/* * sound/sequencer.c * * The sequencer personality manager. * * Copyright by Hannu Savolainen 1993 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. 2. * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #define SEQUENCER_C #include #if NSND > 0 #ifdef CONFIG_SEQUENCER #include static void seq_drain_midi_queues(void); int sequencer_poll (int dev, struct fileinfo *file, int events, select_table * wait); static int sequencer_ok = 0; static struct sound_timer_operations *tmr; static int tmr_no = -1; /* Currently selected timer */ static int pending_timer = -1; /* For timer change operation */ /* * Local counts for number of synth and MIDI devices. These are initialized * by the sequencer_open. */ static int max_mididev = 0; static int max_synthdev = 0; /* * The seq_mode gives the operating mode of the sequencer: 1 = level1 (the * default) 2 = level2 (extended capabilites) */ #define SEQ_1 1 #define SEQ_2 2 static int seq_mode = SEQ_1; static int *seq_sleeper = NULL; static volatile struct snd_wait seq_sleep_flag = {0}; static int *midi_sleeper = NULL; static volatile struct snd_wait midi_sleep_flag = {0}; static int midi_opened[MAX_MIDI_DEV] = {0}; static int midi_written[MAX_MIDI_DEV] = {0}; static u_long prev_input_time = 0; static int prev_event_time; static u_long seq_time = 0; #include #define EV_SZ 8 #define IEV_SZ 8 static u_char *queue = NULL; static u_char *iqueue = NULL; static volatile int qhead = 0, qtail = 0, qlen = 0; static volatile int iqhead = 0, iqtail = 0, iqlen = 0; static volatile int seq_playing = 0; static volatile int sequencer_busy = 0; static int output_treshold; static int pre_event_timeout; static u_int synth_open_mask; static int seq_queue(u_char *note, char nonblock); static void seq_startplay(void); static int seq_sync(void); static void seq_reset(void); static int pmgr_present[MAX_SYNTH_DEV] = {0}; static struct callout_handle sequencertimeout_ch = CALLOUT_HANDLE_INITIALIZER(&sequencertimeout_ch); #if MAX_SYNTH_DEV > 15 #error Too many synthesizer devices enabled. #endif /* * sound_timer stuff -- originally in soundcard.c * * A negative value means a relative timeout in |count| ticks. * A positive value is used for what ? * * In any case, this is only used in sequencer.c */ static int timer_running = 0; void request_sound_timer(int count) { static int current = 0; int tmp = count; if (count < 0) sequencertimeout_ch = timeout(sequencer_timer, 0, -count); else { if (count < current) current = 0; /* Timer restarted */ count = count - current; current = tmp; if (!count) count = 1; sequencertimeout_ch = timeout(sequencer_timer, 0, count); } timer_running = 1; } void sound_stop_timer(void) { if (timer_running) untimeout( sequencer_timer, 0, sequencertimeout_ch); timer_running = 0; } int sequencer_read(int dev, struct fileinfo * file, snd_rw_buf * buf, int count) { int c = count, p = 0; int ev_len; u_long flags; dev = dev >> 4; ev_len = seq_mode == SEQ_1 ? 4 : 8; if (dev) /* Patch manager device */ return pmgr_read(dev - 1, file, buf, count); flags = splhigh(); if (!iqlen) { int flag, chn; midi_sleeper = &chn; DO_SLEEP(chn, midi_sleep_flag, pre_event_timeout); if (!iqlen) { splx(flags); return 0; } } while (iqlen && c >= ev_len) { if (uiomove((char *) &iqueue[iqhead * IEV_SZ], ev_len, buf)) printf("sb: Bad copyout()!