HOLE is an optimisation for systems with AMD K6 processors # which indicates that the 15-16MB range is *definitely* not being # occupied by an ISA memory hole. # # NOTE 1: The options, CPU_BTB_EN, CPU_LOOP_EN, CPU_IORT, # CPU_LOOP_EN and CPU_RSTK_EN should not be used because of CPU bugs. # These options may crash your system. # # NOTE 2: If CYRIX_CACHE_REALLY_WORKS is not set, CPU cache is enabled # in write-through mode when revision < 2.7. If revision of Cyrix # 6x86 >= 2.7, CPU cache is always enabled in write-back mode. # # NOTE 3: This option may cause failures for software that requires # locked cycles in order to operate correctly. # options CPU_BLUELIGHTNING_FPU_OP_CACHE options CPU_BLUELIGHTNING_3X options CPU_BTB_EN options CPU_DIRECT_MAPPED_CACHE options CPU_DISABLE_5X86_LSSER options CPU_ENABLE_SSE options CPU_FASTER_5X86_FPU options CPU_I486_ON_386 options CPU_IORT options CPU_L2_LATENCY=5 options CPU_LOOP_EN options CPU_PPRO2CELERON options CPU_RSTK_EN options CPU_SUSP_HLT options CPU_UPGRADE_HW_CACHE options CPU_WT_ALLOC options CYRIX_CACHE_WORKS options CYRIX_CACHE_REALLY_WORKS #options NO_F00F_HACK # # A math emulator is mandatory if you wish to run on hardware which # does not have a floating-point processor. Pick either the original, # bogus (but freely-distributable) math emulator, or a much more # fully-featured but GPL-licensed emulator taken from Linux. # options MATH_EMULATE #Support for x87 emulation # Don't enable both of these in a real config. options GPL_MATH_EMULATE #Support for x87 emulation via #new math emulator ##################################################################### # COMPATIBILITY OPTIONS # # Implement system calls compatible with 4.3BSD and older versions of # FreeBSD. You probably do NOT want to remove this as much current code # still relies on the 4.3 emulation. # options COMPAT_43 # # These three options provide support for System V Interface # Definition-style interprocess communication, in the form of shared # memory, semaphores, and message queues, respectively. # options SYSVSHM options SYSVSEM options SYSVMSG ##################################################################### # DEBUGGING OPTIONS # # Enable the kernel debugger. # options DDB # # Don't drop into DDB for a panic. Intended for unattended operation # where you may want to drop to DDB from the console, but still want # the machine to recover from a panic # options DDB_UNATTENDED # # If using GDB remote mode to debug the kernel, there's a non-standard # extension to the remote protocol that can be used to use the serial # port as both the debugging port and the system console. It's non- # standard and you're on your own if you enable it. See also the # "remotechat" variables in the FreeBSD specific version of gdb. # options GDB_REMOTE_CHAT # # KTRACE enables the system-call tracing facility ktrace(2). # options KTRACE #kernel tracing # # KTR is a kernel tracing mechanism imported from BSD/OS. Currently it # has no userland interface aside from a few sysctl's. It is enabled with # the KTR option. The KTR_EXTEND option causes trace events to be generated # as a string from snprintf rather than as a string and up to 5 argument # pointers. KTR_ENTRIES defines the number of entries in the circular trace # buffer. KTR_COMPILE defines the mask of events to compile into the kernel # as defined by the KTR_* constants in . KTR_MASK defines the # initial value of the ktr_mask variable which determines at runtime what # events to trace. KTR_CPUMASK determines which CPU's log events, with # bit X corresponding to cpu X. KTR_VERBOSE enables dumping of KTR events # to the console by default. This functionality can be toggled via the # debug.ktr_verbose sysctl and defaults to off if KTR_VERBOSE is not defined. # options KTR options KTR_EXTEND options KTR_ENTRIES=1024 options KTR_COMPILE="(KTR_INTR|KTR_PROC)" options KTR_MASK=KTR_INTR options KTR_CPUMASK=0x3 options KTR_VERBOSE # # The INVARIANTS option is used in a number of source files to enable # extra sanity checking of internal structures. This support is not # enabled by default because of the extra time it would take to check # for these conditions, which can only occur as a result of # programming errors. # options INVARIANTS # # The INVARIANT_SUPPORT option makes us compile in support for # verifying some of the internal structures. It is a prerequisite for # 'INVARIANTS', as enabling 'INVARIANTS' will make these functions be # called. The intent is that you can set 'INVARIANTS' for single # source files (by changing the source file or specifying it on the # command line) if you have 'INVARIANT_SUPPORT' enabled. Also, if you # wish to build a kernel module with 'INVARIANTS', then adding # 'INVARIANT_SUPPORT' to your kernel will provide all the necessary # infrastructure without the added overhead. # options INVARIANT_SUPPORT # # The DIAGNOSTIC option is used to enable extra debugging information # from some parts of the kernel. As this makes everything more noisy, # it is disabled by default. # options DIAGNOSTIC # # REGRESSION causes optional kernel interfaces necessary only for regression # testing to be enabled. These interfaces may consitute security risks # when enabled, as they permit processes to easily modify aspects of the # run-time environment to reproduce unlikely or unusual (possibly normally # impossible) scenarios. # options REGRESSION # # RESTARTABLE_PANICS allows one to continue from a panic as if it were # a call to the debugger via the Debugger() function instead. It is only # useful if a kernel debugger is present. To restart from a panic, reset # the panicstr variable to NULL and continue execution. This option is # for development use only and should NOT be used in production systems # to "workaround" a panic. # #options RESTARTABLE_PANICS # # PERFMON causes the driver for Pentium/Pentium Pro performance counters # to be compiled. See perfmon(4) for more information. # options PERFMON # # This option let some drivers co-exist that can't co-exist in a running # system. This is used to be able to compile all kernel code in one go for # quality assurance purposes (like this file, which the option takes it name # from.) # options COMPILING_LINT # XXX - this doesn't belong here. # Allow ordinary users to take the console - this is useful for X. options UCONSOLE # XXX - this doesn't belong here either #options USERCONFIG #boot -c editor #options INTRO_USERCONFIG #imply -c and show intro screen #options VISUAL_USERCONFIG #visual boot -c editor ##################################################################### # NETWORKING OPTIONS # # Protocol families: # Only the INET (Internet) family is officially supported in FreeBSD. # Source code for the NS (Xerox Network Service) is provided for amusement # value. # options INET #Internet communications protocols options INET6 #IPv6 communications protocols options IPSEC #IP security options IPSEC_ESP #IP security (crypto; define w/ IPSEC) options IPSEC_DEBUG #debug for IP security options IPX #IPX/SPX communications protocols options IPXIP #IPX in IP encapsulation (not available) options IPTUNNEL #IP in IPX encapsulation (not available) #options NCP #NetWare Core protocol options NETATALK #Appletalk communications protocols options NETATALKDEBUG #Appletalk debugging # These are currently broken but are shipped due to interest. #options NS #Xerox NS protocols #options NSIP #XNS over IP # mchain library. It can be either loaded as KLD or compiled into kernel options LIBMCHAIN # netgraph(4). Enable the base netgraph code with the NETGRAPH option. # Individual node types can be enabled with the corresponding option # listed below; however, this is not strictly necessary as netgraph # will automatically load the corresponding KLD module if the node type # is not already compiled into the kernel. Each type below has a # corresponding man page, e.g., ng_async(8). options NETGRAPH #netgraph(4) system options NETGRAPH_ASYNC options NETGRAPH_BPF options NETGRAPH_CISCO options NETGRAPH_ECHO options NETGRAPH_ETHER options NETGRAPH_FRAME_RELAY options NETGRAPH_GIF options NETGRAPH_GIF_DEMUX options NETGRAPH_HOLE options NETGRAPH_IFACE options NETGRAPH_IP_INPUT options NETGRAPH_KSOCKET options NETGRAPH_LMI # MPPC compression requires proprietary files (not included) #options NETGRAPH_MPPC_COMPRESSION options NETGRAPH_MPPC_ENCRYPTION options NETGRAPH_ONE2MANY options NETGRAPH_PPP options NETGRAPH_PPPOE options NETGRAPH_PPTPGRE options NETGRAPH_RFC1490 options NETGRAPH_SOCKET options NETGRAPH_SPLIT options NETGRAPH_TEE options NETGRAPH_TTY options NETGRAPH_UI options NETGRAPH_VJC device mn # Munich32x/Falc54 Nx64kbit/sec cards. device lmc # tulip based LanMedia WAN cards device musycc # LMC/SBE LMC1504 quad T1/E1 # # Network interfaces: # The `loop' device is MANDATORY when networking is enabled. # The `ether' device provides generic code to handle # Ethernets; it is MANDATORY when a Ethernet device driver is # configured or token-ring is enabled. # The `fddi' device provides generic code to support FDDI. # The `sppp' device serves a similar role for certain types # of synchronous PPP links (like `cx', `ar'). # The `sl' device implements the Serial Line IP (SLIP) service. # The `ppp' device implements the Point-to-Point Protocol. # The `bpf' device enables the Berkeley Packet Filter. Be # aware of the legal and administrative consequences of enabling this # option. The number of devices determines the maximum number of # simultaneous BPF clients programs runnable. # The `disc' device implements a minimal network interface, # which throws away all packets sent and never receives any. It is # included for testing purposes. This shows up as the `ds' interface. # The `tap' device is a pty-like virtual Ethernet interface # The `tun' device implements (user-)ppp and nos-tun # The `gif' device implements IPv6 over IP4 tunneling, # IPv4 over IPv6 tunneling, IPv4 over IPv4 tunneling and # IPv6 over IPv6 tunneling. # The XBONEHACK option allows the same pair of addresses to be configured on # multiple gif interfaces. # The `faith' device captures packets sent to it and diverts them # to the IPv4/IPv6 translation daemon. # The `stf' device implements 6to4 encapsulation. # The `ef' device provides support for multiple ethernet frame types # specified via ETHER_* options. See ef(4) for details. # # The PPP_BSDCOMP option enables support for compress(1) style entire # packet compression, the PPP_DEFLATE is for zlib/gzip style compression. # PPP_FILTER enables code for filtering the ppp data stream and selecting # events for resetting the demand dial activity timer - requires bpf. # See pppd(8) for more details. # device ether #Generic Ethernet device vlan #VLAN support device token #Generic TokenRing device fddi #Generic FDDI device sppp #Generic Synchronous PPP device loop 1 #Network loopback device device bpf #Berkeley packet filter device disc #Discard device (ds0, ds1, etc) device tap #Virtual Ethernet driver device tun #Tunnel driver (ppp(8), nos-tun(8)) device sl #Serial Line IP device ppp 2 #Point-to-point protocol options PPP_BSDCOMP #PPP BSD-compress support options PPP_DEFLATE #PPP zlib/deflate/gzip support options PPP_FILTER #enable bpf filtering (needs bpf) device ef # Multiple ethernet frames support options ETHER_II # enable Ethernet_II frame options ETHER_8023 # enable Ethernet_802.3 (Novell) frame options ETHER_8022 # enable Ethernet_802.2 frame options ETHER_SNAP # enable Ethernet_802.2/SNAP frame # for IPv6 device gif #IPv6 and IPv4 tunneling options XBONEHACK device faith #for IPv6 and IPv4 translation device stf #6to4 IPv6 over IPv4 encapsulation # # Internet family options: # # MROUTING enables the kernel multicast packet forwarder, which works # with mrouted(8). # # IPFIREWALL enables support for IP firewall construction, in # conjunction with the `ipfw' program. IPFIREWALL_VERBOSE sends # logged packets to the system logger. IPFIREWALL_VERBOSE_LIMIT # limits the number of times a matching entry can be logged. # # WARNING: IPFIREWALL defaults to a policy of "deny ip from any to any" # and if you do not add other rules during startup to allow access, # YOU WILL LOCK YOURSELF OUT. It is suggested that you set firewall_type=open # in /etc/rc.conf when first enabling this feature, then refining the # firewall rules in /etc/rc.firewall after you've tested that the new kernel # feature works properly. # # IPFIREWALL_DEFAULT_TO_ACCEPT causes the default rule (at boot) to # allow everything. Use with care, if a cracker can crash your # firewall machine, they can get to your protected machines. However, # if you are using it as an as-needed filter for specific problems as # they arise, then this may be for you. Changing the default to 'allow' # means that you won't get stuck if the kernel and /sbin/ipfw binary get # out of sync. # # IPDIVERT enables the divert IP sockets, used by ``ipfw divert'' # # IPSTEALTH enables code to support stealth forwarding (i.e., forwarding # packets without touching the ttl). This can be useful to hide firewalls # from traceroute and similar tools. # # TCPDEBUG enables code which keeps traces of the TCP state machine # for sockets with the SO_DEBUG option set, which can then be examined # using the trpt(8) utility. # options MROUTING # Multicast routing options IPFIREWALL #firewall options IPFIREWALL_VERBOSE #enable logging to syslogd(8) options IPFIREWALL_FORWARD #enable transparent proxy support options IPFIREWALL_VERBOSE_LIMIT=100 #limit verbosity options IPFIREWALL_DEFAULT_TO_ACCEPT #allow everything by default options IPV6FIREWALL #firewall for IPv6 options IPV6FIREWALL_VERBOSE options IPV6FIREWALL_VERBOSE_LIMIT=100 options IPV6FIREWALL_DEFAULT_TO_ACCEPT options IPDIVERT #divert sockets options IPFILTER #ipfilter support options IPFILTER_LOG #ipfilter logging options IPFILTER_DEFAULT_BLOCK #block all packets by default options IPSTEALTH #support for stealth forwarding options TCPDEBUG # RANDOM_IP_ID causes the ID field in IP packets to be randomized # instead of incremented by 1 with each packet generated. This # option closes a minor information leak which allows remote # observers to determine the rate of packet generation on the # machine by watching the counter. options RANDOM_IP_ID # Statically Link in accept filters options ACCEPT_FILTER_DATA options ACCEPT_FILTER_HTTP # TCP_DROP_SYNFIN adds support for ignoring TCP packets with SYN+FIN. This # prevents nmap et al. from identifying the TCP/IP stack, but breaks support # for RFC1644 extensions and is not recommended for web servers. # options TCP_DROP_SYNFIN #drop TCP packets with SYN+FIN # DUMMYNET enables the "dummynet" bandwidth limiter. You need # IPFIREWALL as well. See the dummynet(4) manpage for more info. # BRIDGE enables bridging between ethernet cards -- see bridge(4). # You can use IPFIREWALL and dummynet together with bridging. options DUMMYNET options BRIDGE # # ATM (HARP version) options # # ATM_CORE includes the base ATM functionality code. This must be included # for ATM support. # # ATM_IP includes support for running IP over ATM. # # At least one (and usually only one) of the following signalling managers # must be included (note that all signalling managers include PVC support): # ATM_SIGPVC includes support for the PVC-only signalling manager `sigpvc'. # ATM_SPANS includes support for the `spans' signalling manager, which runs # the FORE Systems's proprietary SPANS signalling protocol. # ATM_UNI includes support for the `uni30' and `uni31' signalling managers, # which run the ATM Forum UNI 3.x signalling protocols. # # The `hea' driver provides support for the Efficient Networks, Inc. # ENI-155p ATM PCI Adapter. # # The `hfa' driver provides support for the FORE Systems, Inc. # PCA-200E ATM PCI Adapter. # options ATM_CORE #core ATM protocol family options ATM_IP #IP over ATM support options ATM_SIGPVC #SIGPVC signalling manager options ATM_SPANS #SPANS signalling manager options ATM_UNI #UNI signalling manager device hea #Efficient ENI-155p ATM PCI device hfa #FORE PCA-200E ATM PCI ##################################################################### # FILESYSTEM OPTIONS # # Only the root, /usr, and /tmp filesystems need be statically # compiled; everything else will be automatically loaded at mount # time. (Exception: the UFS family--- FFS --- cannot # currently be demand-loaded.) Some people still prefer to statically # compile other filesystems as well. # # NB: The NULL, PORTAL, UMAP and UNION filesystems are known to be # buggy, and WILL panic your system if you attempt to do anything with # them. They are included here as an incentive for some enterprising # soul to sit down and fix them. # # One of these is mandatory: options FFS #Fast filesystem options NFSCLIENT #Network File System options NFSSERVER #Network File System # The rest are optional: #options NFS_NOSERVER #Disable the NFS-server code. options CD9660 #ISO 9660 filesystem options FDESCFS #File descriptor filesystem options HPFS #OS/2 File system options MSDOSFS #MS DOS File System (FAT, FAT32) options NTFS #NT File System options NULLFS #NULL filesystem #options NWFS #NetWare filesystem options PORTALFS #Portal filesystem options PROCFS #Process filesystem options PSEUDOFS #Pseudo-filesystem framework options UMAPFS #UID map filesystem options UNIONFS #Union filesystem # options NODEVFS #disable devices filesystem # The xFS_ROOT options REQUIRE the associated ``options xFS'' options NFS_ROOT #NFS usable as root device # This code enables IFS, an FFS which exports inodes as the namespace. # You can find details in src/sys/ufs/ifs/README . options IFS # Soft updates is a technique for improving file system speed and # making abrupt shutdown less risky. # options SOFTUPDATES # Extended attributes allow additional data to be associated with files, # and is used for ACLs, Capabilities, and MAC labels. # See src/sys/ufs/ufs/README.extattr for more information. options UFS_EXTATTR options UFS_EXTATTR_AUTOSTART # Access Control List support for UFS filesystems. The current ACL # implementation requires extended attribute support, UFS_EXTATTR, # for the underlying filesystem. # See src/sys/ufs/ufs/README.acls for more information. options UFS_ACL # Directory hashing improves the speed of operations on very large # directories at the expense of some memory. options UFS_DIRHASH # Make space in the kernel for a root filesystem on a md device. # Define to the number of kilobytes to reserve for the filesystem. options MD_ROOT_SIZE=10 # Make the md device a potential root device, either with preloaded # images of type mfs_root or md_root. options MD_ROOT # Allow this many swap-devices. # # In order to manage swap, the system must reserve bitmap space that # scales with the largest mounted swap device multiplied by NSWAPDEV, # irregardless of whether other swap devices exist or not. So it # is not a good idea to make this value too large. options NSWAPDEV=5 # Disk quotas are supported when this option is enabled. options QUOTA #enable disk quotas # If you are running a machine just as a fileserver for PC and MAC # users, using SAMBA or Netatalk, you may consider setting this option # and keeping all those users' directories on a filesystem that is # mounted with the suiddir option. This gives new files the same # ownership as the directory (similar to group). It's a security hole # if you let these users run programs, so confine it to file-servers # (but it'll save you lots of headaches in those cases). Root owned # directories are exempt and X bits are cleared. The suid bit must be # set on the directory as well; see chmod(1) PC owners can't see/set # ownerships so they keep getting their toes trodden on. This saves # you all the support calls as the filesystem it's used on will act as # they expect: "It's my dir so it must be my file". # options SUIDDIR # NFS options: options NFS_MINATTRTIMO=3 # VREG attrib cache timeout in sec options NFS_MAXATTRTIMO=60 options NFS_MINDIRATTRTIMO=30 # VDIR attrib cache timeout in sec options NFS_MAXDIRATTRTIMO=60 options NFS_GATHERDELAY=10 # Default write gather delay (msec) options NFS_UIDHASHSIZ=29 # Tune the size of nfssvc_sock with this options NFS_WDELAYHASHSIZ=16 # and with this options NFS_MUIDHASHSIZ=63 # Tune the size of nfsmount with this options NFS_DEBUG # Enable NFS Debugging # Coda stuff: options CODA #CODA filesystem. device vcoda 4 #coda minicache <-> venus comm. # # Add support for the EXT2FS filesystem of Linux fame. Be a bit # careful with this - the ext2fs code has a tendency to lag behind # changes and not be exercised very much, so mounting read/write could # be dangerous (and even mounting read only could result in panics.) # options EXT2FS # Use real implementations of the aio_* system calls. There are numerous # stability issues in the current aio code that make it unsuitable for # inclusion on shell boxes. options VFS_AIO # Enable the code UFS IO optimization through the VM system. This allows # use VM operations instead of copying operations when possible. # # Even with this enabled, actual use of the code is still controlled by the # sysctl vfs.ioopt. 