\n"); p += ev_len; c -= ev_len; iqhead = (iqhead + 1) % SEQ_MAX_QUEUE; iqlen--; } splx(flags); return count - c; } static void sequencer_midi_output(int dev) { /* * Currently NOP */ } void seq_copy_to_input(u_char *event, int len) { u_long flags; /* * Verify that the len is valid for the current mode. */ if (len != 4 && len != 8) return; if ((seq_mode == SEQ_1) != (len == 4)) return; if (iqlen >= (SEQ_MAX_QUEUE - 1)) return; /* Overflow */ flags = splhigh(); bcopy(event, &iqueue[iqtail * IEV_SZ], len); iqlen++; iqtail = (iqtail + 1) % SEQ_MAX_QUEUE; if ((midi_sleep_flag.mode & WK_SLEEP)) { midi_sleep_flag.mode = WK_WAKEUP; wakeup(midi_sleeper); } splx(flags); } static void sequencer_midi_input(int dev, u_char data) { u_int tstamp; u_char event[4]; if (data == 0xfe) /* Ignore active sensing */ return; tstamp = get_time() - seq_time; if (tstamp != prev_input_time) { tstamp = (tstamp << 8) | SEQ_WAIT; seq_copy_to_input((u_char *) &tstamp, 4); prev_input_time = tstamp; } event[0] = SEQ_MIDIPUTC; event[1] = data; event[2] = dev; event[3] = 0; seq_copy_to_input(event, 4); } void seq_input_event(u_char *event, int len) { u_long this_time; if (seq_mode == SEQ_2) this_time = tmr->get_time(tmr_no); else this_time = get_time() - seq_time; if (this_time != prev_input_time) { u_char tmp_event[8]; tmp_event[0] = EV_TIMING; tmp_event[1] = TMR_WAIT_ABS; tmp_event[2] = 0; tmp_event[3] = 0; *(u_long *) &tmp_event[4] = this_time; seq_copy_to_input(tmp_event, 8); prev_input_time = this_time; } seq_copy_to_input(event, len); } int sequencer_write(int dev, struct fileinfo * file, snd_rw_buf * buf, int count) { u_char event[EV_SZ], ev_code; int p = 0, c, ev_size; int err; int mode = file->mode & O_ACCMODE; dev = dev >> 4; DEB(printf("sequencer_write(dev=%d, count=%d)\n", dev, count)); if (mode == OPEN_READ) return -(EIO); if (dev) return pmgr_write(dev - 1, file, buf, count); c = count; while (c >= 4) { if (uiomove((char *) event, 4, buf)) printf("sb: Bad copyin()!\n"); ev_code = event[0]; if (ev_code == SEQ_FULLSIZE) { int err; dev = *(u_short *) &event[2]; if (dev < 0 || dev >= max_synthdev) return -(ENXIO); if (!(synth_open_mask & (1 << dev))) return -(ENXIO); err = synth_devs[dev]->load_patch(dev, *(short *) &event[0], buf, p + 4, c, 0); if (err < 0) return err; return err; } if (ev_code >= 128) { if (seq_mode == SEQ_2 && ev_code == SEQ_EXTENDED) { printf("Sequencer: Invalid level 2 event %x\n", ev_code); return -(EINVAL); } ev_size = 8; if (c < ev_size) { if (!seq_playing) seq_startplay(); return count - c; } if (uiomove((char *) &event[4], 4, buf)) printf("sb: Bad copyin()!\n"); } else { if (seq_mode == SEQ_2) { printf("Sequencer: 4 byte event in level 2 mode\n"); return -(EINVAL); } ev_size = 4; } if (event[0] == SEQ_MIDIPUTC) { if (!midi_opened[event[2]]) { int mode; int dev = event[2]; if (dev >= max_mididev) { printf("Sequencer Error: Nonexistent MIDI device %d\n",dev); return -(ENXIO); } mode = file->mode & O_ACCMODE; if ((err = midi_devs[dev]->open(dev, mode, sequencer_midi_input, sequencer_midi_output)) < 0) { seq_reset(); printf("Sequencer Error: Unable to open Midi #%d\n", dev); return err; } midi_opened[dev] = 1; } } if (!seq_queue(event, 0)) { int processed = count - c; if (!seq_playing) seq_startplay(); if (!processed && 0) return -(EAGAIN); else return processed; } p += ev_size; c -= ev_size; } if (!seq_playing) seq_startplay(); return count; /* This will "eat" chunks shorter than 4 bytes * (if written alone) Should we really do that ? */ } static int seq_queue(u_char *note, char nonblock) { /* * Test if there is space in the queue */ if (qlen >= SEQ_MAX_QUEUE) if (!seq_playing) seq_startplay(); /* Give chance to drain the queue */ if (!nonblock && qlen >= SEQ_MAX_QUEUE && !