0 gives no optimization, 1 gives normal (use VM # operations if a request happens to fit), 2 gives agressive optimization # (the operations are split to do as much as possible through the VM system.) # # Enabling this will probably not give an overall speedup except for # special workloads. options ENABLE_VFS_IOOPT # Cryptographically secure random number generator; /dev/[u]random device random ##################################################################### # POSIX P1003.1B # Real time extensions added in the 1993 Posix # P1003_1B: Infrastructure # _KPOSIX_PRIORITY_SCHEDULING: Build in _POSIX_PRIORITY_SCHEDULING # _KPOSIX_VERSION: Version kernel is built for options P1003_1B options _KPOSIX_PRIORITY_SCHEDULING options _KPOSIX_VERSION=199309L ##################################################################### # CLOCK OPTIONS # The granularity of operation is controlled by the kernel option HZ whose # default value (100) means a granularity of 10ms. For an accurate simulation # of high data rates it might be necessary to reduce the timer granularity to # 1ms or less. Consider, however, that some interfaces using programmed I/O # may require a considerable time to output packets. So, reducing the # granularity too much might actually cause ticks to be missed thus reducing # the accuracy of operation. options HZ=100 # Other clock options options CLK_CALIBRATION_LOOP options CLK_USE_I8254_CALIBRATION options CLK_USE_TSC_CALIBRATION ##################################################################### # SCSI DEVICES # SCSI DEVICE CONFIGURATION # The SCSI subsystem consists of the `base' SCSI code, a number of # high-level SCSI device `type' drivers, and the low-level host-adapter # device drivers. The host adapters are listed in the ISA and PCI # device configuration sections below. # # Beginning with FreeBSD 2.0.5 you can wire down your SCSI devices so # that a given bus, target, and LUN always come on line as the same # device unit. In earlier versions the unit numbers were assigned # in the order that the devices were probed on the SCSI bus. This # means that if you removed a disk drive, you may have had to rewrite # your /etc/fstab file, and also that you had to be careful when adding # a new disk as it may have been probed earlier and moved your device # configuration around. # This old behavior is maintained as the default behavior. The unit # assignment begins with the first non-wired down unit for a device # type. For example, if you wire a disk as "da3" then the first # non-wired disk will be assigned da4. # The syntax for wiring down devices is: hint.scbus.0.at="ahc0" hint.scbus.1.at="ahc1" hint.scbus.1.bus="0" hint.scbus.3.at="ahc2" hint.scbus.3.bus="0" hint.scbus.2.at="ahc2" hint.scbus.2.bus="1" hint.da.0.at="scbus0" hint.da.0.target="0" hint.da.0.unit="0" hint.da.1.at="scbus3" hint.da.1.target="1" hint.da.2.at="scbus2" hint.da.2.target="3" hint.sa.1.at="scbus1" hint.sa.1.target="6" # "units" (SCSI logical unit number) that are not specified are # treated as if specified as LUN 0. # All SCSI devices allocate as many units as are required. # The ch driver drives SCSI Media Changer ("jukebox") devices. # # The da driver drives SCSI Direct Access ("disk") and Optical Media # ("WORM") devices. # # The sa driver drives SCSI Sequential Access ("tape") devices. # # The cd driver drives SCSI Read Only Direct Access ("cd") devices. # # The ses driver drives SCSI Envinronment Services ("ses") and # SAF-TE ("SCSI Accessable Fault-Tolerant Enclosure") devices. # # The pt driver drives SCSI Processor devices. # # # Target Mode support is provided here but also requires that a SIM # (SCSI Host Adapter Driver) provide support as well. # # The targ driver provides target mode support as a Processor type device. # It exists to give the minimal context necessary to respond to Inquiry # commands. There is a sample user application that shows how the rest # of the command support might be done in /usr/share/examples/scsi_target. # # The targbh driver provides target mode support and exists to respond # to incoming commands that do not otherwise have a logical unit assigned # to them. # # The "unknown" device (uk? in pre-2.0.5) is now part of the base SCSI # configuration as the "pass" driver. device scbus #base SCSI code device ch #SCSI media changers device da #SCSI direct access devices (aka disks) device sa #SCSI tapes device cd #SCSI CD-ROMs device ses #SCSI Environmental Services (and SAF-TE) device pt #SCSI processor device targ #SCSI Target Mode Code device targbh #SCSI Target Mode Blackhole Device device pass #CAM passthrough driver # CAM OPTIONS: # debugging options: # -- NOTE -- If you specify one of the bus/target/lun options, you must # specify them all! # CAMDEBUG: When defined enables debugging macros # CAM_DEBUG_BUS: Debug the given bus. Use -1 to debug all busses. # CAM_DEBUG_TARGET: Debug the given target. Use -1 to debug all targets. # CAM_DEBUG_LUN: Debug the given lun. Use -1 to debug all luns. # CAM_DEBUG_FLAGS: OR together CAM_DEBUG_INFO, CAM_DEBUG_TRACE, # CAM_DEBUG_SUBTRACE, and CAM_DEBUG_CDB # # CAM_MAX_HIGHPOWER: Maximum number of concurrent high power (start unit) cmds # CAM_NEW_TRAN_CODE: this is the new transport layer code that will be switched # to soon # SCSI_NO_SENSE_STRINGS: When defined disables sense descriptions # SCSI_NO_OP_STRINGS: When defined disables opcode descriptions # SCSI_DELAY: The number of MILLISECONDS to freeze the SIM (scsi adapter) # queue after a bus reset, and the number of milliseconds to # freeze the device queue after a bus device reset. options CAMDEBUG options CAM_DEBUG_BUS=-1 options CAM_DEBUG_TARGET=-1 options CAM_DEBUG_LUN=-1 options CAM_DEBUG_FLAGS="CAM_DEBUG_INFO|CAM_DEBUG_TRACE|CAM_DEBUG_CDB" options CAM_MAX_HIGHPOWER=4 options SCSI_NO_SENSE_STRINGS options SCSI_NO_OP_STRINGS options SCSI_DELAY=8000 # Be pessimistic about Joe SCSI device # Options for the CAM CDROM driver: # CHANGER_MIN_BUSY_SECONDS: Guaranteed minimum time quantum for a changer LUN # CHANGER_MAX_BUSY_SECONDS: Maximum time quantum per changer LUN, only # enforced if there is I/O waiting for another LUN # The compiled in defaults for these variables are 2 and 10 seconds, # respectively. # # These can also be changed on the fly with the following sysctl variables: # kern.cam.cd.changer.min_busy_seconds # kern.cam.cd.changer.max_busy_seconds # options CHANGER_MIN_BUSY_SECONDS=2 options CHANGER_MAX_BUSY_SECONDS=10 # Options for the CAM sequential access driver: # SA_IO_TIMEOUT: Timeout for read/write/wfm operations, in minutes # SA_SPACE_TIMEOUT: Timeout for space operations, in minutes # SA_REWIND_TIMEOUT: Timeout for rewind operations, in minutes # SA_ERASE_TIMEOUT: Timeout for erase operations, in minutes # SA_1FM_AT_EOD: Default to model which only has a default one filemark at EOT. options SA_IO_TIMEOUT="(4)" options SA_SPACE_TIMEOUT="(60)" options SA_REWIND_TIMEOUT="(2*60)" options SA_ERASE_TIMEOUT="(4*60)" options SA_1FM_AT_EOD # Optional timeout for the CAM processor target (pt) device # This is specified in seconds. The default is 60 seconds. options SCSI_PT_DEFAULT_TIMEOUT="60" # Optional enable of doing SES passthrough on other devices (e.g., disks) # # Normally disabled because a lot of newer SCSI disks report themselves # as having SES capabilities, but this can then clot up attempts to build # build a topology with the SES device that's on the box these drives # are in.... options SES_ENABLE_PASSTHROUGH ##################################################################### # MISCELLANEOUS DEVICES AND OPTIONS # The `pty' device usually turns out to be ``effectively mandatory'', # as it is required for `telnetd', `rlogind', `screen', `emacs', and # `xterm', among others. device pty #Pseudo ttys device speaker #Play IBM BASIC-style noises out your speaker device gzip #Exec gzipped a.out's device md #Memory/malloc disk device snp #Snoop device - to look at pty/vty/etc.. device ccd #Concatenated disk driver # Configuring Vinum into the kernel is not necessary, since the kld # module gets started automatically when vinum(8) starts. This # device is also untested. Use at your own risk. # # The option VINUMDEBUG must match the value set in CFLAGS # in src/sbin/vinum/Makefile. Failure to do so will result in # the following message from vinum(8): # # Can't get vinum config: Invalid argument # # see vinum(4) for more reasons not to use these options. device vinum #Vinum concat/mirror/raid driver options VINUMDEBUG #enable Vinum debugging hooks # Kernel side iconv library options LIBICONV # Size of the kernel message buffer. Should be N * pagesize. options MSGBUF_SIZE=40960 ##################################################################### # HARDWARE BUS CONFIGURATION # ISA, EISA, MCA and PCI bus: # # Mandatory ISA devices: isa, npx # device isa # # Options for `isa': # # AUTO_EOI_1 enables the `automatic EOI' feature for the master 8259A # interrupt controller. This saves about 0.7-1.25 usec for each interrupt. # This option breaks suspend/resume on some portables. # # AUTO_EOI_2 enables the `automatic EOI' feature for the slave 8259A # interrupt controller. This saves about 0.7-1.25 usec for each interrupt. # Automatic EOI is documented not to work for for the slave with the # original i8259A, but it works for some clones and some integrated # versions. # # MAXMEM specifies the amount of RAM on the machine; if this is not # specified, FreeBSD will first read the amount of memory from the CMOS # RAM, so the amount of memory will initially be limited to 64MB or 16MB # depending on the BIOS. If the BIOS reports 64MB, a memory probe will # then attempt to detect the installed amount of RAM. If this probe # fails to detect >64MB RAM you will have to use the MAXMEM option. # The amount is in kilobytes, so for a machine with 128MB of RAM, it would # be 131072 (128 * 1024). # # BROKEN_KEYBOARD_RESET disables the use of the keyboard controller to # reset the CPU for reboot. This is needed on some systems with broken # keyboard controllers. options COMPAT_OLDISA #Use ISA shims and glue for old drivers options AUTO_EOI_1 #options AUTO_EOI_2 options MAXMEM="(128*1024)" #options BROKEN_KEYBOARD_RESET # Enable support for the kernel PLL to use an external PPS signal, # under supervision of [x]ntpd(8) # More info in ntpd documentation: http://www.eecis.udel.edu/~ntp options PPS_SYNC # If you see the "calcru: negative time of %ld usec for pid %d (%s)\n" # message you probably have some broken sw/hw which disables interrupts # for too long. You can make the system more resistant to this by # choosing a high value for NTIMECOUNTER. The default is 5, there # is no upper limit but more than a couple of hundred are not productive. # A better strategy may be to sysctl -w kern.timecounter.method=1 options NTIMECOUNTER=20 # # EISA bus # # The EISA bus device is `eisa'. It provides auto-detection and # configuration support for all devices on the EISA bus. device eisa # By default, only 10 EISA slots are probed, since the slot numbers # above clash with the configuration address space of the PCI subsystem, # and the EISA probe is not very smart about this. This is sufficient # for most machines, but in particular the HP NetServer LC series comes # with an onboard AIC7770 dual-channel SCSI controller on EISA slot #11, # thus you need to bump this figure to 12 for them. options EISA_SLOTS=12 # # MCA bus: # # The MCA bus device is `mca'. It provides auto-detection and # configuration support for all devices on the MCA bus. # No hints are required for MCA. device mca # # PCI bus & PCI options: # # The main PCI bus device is `pci'. It provides auto-detection and # configuration support for all devices on the PCI bus, using either # configuration mode defined in the PCI specification. device pci # # AGP GART support device agp # PCI options # #options PCI_QUIET #quiets PCI code on chipset settings ##################################################################### # HARDWARE DEVICE CONFIGURATION # EISA support is available for some device, so they can be auto-probed. # MicroChannel (MCA) support is available for some devices. # For ISA the required hints are listed. # EISA, MCA, PCI and pccard are self identifying buses, so no hints # are needed. # # Mandatory devices: # # The keyboard controller; it controls the keyboard and the PS/2 mouse. device atkbdc 1 hint.atkbdc.0.at="isa" hint.atkbdc.0.port="0x060" # The AT keyboard device atkbd hint.atkbd.0.at="atkbdc" hint.atkbd.0.irq="1" # Options for atkbd: options ATKBD_DFLT_KEYMAP # specify the built-in keymap makeoptions ATKBD_DFLT_KEYMAP="jp.106" # These options are valid for other keyboard drivers as well. options KBD_DISABLE_KEYMAP_LOAD # refuse to load a keymap options KBD_INSTALL_CDEV # install a CDEV entry in /dev # `flags' for atkbd: # 0x01 Force detection of keyboard, else we always assume a keyboard # 0x02 Don't reset keyboard, useful for some newer ThinkPads # 0x04 Old-style (XT) keyboard support, useful for older ThinkPads # PS/2 mouse device psm hint.psm.0.at="atkbdc" hint.psm.0.irq="12" # Options for psm: options PSM_HOOKRESUME #hook the system resume event, useful #for some laptops options PSM_RESETAFTERSUSPEND #reset the device at the resume event # The video card driver. device vga hint.vga.0.at="isa" # Options for vga: # Try the following option if the mouse pointer is not drawn correctly # or font does not seem to be loaded properly. May cause flicker on # some systems. options VGA_ALT_SEQACCESS # If you can dispense with some vga driver features, you may want to # use the following options to save some memory. #options VGA_NO_FONT_LOADING # don't save/load font #options VGA_NO_MODE_CHANGE # don't change video modes # Older video cards may require this option for proper operation. options VGA_SLOW_IOACCESS # do byte-wide i/o's to TS and GDC regs # The following option probably won't work with the LCD displays. options VGA_WIDTH90 # support 90 column modes # To include support for VESA video modes options VESA options FB_DEBUG # Frame buffer debugging options FB_INSTALL_CDEV # install a CDEV entry in /dev # Splash screen at start up! Screen savers require this too. device splash # Various screen savers. device apm_saver # Requires APM device blank_saver device daemon_saver device fade_saver device fire_saver device green_saver device logo_saver device rain_saver device star_saver device warp_saver # The pcvt console driver (vt220 compatible). device vt hint.vt.0.at="isa" options XSERVER # support for running an X server on vt options FAT_CURSOR # start with block cursor # This PCVT option is for keyboards such as those used on really old ThinkPads options PCVT_SCANSET=2 # Other PCVT options are documented in pcvt(4). options PCVT_24LINESDEF options PCVT_CTRL_ALT_DEL options PCVT_META_ESC options PCVT_NSCREENS=9 options PCVT_PRETTYSCRNS options PCVT_SCREENSAVER options PCVT_USEKBDSEC options PCVT_VT220KEYB options PCVT_GREENSAVER # The syscons console driver (sco color console compatible). device sc 1 hint.sc.0.at="isa" options MAXCONS=16 # number of virtual consoles options SC_ALT_MOUSE_IMAGE # simplified mouse cursor in text mode options SC_DFLT_FONT # compile font in makeoptions SC_DFLT_FONT=cp850 options SC_DISABLE_DDBKEY # disable `debug' key options SC_DISABLE_REBOOT # disable reboot key sequence options SC_HISTORY_SIZE=200 # number of history buffer lines options SC_MOUSE_CHAR=0x3 # char code for text mode mouse cursor options SC_PIXEL_MODE # add support for the raster text mode # The following options will let you change the default colors of syscons. options SC_NORM_ATTR="(FG_GREEN|BG_BLACK)" options SC_NORM_REV_ATTR="(FG_YELLOW|BG_GREEN)" options SC_KERNEL_CONS_ATTR="(FG_RED|BG_BLACK)" options SC_KERNEL_CONS_REV_ATTR="(FG_BLACK|BG_RED)" # The following options will let you change the default behaviour of # cut-n-paste feature options SC_CUT_SPACES2TABS # convert leading spaces into tabs options SC_CUT_SEPCHARS="\x20" # set of characters that delimit words # (default is single space - "\x20") # If you have a two button mouse, you may want to add the following option # to use the right button of the mouse to paste text. options SC_TWOBUTTON_MOUSE # You can selectively disable features in syscons. options SC_NO_CUTPASTE options SC_NO_FONT_LOADING options SC_NO_HISTORY options SC_NO_SYSMOUSE # `flags' for sc # 0x80 Put the video card in the VESA 800x600 dots, 16 color mode # 0x100 Probe for a keyboard device periodically if one is not present # 3Dfx Voodoo Graphics, Voodoo II /dev/3dfx CDEV support. This will create # the /dev/3dfx0 device to work with glide implementations. This should get # linked to /dev/3dfx and /dev/voodoo. Note that this is not the same as # the tdfx DRI module from XFree86 and is completely unrelated. # # To enable Linuxulator support, one must also include COMPAT_LINUX in the # config as well, or you will not have the dependencies. The other option # is to load both as modules. device tdfx # Enable 3Dfx Voodoo support options TDFX_LINUX # Enable Linuxulator support # # The Numeric Processing eXtension driver. In addition to this, you # may configure a math emulator (see above). If your machine has a # hardware FPU and the kernel configuration includes the npx device # *and* a math emulator compiled into the kernel, the hardware FPU # will be used, unless it is found to be broken or unless "flags" to # npx0 includes "0x08", which requests preference for the emulator. device npx hint.npx.0.at="nexus" hint.npx.0.port="0x0F0" hint.npx.0.flags="0x0" hint.npx.0.irq="13" # # `flags' for npx0: # 0x01 don't use the npx registers to optimize bcopy. # 0x02 don't use the npx registers to optimize bzero. # 0x04 don't use the npx registers to optimize copyin or copyout. # 0x08 use emulator even if hardware FPU is available. # The npx registers are normally used to optimize copying and zeroing when # all of the following conditions are satisfied: # I586_CPU is an option # the cpu is an i586 (perhaps not a Pentium) # the probe for npx0 succeeds # INT 16 exception handling works. # Then copying and zeroing using the npx registers is normally 30-100% faster. # The flags can be used to control cases where it doesn't work or is slower. # Setting them at boot time using userconfig works right (the optimizations # are not used until later in the bootstrap when npx0 is attached). # Flag 0x08 automatically disables the i586 optimized routines. # # # ACPI support using the Intel ACPI Component Architecture reference # implementation. # # ACPI_DEBUG enables the use of the debug.acpi.level and debug.acpi.layer # kernel environment variables to select initial debugging levels for the # Intel ACPICA code. (Note that the Intel code must also have USE_DEBUGGER # defined when it is built). # # Note that building ACPI into the kernel is deprecated; the module is # normally loaded automatically by the loader. # device acpica options ACPI_DEBUG # # Optional devices: # # # SCSI host adapters: # # adv: All Narrow SCSI bus AdvanSys controllers. # adw: Second Generation AdvanSys controllers including the ADV940UW. # aha: Adaptec 154x/1535/1640 # ahb: Adaptec 174x EISA controllers # ahc: Adaptec 274x/284x/2910/293x/294x/394x/3950x/3960x/398X/4944/ # 19160x/29160x, aic7770/aic78xx # aic: Adaptec 6260/6360, APA-1460 (PC Card), NEC PC9801-100 (C-BUS) # amd: Support for the AMD 53C974 SCSI host adapter chip as found on devices # such as the Tekram DC-390(T). # bt: Most Buslogic controllers: including BT-445, BT-54x, BT-64x, BT-74x, # BT-75x, BT-946, BT-948, BT-956, BT-958, SDC3211B, SDC3211F, SDC3222F # isp: Qlogic ISP 1020, 1040 and 1040B PCI SCSI host adapters, # ISP 1240 Dual Ultra SCSI, ISP 1080 and 1280 (Dual) Ultra2, # ISP 12160 Ultra3 SCSI, # Qlogic ISP 2100 and ISP 2200 1Gb Fibre Channel host adapters. # Qlogic ISP 2300 and ISP 2312 2Gb Fibre Channel host adapters. # ispfw: Firmware module for Qlogic host adapters # ncr: NCR 53C810, 53C825 self-contained SCSI host adapters. # ncv: NCR 53C500 based SCSI host adapters. # nsp: Workbit Ninja SCSI-3 based PC Card SCSI host adapters. # sym: Symbios/Logic 53C8XX family of PCI-SCSI I/O processors: # 53C810, 53C810A, 53C815, 53C825, 53C825A, 53C860, 53C875, # 53C876, 53C885, 53C895, 53C895A, 53C896, 53C897, 53C1510D, # 53C1010-33, 53C1010-66. # stg: TMC 18C30, 18C50 based SCSI host adapters. # wds: WD7000 # # Note that the order is important in order for Buslogic ISA/EISA cards to be # probed correctly. # device bt hint.bt.0.at="isa" hint.bt.0.port="0x330" device adv hint.adv.0.at="isa" device adw device aha hint.aha.0.at="isa" device aic hint.aic.0.at="isa" device ahb device ahc device amd device isp hint.isp.0.disable="1" hint.isp.0.role="3" hint.isp.0.prefer_iomap="1" hint.isp.0.prefer_memmap="1" hint.isp.0.fwload_disable="1" hint.isp.0.ignore_nvram="1" hint.isp.0.fullduplex="1" hint.isp.0.topology="lport" hint.isp.0.topology="nport" hint.isp.0.topology="lport-only" hint.isp.0.topology="nport-only" # we can't get u_int64_t types, nor can we get strings if it's got # a leading 0x, hence this silly dodge. hint.isp.0.portwnn="w50000000aaaa0000" hint.isp.0.nodewnn="w50000000aaaa0001" device ispfw device ncr device ncv device nsp device sym device stg hint.stg.0.at="isa" hint.stg.0.port="0x140" hint.stg.0.port="11" device wds hint.wds.0.at="isa" hint.wds.0.port="0x350" hint.wds.0.irq="11" hint.wds.0.drq="6" # The aic7xxx driver will attempt to use memory mapped I/O for all PCI # controllers that have it configured only if this option is set. Unfortunately, # this doesn't work on some motherboards, which prevents it from being the # default. options AHC_ALLOW_MEMIO # Enable diagnostic sequencer code. options AHC_DEBUG_SEQUENCER # Dump the contents of the ahc controller configuration PROM. options AHC_DUMP_EEPROM # Bitmap of units to enable targetmode operations. options AHC_TMODE_ENABLE # The adw driver will attempt to use memory mapped I/O for all PCI # controllers that have it configured only if this option is set. options ADW_ALLOW_MEMIO # Options used in dev/isp/ (Qlogic SCSI/FC driver). # # ISP_TARGET_MODE - enable target mode operation # #options ISP_TARGET_MODE=1 # Options used in dev/sym/ (Symbios SCSI driver). #options SYM_SETUP_LP_PROBE_MAP #-Low Priority Probe Map (bits) # Allows the ncr to take precedence # 1 (1<<0) -> 810a, 860 # 2 (1<<1) -> 825a, 875, 885, 895 # 4 (1<<2) -> 895a, 896, 1510d #options SYM_SETUP_SCSI_DIFF #-HVD support for 825a, 875, 885 # disabled:0 (default), enabled:1 #options SYM_SETUP_PCI_PARITY #-PCI parity checking # disabled:0, enabled:1 (default) #options SYM_SETUP_MAX_LUN #-Number of LUNs supported # default:8, range:[1..64] # The 'asr' driver provides support for current DPT/Adaptec SCSI RAID # controllers (SmartRAID V and VI and later). # These controllers require the CAM infrastructure. # device asr # The 'dpt' driver provides support for old DPT controllers (http://www.dpt.com/). # These have hardware RAID-{0,1,5} support, and do multi-initiator I/O. # The DPT controllers are commonly re-licensed under other brand-names - # some controllers by Olivetti, Dec, HP, AT&T, SNI, AST, Alphatronic, NEC and # Compaq are actually DPT controllers. # # See src/sys/dev/dpt for debugging and other subtle options. # DPT_MEASURE_PERFORMANCE Enables a set of (semi)invasive metrics. Various # instruments are enabled. The tools in # /usr/sbin/dpt_* assume these to be enabled. # DPT_HANDLE_TIMEOUTS Normally device timeouts are handled by the DPT. # If you ant the driver to handle timeouts, enable # this option. If your system is very busy, this # option will create more trouble than solve. # DPT_TIMEOUT_FACTOR Used to compute the excessive amount of time to # wait when timing out with the above option. # DPT_DEBUG_xxxx These are controllable from sys/dev/dpt/dpt.h # DPT_LOST_IRQ When enabled, will try, once per second, to catch # any interrupt that got lost. Seems to help in some # DPT-firmware/Motherboard combinations. Minimal # cost, great benefit. # DPT_RESET_HBA Make "reset" actually reset the controller # instead of fudging it. Only enable this if you # are 100% certain you need it. device dpt # DPT options #!CAM# options DPT_MEASURE_PERFORMANCE #!CAM# options DPT_HANDLE_TIMEOUTS options DPT_TIMEOUT_FACTOR=4 options DPT_LOST_IRQ options DPT_RESET_HBA options DPT_ALLOW_MEMIO # # Mylex AcceleRAID and eXtremeRAID controllers with v6 and later # firmware. These controllers have a SCSI-like interface, and require # the CAM infrastructure. # device mly # # Adaptec FSA RAID controllers, including integrated DELL controllers, # the Dell PERC 2/QC and the HP NetRAID-4M # # AAC_COMPAT_LINUX Include code to support Linux-binary management # utilities (requires Linux compatibility # support). # device aac # # Compaq Smart RAID, Mylex DAC960 and AMI MegaRAID controllers. Only # one entry is needed; the code will find and configure all supported # controllers. # device ida # Compaq Smart RAID device mlx # Mylex DAC960 device amr # AMI MegaRAID # # 3ware ATA RAID # device twe # 3ware ATA RAID # # The 'ATA' driver supports all ATA and ATAPI devices, including PC Card # devices. You only need one "device ata" for it to find all # PCI and PC Card ATA/ATAPI devices on modern machines. device ata device atadisk # ATA disk drives device atapicd # ATAPI CDROM drives device atapifd # ATAPI floppy drives device atapist # ATAPI tape drives # # For older non-PCI, non-PnPBIOS systems, these are the hints lines to add: hint.ata.0.at="isa" hint.ata.0.port="0x1f0" hint.ata.0.irq="14" hint.ata.1.at="isa" hint.ata.1.port="0x170" hint.ata.1.irq="15" # # The following options are valid on the ATA driver: # # ATA_STATIC_ID: controller numbering is static ie depends on location # else the device numbers are dynamically allocated. options ATA_STATIC_ID # # Standard floppy disk controllers and floppy tapes, supports # the Y-E DATA External FDD (PC Card) # device fdc hint.fdc.0.at="isa" hint.fdc.0.port="0x3F0" hint.fdc.0.irq="6" hint.fdc.0.drq="2" # # FDC_DEBUG enables floppy debugging. Since the debug output is huge, you # gotta turn it actually on by setting the variable fd_debug with DDB, # however. options FDC_DEBUG # # Activate this line if you happen to have an Insight floppy tape. # Probing them proved to be dangerous for people with floppy disks only, # so it's "hidden" behind a flag: #hint.fdc.0.flags="1" # Specify floppy devices hint.fd.0.at="fdc0" hint.fd.0.drive="0" hint.fd.1.at="fdc0" hint.fd.1.drive="1" # M-systems DiskOnchip products see src/sys/contrib/dev/fla/README device fla hint.fla.0.at="isa" # # Other standard PC hardware: # # mse: Logitech and ATI InPort bus mouse ports # sio: serial ports (see sio(4)), including support for various # PC Card devices, such as Modem and NICs (see etc/defaults/pccard.conf) device mse hint.mse.0.at="isa" hint.mse.0.port="0x23c" hint.mse.0.irq="5" device sio hint.sio.0.at="isa" hint.sio.0.port="0x3F8" hint.sio.0.flags="0x10" hint.sio.0.irq="4" # # `flags' for serial drivers that support consoles (only for sio now): # 0x10 enable console support for this unit. The other console flags # are ignored unless this is set. Enabling console support does # not make the unit the preferred console - boot with -h or set # the 0x20 flag for that. Currently, at most one unit can have # console support; the first one (in config file order) with # this flag set is preferred. Setting this flag for sio0 gives # the old behaviour. # 0x20 force this unit to be the console (unless there is another # higher priority console). This replaces the COMCONSOLE option. # 0x40 reserve this unit for low level console operations. Do not # access the device in any normal way. # 0x80 use this port for serial line gdb support in ddb. # # PnP `flags' (set via userconfig using pnp x flags y) # 0x1 disable probing of this device. Used to prevent your modem # from being attached as a PnP modem. # # Options for serial drivers that support consoles (only for sio now): options BREAK_TO_DEBUGGER #a BREAK on a comconsole goes to #DDB, if available. options CONSPEED=115200 # speed for serial console # (default 9600) # Solaris implements a new BREAK which is initiated by a character # sequence CR ~ ^b which is similar to a familiar pattern used on # Sun servers by the Remote Console. options ALT_BREAK_TO_DEBUGGER # Options for sio: options COM_ESP #code for Hayes ESP options COM_MULTIPORT #code for some cards with shared IRQs # Other flags for sio that aren't documented in the man page. # 0x20000 enable hardware RTS/CTS and larger FIFOs. Only works for # ST16650A-compatible UARTs. # # Network interfaces: # # MII bus support is required for some PCI 10/100 ethernet NICs, # namely those which use MII-compliant transceivers or implement # tranceiver control interfaces that operate like an MII. Adding # "device miibus0" to the kernel config pulls in support for # the generic miibus API and all of the PHY drivers, including a # generic one for PHYs that aren't specifically handled by an # individual driver. device miibus # an: Aironet 4500/4800 802.11 wireless adapters. Supports the PCMCIA, # PCI and ISA varieties. # ar: Arnet SYNC/570i hdlc sync 2/4 port V.35/X.21 serial driver # (requires sppp) # awi: Support for IEEE 802.11 PC Card devices using the AMD Am79C930 and # Harris (Intersil) Chipset with PCnetMobile firmware by AMD. # bge: Support for gigabit ethernet adapters based on the Broadcom # BCM570x familiy of controllers, including the 3Com 3c996-T, # the SysKonnect SK-9D21 and SK-9D41, and the embedded gigE NICs # on Dell PowerEdge 2550 servers. # cnw: Xircom CNW/Netware Airsurfer PC Card adapter # cs: IBM Etherjet and other Crystal Semi CS89x0-based adapters # cx: Cronyx/Sigma multiport sync/async (with Cisco or PPP framing) # dc: Support for PCI fast ethernet adapters based on the DEC/Intel 21143 # and various workalikes including: # the ADMtek AL981 Comet and AN985 Centaur, the ASIX Electronics # AX88140A and AX88141, the Davicom DM9100 and DM9102, the Lite-On # 82c168 and 82c169 PNIC, the Lite-On/Macronix LC82C115 PNIC II # and the Macronix 98713/98713A/98715/98715A/98725 PMAC. This driver # replaces the old al, ax, dm, pn and mx drivers. List of brands: # Digital DE500-BA, Kingston KNE100TX, D-Link DFE-570TX, SOHOware SFA110, # SVEC PN102-TX, CNet Pro110B, 120A, and 120B, Compex RL100-TX, # LinkSys LNE100TX, LNE100TX V2.0, Jaton XpressNet, Alfa Inc GFC2204, # KNE110TX. # de: Digital Equipment DC21040 # ed: Western Digital and SMC 80xx; Novell NE1000 and NE2000; 3Com 3C503 # HP PC Lan+, various PC Card devices (refer to etc/defauls/pccard.conf) # (requires miibus) # el: 3Com 3C501 (slow!) # ep: 3Com 3C509, 3C529, 3C556, 3C562D, 3C563D, 3C572, 3C574X, 3C579, 3C589 # and PC Card devices using these chipsets. # ex: Intel EtherExpress Pro/10 and other i82595-based adapters, # Olicom Ethernet PC Card devices. # fe: Fujitsu MB86960A/MB86965A Ethernet # fea: DEC DEFEA EISA FDDI adapter # fpa: Support for the Digital DEFPA PCI FDDI. `device fddi' is also needed. # fxp: Intel EtherExpress Pro/100B # (hint of prefer_iomap can be done to prefer I/O instead of Mem mapping) # ie: AT&T StarLAN 10 and EN100; 3Com 3C507; unknown NI5210; # Intel EtherExpress # le: Digital Equipment EtherWorks 2 and EtherWorks 3 (DEPCA, DE100, # DE101, DE200, DE201, DE202, DE203, DE204, DE205, DE422) # lnc: Lance/PCnet cards (Isolan, Novell NE2100, NE32-VL, AMD Am7990 and # Am79C960) # lge: Support for PCI gigabit ethernet adapters based on the Level 1 # LXT1001 NetCellerator chipset. This includes the D-Link DGE-500SX, # SMC TigerCard 1000 (SMC9462SX), and some Addtron cards. # nge: Support for PCI gigabit ethernet adapters based on the National # Semiconductor DP83820 and DP83821 chipset. This includes the # SMC EZ Card 1000 (SMC9462TX), D-Link DGE-500T, Asante FriendlyNet # GigaNIX 1000TA and 1000TPC, the Addtron AEG320T, the LinkSys # EG1032 and EG1064, the Surecom EP-320G-TX and the Netgear GA622T. # oltr: Olicom ISA token-ring adapters OC-3115, OC-3117, OC-3118 and OC-3133 # (no hints needed). # Olicom PCI token-ring adapters OC-3136, OC-3137, OC-3139, OC-3140, # OC-3141, OC-3540, OC-3250 # rdp: RealTek RTL 8002-based pocket ethernet adapters # pcn: Support for PCI fast ethernet adapters based on the AMD Am79c97x # chipsets, including the PCnet/FAST, PCnet/FAST+, PCnet/PRO and # PCnet/Home. These were previously handled by the lnc driver (and # still will be if you leave this driver out of the kernel). # rl: Support for PCI fast ethernet adapters based on the RealTek 8129/8139 # chipset. Note that the RealTek driver defaults to using programmed # I/O to do register accesses because memory mapped mode seems to cause # severe lockups on SMP hardware. This driver also supports the # Accton EN1207D `Cheetah' adapter, which uses a chip called # the MPX 5030/5038, which is either a RealTek in disguise or a # RealTek workalike. Note that the D-Link DFE-530TX+ uses the RealTek # chipset and is supported by this driver, not the 'vr' driver. # sf: Support for Adaptec Duralink PCI fast ethernet adapters based on the # Adaptec AIC-6915 "starfire" controller. # This includes dual and quad port cards, as well as one 100baseFX card. # Most of these are 64-bit PCI devices, except for one single port # card which is 32-bit. # sis: Support for NICs based on the Silicon Integrated Systems SiS 900, # SiS 7016 and NS DP83815 PCI fast ethernet controller chips. # sk: Support for the SysKonnect SK-984x series PCI gigabit ethernet NICs. # This includes the SK-9841 and SK-9842 single port cards (single mode # and multimode fiber) and the SK-9843 and SK-9844 dual port cards # (also single mode and multimode). # The driver will autodetect the number of ports on the card and # attach each one as a separate network interface. # sn: Support for ISA and PC Card Ethernet devices using the # SMC91C90/92/94/95 chips. # sr: RISCom/N2 hdlc sync 1/2 port V.35/X.21 serial driver (requires sppp) # ste: Sundance Technologies ST201 PCI fast ethernet controller, includes # the D-Link DFE-550TX. # ti: Support for PCI gigabit ethernet NICs based on the Alteon Networks # Tigon 1 and Tigon 2 chipsets. This includes the Alteon AceNIC, the # 3Com 3c985, the Netgear GA620 and various others. Note that you will # probably want to bump up NMBCLUSTERS a lot to use this driver. # tl: Support for the Texas Instruments TNETE100 series 'ThunderLAN' # cards and integrated ethernet controllers. This includes several # Compaq Netelligent 10/100 cards and the built-in ethernet controllers # in several Compaq Prosignia, Proliant and Deskpro systems. It also # supports several Olicom 10Mbps and 10/100 boards. # tx: SMC 9432 TX, BTX and FTX cards. (SMC EtherPower II serie) # txp: Support for 3Com 3cR990 cards with the "Typhoon" chipset # vr: Support for various fast ethernet adapters based on the VIA # Technologies VT3043 `Rhine I' and VT86C100A `Rhine II' chips, # including the D-Link DFE530TX (see 'rl' for DFE530TX+), the Hawking # Technologies PN102TX, and the AOpen/Acer ALN-320. # vx: 3Com 3C590 and 3C595 # wb: Support for fast ethernet adapters based on the Winbond W89C840F chip. # Note: this is not the same as the Winbond W89C940F, which is a # NE2000 clone. # wl: Lucent Wavelan (ISA card only). # wi: Lucent WaveLAN/IEEE 802.11 PCMCIA adapters. Note: this supports both # the PCMCIA and ISA cards: the ISA card is really a PCMCIA to ISA # bridge with a PCMCIA adapter plugged into it. # wx: Intel Gigabit Ethernet PCI card (`Wiseman') # # NOTE: THIS DRIVER IS SOON TO BE REMOVED FROM FREEBSD AND SHOULD BE # CONSIDERED DEPRECATED # # xe: Xircom/Intel EtherExpress Pro100/16 PC Card ethernet controller, # Accton Fast EtherCard-16, Compaq Netelligent 10/100 PC Card, # Toshiba 10/100 Ethernet PC Card, Xircom 16-bit Ethernet + Modem 56 # xl: Support for the 3Com 3c900, 3c905, 3c905B and 3c905C (Fast) # Etherlink XL cards and integrated controllers. This includes the # integrated 3c905B-TX chips in certain Dell Optiplex and Dell # Precision desktop machines and the integrated 3c905-TX chips # in Dell Latitude laptop docking stations. # Also supported: 3Com 3c980(C)-TX, 3Com 3cSOHO100-TX, 3Com 3c450-TX # Order for ISA/EISA devices is important here device ar 1 hint.ar.0.at="isa" hint.ar.0.port="0x300" hint.ar.0.irq="10" hint.ar.0.maddr="0xd0000" device cs hint.cs.0.at="isa" hint.cs.0.port="0x300" device cx 1 hint.cx.0.at="isa" hint.cx.0.port="0x240" hint.cx.0.irq="15" hint.cx.0.drq="7" device ed #options ED_NO_MIIBUS # Disable ed miibus support hint.ed.0.at="isa" hint.ed.0.port="0x280" hint.ed.0.irq="5" hint.ed.0.maddr="0xd8000" device el 1 hint.el.0.at="isa" hint.el.0.port="0x300" hint.el.0.irq="9" device ep device ex device fe 1 hint.fe.0.at="isa" hint.fe.0.port="0x300" device fea device ie 2 hint.ie.0.at="isa" hint.ie.0.port="0x300" hint.ie.0.irq="5" hint.ie.0.maddr="0xd0000" hint.ie.1.at="isa" hint.ie.1.port="0x360" hint.ie.1.irq="7" hint.ie.1.maddr="0xd0000" device le 1 hint.le.0.at="isa" hint.le.0.port="0x300" hint.le.0.irq="5" hint.le.0.maddr="0xd0000" device lnc 1 hint.lnc.0.at="isa" hint.lnc.0.port="0x280" hint.lnc.0.irq="10" hint.lnc.0.drq="0" device rdp 1 hint.rdp.0.at="isa" hint.rdp.0.port="0x378" hint.rdp.0.irq="7" hint.rdp.0.flags="2" device sr 1 hint.sr.0.at="isa" hint.sr.0.port="0x300" hint.sr.0.irq="5" hint.sr.0.maddr="0xd0000" device sn hint.sn.0.at="isa" hint.sn.0.port="0x300" hint.sn.0.irq="10" device an device awi device cnw device wi options WLCACHE # enables the signal-strength cache options WLDEBUG # enables verbose debugging output device wl 1 hint.wl.0.at="isa" hint.wl.0.port="0x300" device xe device oltr options OLTR_NO_BULLSEYE_MAC options OLTR_NO_HAWKEYE_MAC options OLTR_NO_TMS_MAC hint.oltr.0.at="isa" # PCI Ethernet NICs that use the common MII bus controller code. device dc # DEC/Intel 21143 and various workalikes device fxp # Intel EtherExpress PRO/100B (82557, 82558) hint.fxp.0.prefer_iomap="0" device rl # RealTek 8129/8139 device pcn # AMD Am79C97x PCI 10/100 NICs device sf # Adaptec AIC-6915 (``Starfire'') device sis # Silicon Integrated Systems SiS 900/SiS 7016 device ste # Sundance ST201 (D-Link DFE-550TX) device tl # Texas Instruments ThunderLAN device tx # SMC EtherPower II (83c170 ``EPIC'') device vr # VIA Rhine, Rhine II device wb # Winbond W89C840F device xl # 3Com 3c90x (``Boomerang'', ``Cyclone'') # PCI Ethernet NICs. device de # DEC/Intel DC21x4x (``Tulip'') device txp # 3Com 3cR990 (``Typhoon'') device vx # 3Com 3c590, 3c595 (``Vortex'') # PCI Gigabit & FDDI NICs. device bge device lge device nge device sk device ti device wx device fpa 1 # # ATM related options (Cranor version) # (note: this driver cannot be used with the HARP ATM stack) # # The `en' device provides support for Efficient Networks (ENI) # ENI-155 PCI midway cards, and the Adaptec 155Mbps PCI ATM cards (ANA-59x0). # # atm device provides generic atm functions and is required for # atm devices. # NATM enables the netnatm protocol family that can be used to # bypass TCP/IP. # # the current driver supports only PVC operations (no atm-arp, no multicast). # for more details, please read the original documents at # http://www.ccrc.wustl.edu/pub/chuck/tech/bsdatm/bsdatm.html # device atm device en options NATM #native ATM # # Audio drivers: `pcm', `sbc', `gusc', `pca' # # pcm: PCM audio through various sound cards. # # This has support for a large number of new audio cards, based on # CS423x, OPTi931, Yamaha OPL-SAx, and also for SB16, GusPnP. # For more information about this driver and supported cards, # see the pcm.4 man page. # # The flags of the device tells the device a bit more info about the # device that normally is obtained through the PnP interface. # bit 2..0 secondary DMA channel; # bit 4 set if the board uses two dma channels; # bit 15..8 board type, overrides autodetection; leave it # zero if don't know what to put in (and you don't, # since this is unsupported at the moment...). # # This driver will use the new PnP code if it's available. # # pca: PCM audio through your PC speaker # # Supported cards include: # Creative SoundBlaster ISA PnP/non-PnP # Supports ESS and Avance ISA chips as well. # Gravis UltraSound ISA PnP/non-PnP # Crystal Semiconductor CS461x/428x PCI # Neomagic 256AV (ac97) # Most of the more common ISA/PnP sb/mss/ess compatable cards. device pcm # For non-pnp sound cards with no bridge drivers only: hint.pcm.0.at="isa" hint.pcm.0.irq="10" hint.pcm.0.drq="1" hint.pcm.0.flags="0x0" # For PnP/PCI sound cards, no hints are required. # # midi: MIDI interfaces and synthesizers # device midi # For non-pnp sound cards with no bridge drivers: hint.midi.0.at="isa" hint.midi.0.irq="5" hint.midi.0.flags="0x0" # For serial ports (this example configures port 2): # TODO: implement generic tty-midi interface so that we can use # other uarts. hint.midi.0.at="isa" hint.midi.0.port="0x2F8" hint.midi.0.irq="3" # # seq: MIDI sequencer # device seq # The bridge drivers for sound cards. These can be separately configured # for providing services to the likes of new-midi. # When used with 'device pcm' they also provide pcm sound services. # # sbc: Creative SoundBlaster ISA PnP/non-PnP # Supports ESS and Avance ISA chips as well. # gusc: Gravis UltraSound ISA PnP/non-PnP # csa: Crystal Semiconductor CS461x/428x PCI # For non-PnP cards: device sbc hint.sbc.0.at="isa" hint.sbc.0.port="0x220" hint.sbc.0.irq="5" hint.sbc.0.drq="1" hint.sbc.0.flags="0x15" device gusc hint.gusc.0.at="isa" hint.gusc.0.port="0x220" hint.gusc.0.irq="5" hint.gusc.0.drq="1" hint.gusc.0.flags="0x13" device pca hint.pca.0.at="isa" hint.pca.0.port="0x040" # # Miscellaneous hardware: # # mcd: Mitsumi CD-ROM using proprietary (non-ATAPI) interface # scd: Sony CD-ROM using proprietary (non-ATAPI) interface # matcd: Matsushita/Panasonic CD-ROM using proprietary (non-ATAPI) interface # wt: Wangtek and Archive QIC-02/QIC-36 tape drives # ctx: Cortex-I frame grabber # apm: Laptop Advanced Power Management (experimental) # pmtimer: Timer device driver for power management events (APM or ACPI) # spigot: The Creative Labs Video Spigot video-acquisition board # meteor: Matrox Meteor video capture board # bktr: Brooktree bt848/848a/849a/878/879 video capture and TV Tuner board # cy: Cyclades serial driver # dgb: Digiboard PC/Xi and PC/Xe series driver (ALPHA QUALITY!) # digi: Digiboard driver # gp: National Instruments AT-GPIB and AT-GPIB/TNT board, PCMCIA-GPIB # asc: GI1904-based hand scanners, e.g. the Trust Amiscan Grey # gsc: Genius GS-4500 hand scanner. # joy: joystick (including IO DATA PCJOY PC Card joystick) # The LOUTB option specifies a slower outb() for debugging purposes. # rc: RISCom/8 multiport card # rp: Comtrol Rocketport(ISA) - single card # tw: TW-523 power line interface for use with X-10 home control products # si: Specialix SI/XIO 4-32 port terminal multiplexor # spic: Sony Programmable I/O controller (VAIO notebooks) # stl: Stallion EasyIO and EasyConnection 8/32 (cd1400 based) # stli: Stallion EasyConnection 8/64, ONboard, Brumby (intelligent) # nmdm: nullmodem terminal driver (see nmdm(4)) # Notes on APM # The flags takes the following meaning for apm0: # 0x0020 Statclock is broken. # If apm is omitted, some systems require sysctl -w kern.timecounter.method=1 # for correct timekeeping. # Notes on the spigot: # The video spigot is at 0xad6. This port address can not be changed. # The irq values may only be 10, 11, or 15 # I/O memory is an 8kb region. Possible values are: # 0a0000, 0a2000, ..., 0fffff, f00000, f02000, ..., ffffff # The start address must be on an even boundary. # Add the following option if you want to allow non-root users to be able # to access the spigot. This option is not secure because it allows users # direct access to the I/O page. # options SPIGOT_UNSECURE # Notes on the Comtrol Rocketport driver: # # The exact values used for rp0 depend on how many boards you have # in the system. The manufacturer's sample configs are listed as: # # device rp # core driver support # # Comtrol Rocketport ISA single card # hints.rp.0.at="isa" # hints.rp.0.port="0x280" # # If instead you have two ISA cards, one installed at 0x100 and the # second installed at 0x180, then you should add the following to # your kernel probe hints: # hints.rp.0.at="isa" # hints.rp.0.port="0x100" # hints.rp.1.at="isa" # hints.rp.1.port="0x180" # # For 4 ISA cards, it might be something like this: # hints.rp.0.at="isa" # hints.rp.0.port="0x180" # hints.rp.1.at="isa" # hints.rp.1.port="0x100" # hints.rp.2.at="isa" # hints.rp.2.port="0x340" # hints.rp.3.at="isa" # hints.rp.3.port="0x240" # # And for PCI cards, you need no hints. # Notes on the Digiboard driver: # # The following flag values have special meanings in dgb: # 0x01 - alternate layout of pins # 0x02 - use the windowed PC/Xe in 64K mode # Notes on the Specialix SI/XIO driver: # The host card is memory, not IO mapped. # The Rev 1 host cards use a 64K chunk, on a 32K boundary. # The Rev 2 host cards use a 32K chunk, on a 32K boundary. # The cards can use an IRQ of 11, 12 or 15. # Notes on the Sony Programmable I/O controller # This is a temporary driver that should someday be replaced by something # that hooks into the ACPI layer. The device is hooked to the PIIX4's # General Device 10 decoder, which means you have to fiddle with PCI # registers to map it in, even though it is otherwise treated here as # an ISA device. At the moment, the driver polls, although the device # is capable of generating interrupts. It largely undocumented. # The port location in the hint is where you WANT the device to be # mapped. 0x10a0 seems to be traditional. At the moment the jogdial # is the only thing truly supported, but aparently a fair percentage # of the Vaio extra features are controlled by this device. # Notes on the Stallion stl and stli drivers: # See src/i386/isa/README.stl for complete instructions. # This is version 0.0.5alpha, unsupported by Stallion. # The stl driver has a secondary IO port hard coded at 0x280. You need # to change src/i386/isa/stallion.c if you reconfigure this on the boards. # The "flags" and "msize" settings on the stli driver depend on the board: # EasyConnection 8/64 ISA: flags 23 msize 0x1000 # EasyConnection 8/64 EISA: flags 24 msize 0x10000 # EasyConnection 8/64 MCA: flags 25 msize 0x1000 # ONboard ISA: flags 4 msize 0x10000 # ONboard EISA: flags 7 msize 0x10000 # ONboard MCA: flags 3 msize 0x10000 # Brumby: flags 2 msize 0x4000 # Stallion: flags 1 msize 0x10000 device mcd 1 hint.mcd.0.at="isa" hint.mcd.0.port="0x300" hint.mcd.0.irq="10" # for the Sony CDU31/33A CDROM device scd 1 hint.scd.0.at="isa" hint.scd.0.port="0x230" # for the SoundBlaster 16 multicd - up to 4 devices device matcd 1 hint.matcd.0.at="isa" hint.matcd.0.port="0x230" device wt 1 hint.wt.0.at="isa" hint.wt.0.port="0x300" hint.wt.0.irq="5" hint.wt.0.drq="1" device ctx 1 hint.ctx.0.at="isa" hint.ctx.0.port="0x230" hint.ctx.0.maddr="0xd0000" device spigot 1 hint.spigot.0.at="isa" hint.spigot.0.port="0xad6" hint.spigot.0.irq="15" hint.spigot.0.maddr="0xee000" device apm hint.apm.0.flags="0x20" device pmtimer # Adjust system timer at wakeup time hint.pmtimer.0.at="isa" device gp hint.gp.0.at="isa" hint.gp.0.port="0x2c0" device gsc 1 hint.gsc.0.at="isa" hint.gsc.0.port="0x270" hint.gsc.0.drq="3" device joy # PnP aware, hints for nonpnp only hint.joy.0.at="isa" hint.joy.0.port="0x201" device cy 1 options CY_PCI_FASTINTR # Use with cy_pci unless irq is shared hint.cy.0.at="isa" hint.cy.0.irq="10" hint.cy.0.maddr="0xd4000" hint.cy.0.msize="0x2000" device dgb 1 options NDGBPORTS=16 # Defaults to 16*NDGB hint.dgb.0.at="isa" hint.dgb.0.port="0x220" hint.dgb.0.maddr="0xfc000" device digi hint.digi.0.at="isa" hint.digi.0.port="0x104" hint.digi.0.maddr="0xd0000" # BIOS & FEP/OS components of device digi. Normally left as modules device digi_CX device digi_CX_PCI device digi_EPCX device digi_EPCX_PCI device digi_Xe device digi_Xem device digi_Xr device rc 1 hint.rc.0.at="isa" hint.rc.0.port="0x220" hint.rc.0.irq="12" device rp hint.rp.0.at="isa" hint.rp.0.port="0x280" # the port and irq for tw0 are fictitious device tw 1 hint.tw.0.at="isa" hint.tw.0.port="0x380" hint.tw.0.irq="11" device si options SI_DEBUG hint.si.0.at="isa" hint.si.0.maddr="0xd0000" hint.si.0.irq="12" device asc 1 hint.asc.0.at="isa" hint.asc.0.port="0x3EB" hint.asc.0.drq="3" hint.asc.0.irq="10" device spic hint.spic.0.at="isa" hint.spic.0.port="0x10a0" device stl hint.stl.0.at="isa" hint.stl.0.port="0x2a0" hint.stl.0.irq="10" device stli hint.stli.0.at="isa" hint.stli.0.port="0x2a0" hint.stli.0.maddr="0xcc000" hint.stli.0.flags="23" hint.stli.0.msize="0x1000" # You are unlikely to have the hardware for loran device loran hint.loran.0.at="isa" hint.loran.0.irq="5" # HOT1 Xilinx 6200 card (http://www.vcc.com/) device xrpu # nullmodem terminal driver device nmdm # # The `meteor' device is a PCI video capture board. It can also have the # following options: # options METEOR_ALLOC_PAGES=xxx preallocate kernel pages for data entry # figure (ROWS*COLUMN*BYTES_PER_PIXEL*FRAME+PAGE_SIZE-1)/PAGE_SIZE # options METEOR_DEALLOC_PAGES remove all allocated pages on close(2) # options METEOR_DEALLOC_ABOVE=xxx remove all allocated pages above the # specified amount. If this value is below the allocated amount no action # taken # options METEOR_SYSTEM_DEFAULT={METEOR_PAL|METEOR_NTSC|METEOR_SECAM}, used # for initialization of fps routine when a signal is not present. # # The 'bktr' device is a PCI video capture device using the Brooktree # bt848/bt848a/bt849a/bt878/bt879 chipset. When used with a TV Tuner it forms a # TV card, eg Miro PC/TV, Hauppauge WinCast/TV WinTV, VideoLogic Captivator, # Intel Smart Video III, AverMedia, IMS Turbo, FlyVideo. # # options OVERRIDE_CARD=xxx # options OVERRIDE_TUNER=xxx # options OVERRIDE_MSP=1 # options OVERRIDE_DBX=1 # These options can be used to override the auto detection # The current values for xxx are found in src/sys/dev/bktr/bktr_card.h # Using sysctl(8) run-time overrides on a per-card basis can be made # # options BROOKTREE_SYSTEM_DEFAULT=BROOKTREE_PAL # or # options BROOKTREE_SYSTEM_DEFAULT=BROOKTREE_NTSC # Specifes the default video capture mode. # This is required for Dual Crystal (28&35Mhz) boards where PAL is used # to prevent hangs during initialisation. eg VideoLogic Captivator PCI. # # options BKTR_USE_PLL # PAL or SECAM users who have a 28Mhz crystal (and no 35Mhz crystal) # must enable PLL mode with this option. eg some new Bt878 cards. # # options BKTR_GPIO_ACCESS # This enable IOCTLs which give user level access to the GPIO port. # # options BKTR_NO_MSP_RESET # Prevents the MSP34xx reset. Good if you initialise the MSP in another OS first # # options BKTR_430_FX_MODE # Switch Bt878/879 cards into Intel 430FX chipset compatibility mode. # # options BKTR_SIS_VIA_MODE # Switch Bt878/879 cards into SIS/VIA chipset compatibility mode which is # needed for some old SiS and VIA chipset motherboards. # This also allows Bt878/879 chips to work on old OPTi (<1997) chipset # motherboards and motherboards with bad or incomplete PCI 2.1 support. # As a rough guess, old = before 1998 # device meteor 1 # Brooktree driver has been ported to the new I2C framework. Thus, # you'll need to have the following 3 lines in the kernel config. # device smbus # device iicbus # device iicbb # The iic and smb devices are only needed if you want to control other # I2C slaves connected to the external connector of some cards. # device bktr 1 # # PC Card/PCMCIA # (OLDCARD) # # card: pccard slots # pcic: isa/pccard bridge device pcic hint.pcic.0.at="isa" hint.pcic.1.at="isa" device card # # PC Card/PCMCIA and Cardbus # (NEWCARD) # # Note that NEWCARD and OLDCARD are incompatible. Do not use both at the same # time. # # pccbb: isa/pccard and pci/cardbus bridge # pccard: pccard slots # cardbus: cardbus slots #device pccbb #device pccard #device cardbus # You may need to reset all pccards after resuming options PCIC_RESUME_RESET # reset after resume # # Laptop/Notebook options: # # See also: # apm under `Miscellaneous hardware' # above. # For older notebooks that signal a powerfail condition (external # power supply dropped, or battery state low) by issuing an NMI: options POWERFAIL_NMI # make it beep instead of panicing # # SMB bus # # System Management Bus support is provided by the 'smbus' device. # Access to the SMBus device is via the 'smb' device (/dev/smb*), # which is a child of the 'smbus' device. # # Supported devices: # smb standard io through /dev/smb* # # Supported SMB interfaces: # iicsmb I2C to SMB bridge with any iicbus interface # bktr brooktree848 I2C hardware interface # intpm Intel PIIX4 Power Management Unit # alpm Acer Aladdin-IV/V/Pro2 Power Management Unit # ichsmb Intel ICH SMBus controller chips (82801AA, 82801AB, 82801BA) # device smbus # Bus support, required for smb below. device intpm device alpm device ichsmb device smb # # I2C Bus # # Philips i2c bus support is provided by the `iicbus' device. # # Supported devices: # ic i2c network interface # iic i2c standard io # iicsmb i2c to smb bridge. Allow i2c i/o with smb commands. # # Supported interfaces: # pcf Philips PCF8584 ISA-bus controller # bktr brooktree848 I2C software interface # # Other: # iicbb generic I2C bit-banging code (needed by lpbb, bktr) # device iicbus # Bus support, required for ic/iic/iicsmb below. device iicbb device ic device iic device iicsmb # smb over i2c bridge device pcf hint.pcf.0.at="isa" hint.pcf.0.port="0x320" hint.pcf.0.irq="5" #--------------------------------------------------------------------------- # ISDN4BSD # # See /usr/share/examples/isdn/ROADMAP for an introduction to isdn4bsd. # # i4b passive ISDN cards support contains the following hardware drivers: # # isic - Siemens/Infineon ISDN ISAC/HSCX/IPAC chipset driver # iwic - Winbond W6692 PCI bus ISDN S/T interface controller # ifpi - AVM Fritz!Card PCI driver # ihfc - Cologne Chip HFC ISA/ISA-PnP chipset driver # ifpnp - AVM Fritz!Card PnP driver # itjc - Siemens ISAC / TJNet Tiger300/320 chipset # # i4b active ISDN cards support contains the following hardware drivers: # # iavc - AVM B1 PCI, AVM B1 ISA, AVM T1 # # Note that the ``options'' (if given) and ``device'' lines must BOTH # be uncommented to enable support for a given card ! # # In addition to a hardware driver (and probably an option) the mandatory # ISDN protocol stack devices and the mandatory support device must be # enabled as well as one or more devices from the optional devices section. # #--------------------------------------------------------------------------- # isic driver (Siemens/Infineon chipsets) # device isic # # ISA bus non-PnP Cards: # ---------------------- # # Teles S0/8 or Niccy 1008 options TEL_S0_8 hint.isic.0.at="isa" hint.isic.0.maddr="0xd0000" hint.isic.0.irq="5" hint.isic.0.flags="1" # # Teles S0/16 or Creatix ISDN-S0 or Niccy 1016 options TEL_S0_16 hint.isic.0.at="isa" hint.isic.0.port="0xd80" hint.isic.0.maddr="0xd0000" hint.isic.0.irq="5" hint.isic.0.flags="2" # # Teles S0/16.3 options TEL_S0_16_3 hint.isic.0.at="isa" hint.isic.0.port="0xd80" hint.isic.0.irq="5" hint.isic.0.flags="3" # # AVM A1 or AVM Fritz!Card options AVM_A1 hint.isic.0.at="isa" hint.isic.0.port="0x340" hint.isic.0.irq="5" hint.isic.0.flags="4" # # USRobotics Sportster ISDN TA intern options USR_STI hint.isic.0.at="isa" hint.isic.0.port="0x268" hint.isic.0.irq="5" hint.isic.0.flags="7" # # ITK ix1 Micro ( < V.3, non-PnP version ) options ITKIX1 hint.isic.0.at="isa" hint.isic.0.port="0x398" hint.isic.0.irq="10" hint.isic.0.flags="18" # # ELSA PCC-16 options ELSA_PCC16 hint.isic.0.at="isa" hint.isic.0.port="0x360" hint.isic.0.irq="10" hint.isic.0.flags="20" # # ISA bus PnP Cards: # ------------------ # # Teles S0/16.3 PnP options TEL_S0_16_3_P # # Creatix ISDN-S0 P&P options CRTX_S0_P # # Dr. Neuhaus Niccy Go@ options DRN_NGO # # Sedlbauer Win Speed options SEDLBAUER # # Dynalink IS64PH options DYNALINK # # ELSA QuickStep 1000pro ISA options ELSA_QS1ISA # # Siemens I-Surf 2.0 options SIEMENS_ISURF2 # # Asuscom ISDNlink 128K ISA options ASUSCOM_IPAC # # Eicon Diehl DIVA 2.0 and 2.02 options EICON_DIVA # # PCI bus Cards: # -------------- # # ELSA MicroLink ISDN/PCI (same as ELSA QuickStep 1000pro PCI) options ELSA_QS1PCI # # #--------------------------------------------------------------------------- # ifpnp driver for AVM Fritz!Card PnP # # AVM Fritz!Card PnP device ifpnp # #--------------------------------------------------------------------------- # ihfc driver for Cologne Chip ISA chipsets (experimental!) # # Teles 16.3c ISA PnP # AcerISDN P10 ISA PnP # TELEINT ISDN SPEED No.1 device ihfc # #--------------------------------------------------------------------------- # ifpi driver for AVM Fritz!Card PCI # # AVM Fritz!Card PCI device ifpi # #--------------------------------------------------------------------------- # iwic driver for Winbond W6692 chipset # # ASUSCOM P-IN100-ST-D (and other Winbond W6692 based cards) device iwic # #--------------------------------------------------------------------------- # itjc driver for Simens ISAC / TJNet Tiger300/320 chipset # # Traverse Technologies NETjet-S # Teles PCI-TJ device itjc # #--------------------------------------------------------------------------- # iavc driver (AVM active cards, needs i4bcapi driver!) # device iavc # # AVM B1 ISA bus (PnP mode not supported!) # ---------------------------------------- hint.iavc.0.at="isa" hint.iavc.0.port="0x150" hint.iavc.0.irq="5" # #--------------------------------------------------------------------------- # ISDN Protocol Stack - mandatory for all hardware drivers # # Q.921 / layer 2 - i4b passive cards D channel handling device "i4bq921" # # Q.931 / layer 3 - i4b passive cards D channel handling device "i4bq931" # # layer 4 - i4b common passive and active card handling device "i4b" # #--------------------------------------------------------------------------- # ISDN devices - mandatory for all hardware drivers # # userland driver to do ISDN tracing (for passive cards only) device "i4btrc" 4 # # userland driver to control the whole thing device "i4bctl" # #--------------------------------------------------------------------------- # ISDN devices - optional # # userland driver for access to raw B channel device "i4brbch" 4 # # userland driver for telephony device "i4btel" 2 # # network driver for IP over raw HDLC ISDN device "i4bipr" 4 # enable VJ header compression detection for ipr i/f options IPR_VJ # enable logging of the first n IP packets to isdnd (n=32 here) options IPR_LOG=32 # # network driver for sync PPP over ISDN; requires an equivalent # number of sppp device to be configured device "i4bisppp" 4 # # B-channel interface to the netgraph subsystem device "i4bing" 2 # # CAPI driver needed for active ISDN cards (see iavc driver above) device "i4bcapi" # #--------------------------------------------------------------------------- # Parallel-Port Bus # # Parallel port bus support is provided by the `ppbus' device. # Multiple devices may be attached to the parallel port, devices # are automatically probed and attached when found. # # Supported devices: # vpo Iomega Zip Drive # Requires SCSI disk support ('scbus' and 'da'), best # performance is achieved with ports in EPP 1.9 mode. # lpt Parallel Printer # plip Parallel network interface # ppi General-purpose I/O ("Geek Port") + IEEE1284 I/O # pps Pulse per second Timing Interface # lpbb Philips official parallel port I2C bit-banging interface # # Supported interfaces: # ppc ISA-bus parallel port interfaces. # options PPC_PROBE_CHIPSET # Enable chipset specific detection # (see flags in ppc(4)) options DEBUG_1284 # IEEE1284 signaling protocol debug options PERIPH_1284 # Makes your computer act as a IEEE1284 # compliant peripheral options DONTPROBE_1284 # Avoid boot detection of PnP parallel devices options VP0_DEBUG # ZIP/ZIP+ debug options LPT_DEBUG # Printer driver debug options PPC_DEBUG # Parallel chipset level debug options PLIP_DEBUG # Parallel network IP interface debug options PCFCLOCK_VERBOSE # Verbose pcfclock driver options PCFCLOCK_MAX_RETRIES=5 # Maximum read tries (default 10) device ppc hint.ppc.0.at="isa" hint.ppc.0.irq="7" device ppbus device vpo device lpt device plip device ppi device pps device lpbb device pcfclock # Kernel BOOTP support options BOOTP # Use BOOTP to obtain IP address/hostname options BOOTP_NFSROOT # NFS mount root filesystem using BOOTP info options BOOTP_NFSV3 # Use NFS v3 to NFS mount root options BOOTP_COMPAT # Workaround for broken bootp daemons. options BOOTP_WIRED_TO=fxp0 # Use interface fxp0 for BOOTP # # Add tie-ins for a hardware watchdog. This only enable the hooks; # the user must still supply the actual driver. # options HW_WDOG # # Set the number of PV entries per process. Increasing this can # stop panics related to heavy use of shared memory. However, that can # (combined with large amounts of physical memory) cause panics at # boot time due the kernel running out of VM space. # # If you're tweaking this, you might also want to increase the sysctls # "vm.v_free_min", "vm.v_free_reserved", and "vm.v_free_target". # # The value below is the one more than the default. # options PMAP_SHPGPERPROC=201 # # Change the size of the kernel virtual address space. Due to # constraints in loader(8) on i386, this must be a multiple of 4. # 256 = 1 GB of kernel address space. Increasing this also causes # a reduction of the address space in user processes. 512 splits # the 4GB cpu address space in half (2GB user, 2GB kernel). # options KVA_PAGES=260 # # Disable swapping. This option removes all code which actually performs # swapping, so it's not possible to turn it back on at run-time. # # This is sometimes usable for systems which don't have any swap space # (see also sysctls "vm.defer_swapspace_pageouts" and # "vm.disable_swapspace_pageouts") # #options NO_SWAPPING # Set the number of sf_bufs to allocate. sf_bufs are virtual buffers # for sendfile(2) that are used to map file VM pages, and normally # default to a quantity that is roughly 16*MAXUSERS+512. You would # typically want about 4 of these for each simultaneous file send. # options NSFBUFS=1024 # # Enable extra debugging code for locks. This stores the filename and # line of whatever acquired the lock in the lock itself, and change a # number of function calls to pass around the relevant data. This is # not at all useful unless you are debugging lock code. Also note # that it is likely to break e.g. fstat(1) unless you recompile your # userland with -DDEBUG_LOCKS as well. # options DEBUG_LOCKS ##################################################################### # ABI Emulation # Enable iBCS2 runtime support for SCO and ISC binaries options IBCS2 # Emulate spx device for client side of SVR3 local X interface options SPX_HACK # Enable Linux ABI emulation options COMPAT_LINUX # Enable the linux-like proc filesystem support (requires COMPAT_LINUX # and PSEUDOFS) options LINPROCFS # Linux debugging options DEBUG_LINUX # # SysVR4 ABI emulation # # The svr4 ABI emulator can be statically compiled into the kernel or loaded as # a KLD module. # The STREAMS network emulation code can also be compiled statically or as a # module. If loaded as a module, it must be loaded before the svr4 module # (the /usr/sbin/svr4 script does this for you). If compiling statically, # the `streams' device must be configured into any kernel which also # specifies COMPAT_SVR4. It is possible to have a statically-configured # STREAMS device and a dynamically loadable svr4 emulator; the /usr/sbin/svr4 # script understands that it doesn't need to load the `streams' module under # those circumstances. # Caveat: At this time, `options KTRACE' is required for the svr4 emulator # (whether static or dynamic). # options COMPAT_SVR4 # build emulator statically options DEBUG_SVR4 # enable verbose debugging device streams # STREAMS network driver (required for svr4). ##################################################################### # USB support # UHCI controller device uhci # OHCI controller device ohci # General USB code (mandatory for USB) device usb # # USB Double Bulk Pipe devices device udbp # Generic USB device driver device ugen # Human Interface Device (anything with buttons and dials) device uhid # USB keyboard device ukbd # USB printer device ulpt # USB Iomega Zip 100 Drive (Requires scbus and da) device umass # USB modem support device umodem # USB mouse device ums # Diamond Rio 500 Mp3 player device urio # USB scanners device uscanner # # ADMtek USB ethernet. Supports the LinkSys USB100TX, # the Billionton USB100, the Melco LU-ATX, the D-Link DSB-650TX # and the SMC 2202USB. Also works with the ADMtek AN986 Pegasus # eval board. device aue # # CATC USB-EL1201A USB ethernet. Supports the CATC Netmate # and Netmate II, and the Belkin F5U111. device cue # # Kawasaki LSI ethernet. Supports the LinkSys USB10T, # Entrega USB-NET-E45, Peracom Ethernet Adapter, the # 3Com 3c19250, the ADS Technologies USB-10BT, the ATen UC10T, # the Netgear EA101, the D-Link DSB-650, the SMC 2102USB # and 2104USB, and the Corega USB-T. device kue # debugging options for the USB subsystem # options UHCI_DEBUG options OHCI_DEBUG options USB_DEBUG options UGEN_DEBUG options UHID_DEBUG options UHUB_DEBUG options UKBD_DEBUG options ULPT_DEBUG options UMASS_DEBUG options UMS_DEBUG options URIO_DEBUG # options for ukbd: options UKBD_DFLT_KEYMAP # specify the built-in keymap makeoptions UKBD_DFLT_KEYMAP=it.iso # # Embedded system options: # # An embedded system might want to run something other than init. options INIT_PATH="/sbin/init:/stand/sysinstall" # Debug options options BUS_DEBUG # enable newbus debugging options DEBUG_VFS_LOCKS # enable vfs lock debugging options NPX_DEBUG # enable npx debugging (FPU/math emu) ##################################################################### # SYSV IPC KERNEL PARAMETERS # # Maximum number of entries in a semaphore map. options SEMMAP=31 # Maximum number of System V semaphores that can be used on the system at # one time. options SEMMNI=11 # Total number of semaphores system wide options SEMMNS=61 # Total number of undo structures in system options SEMMNU=31 # Maximum number of System V semaphores that can be used by a single process # at one time. options SEMMSL=61 # Maximum number of operations that can be outstanding on a single System V # semaphore at one time. options SEMOPM=101 # Maximum number of undo operations that can be outstanding on a single # System V semaphore at one time. options SEMUME=11 # Maximum number of shared memory pages system wide. options SHMALL=1025 # Maximum size, in bytes, of a single System V shared memory region. options SHMMAX="(SHMMAXPGS*PAGE_SIZE+1)" options SHMMAXPGS=1025 # Minimum size, in bytes, of a single System V shared memory region. options SHMMIN=2 # Maximum number of shared memory regions that can be used on the system # at one time. options SHMMNI=33 # Maximum number of System V shared memory regions that can be attached to # a single process at one time. options SHMSEG=9 # Set the amount of time (in seconds) the system will wait before # rebooting automatically when a kernel panic occurs. If set to (-1), # the system will wait indefinitely until a key is pressed on the # console. options PANIC_REBOOT_WAIT_TIME=16 ##################################################################### # More undocumented options for linting. # Note that documenting these are not considered an affront. options CAM_DEBUG_DELAY # VFS cluster debugging. options CLUSTERDEBUG options DEBUG # PECOFF module (Win32 Execution Format) options PECOFF_SUPPORT options PECOFF_DEBUG # Disable the 4 MByte PSE CPU feature. #options DISABLE_PSE options ENABLE_ALART options I4B_SMP_WORKAROUND options I586_PMC_GUPROF=0x70000 options KBDIO_DEBUG=2 options KBD_MAXRETRY=4 options KBD_MAXWAIT=6 options KBD_RESETDELAY=201 # Enable the PF_KEY Key Management API. options KEY # Kernel filelock debugging. options LOCKF_DEBUG # System V compatible message queues # Please note that the values provided here are used to test kernel # building. The defaults in the sources provide almost the same numbers. # MSGSSZ must be a power of 2 between 8 and 1024. options MSGMNB=2049 # Max number of chars in queue options MSGMNI=41 # Max number of message queue identifiers options MSGSEG=2049 # Max number of message segments options MSGSSZ=16 # Size of a message segment options MSGTQL=41 # Max number of messages in system options NBUF=512 # Number of buffer headers options NMBCLUSTERS=1024 # Number of mbuf clusters # Set the size of the TCB hash, where information about active connections # is stored. This must be a power of two, and should be set to something # comfortably larger than the expected number of concurrent TCP connections. options TCBHASHSIZE=4096 options PSM_DEBUG=1 options SCSI_NCR_DEBUG options SCSI_NCR_MAX_SYNC=10000 options SCSI_NCR_MAX_WIDE=1 options SCSI_NCR_MYADDR=7 options SC_DEBUG_LEVEL=5 # Syscons debug level options SC_RENDER_DEBUG # syscons rendering debugging options SHOW_BUSYBUFS # List buffers that prevent root unmount options SIMPLELOCK_DEBUG options SLIP_IFF_OPTS options TIMER_FREQ="((14318182+6)/12)" options VFS_BIO_DEBUG # VFS buffer I/O debugging options VM_KMEM_SIZE options VM_KMEM_SIZE_MAX options VM_KMEM_SIZE_SCALE