(seq_sleep_flag.mode & WK_SLEEP)) { /* * Sleep until there is enough space on the queue */ int chn; seq_sleeper = &chn; DO_SLEEP(chn, seq_sleep_flag, 0); } if (qlen >= SEQ_MAX_QUEUE) return 0; /* To be sure */ bcopy(note, &queue[qtail * EV_SZ], EV_SZ); qtail = (qtail + 1) % SEQ_MAX_QUEUE; qlen++; return 1; } static int extended_event(u_char *q) { int dev = q[2]; if (dev < 0 || dev >= max_synthdev) return -(ENXIO); if (!(synth_open_mask & (1 << dev))) return -(ENXIO); switch (q[1]) { case SEQ_NOTEOFF: synth_devs[dev]->kill_note(dev, q[3], q[4], q[5]); break; case SEQ_NOTEON: if (q[4] > 127 && q[4] != 255) return 0; synth_devs[dev]->start_note(dev, q[3], q[4], q[5]); break; case SEQ_PGMCHANGE: synth_devs[dev]->set_instr(dev, q[3], q[4]); break; case SEQ_AFTERTOUCH: synth_devs[dev]->aftertouch(dev, q[3], q[4]); break; case SEQ_BALANCE: synth_devs[dev]->panning(dev, q[3], (char) q[4]); break; case SEQ_CONTROLLER: synth_devs[dev]->controller(dev, q[3], q[4], *(short *) &q[5]); break; case SEQ_VOLMODE: if (synth_devs[dev]->volume_method != NULL) synth_devs[dev]->volume_method(dev, q[3]); break; default: return -(EINVAL); } return 0; } static int find_voice(int dev, int chn, int note) { u_short key; int i; key = (chn << 8) | (note + 1); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if (synth_devs[dev]->alloc.map[i] == key) return i; return -1; } static int alloc_voice(int dev, int chn, int note) { u_short key; int voice; key = (chn << 8) | (note + 1); voice = synth_devs[dev]->alloc_voice(dev, chn, note, &synth_devs[dev]->alloc); synth_devs[dev]->alloc.map[voice] = key; synth_devs[dev]->alloc.alloc_times[voice] = synth_devs[dev]->alloc.timestamp++; return voice; } static void seq_chn_voice_event(u_char *event) { u_char dev = event[1]; u_char cmd = event[2]; u_char chn = event[3]; u_char note = event[4]; u_char parm = event[5]; int voice = -1; if ((int) dev > max_synthdev) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; if (seq_mode == SEQ_2) { if (synth_devs[dev]->alloc_voice) voice = find_voice(dev, chn, note); if (cmd == MIDI_NOTEON && parm == 0) { cmd = MIDI_NOTEOFF; parm = 64; } } switch (cmd) { case MIDI_NOTEON: if (note > 127 && note != 255) /* Not a seq2 feature */ return; if (voice == -1 && seq_mode == SEQ_2 && synth_devs[dev]->alloc_voice) { /* Internal synthesizer (FM, GUS, etc) */ voice = alloc_voice(dev, chn, note); } if (voice == -1) voice = chn; if (seq_mode == SEQ_2 && (int) dev < num_synths) { /* * The MIDI channel 10 is a percussive channel. Use * the note number to select the proper patch (128 to * 255) to play. */ if (chn == 9) { synth_devs[dev]->set_instr(dev, voice, 128 + note); note = 60; /* Middle C */ } } if (seq_mode == SEQ_2) synth_devs[dev]->setup_voice(dev, voice, chn); synth_devs[dev]->start_note(dev, voice, note, parm); break; case MIDI_NOTEOFF: if (voice == -1) voice = chn; synth_devs[dev]->kill_note(dev, voice, note, parm); break; case MIDI_KEY_PRESSURE: if (voice == -1) voice = chn; synth_devs[dev]->aftertouch(dev, voice, parm); break; default:; } } static void seq_chn_common_event(u_char *event) { u_char dev = event[1]; u_char cmd = event[2]; u_char chn = event[3]; u_char p1 = event[4]; /* u_char p2 = event[5]; */ u_short w14 = *(short *) &event[6]; if ((int) dev > max_synthdev) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; switch (cmd) { case MIDI_PGM_CHANGE: if (seq_mode == SEQ_2) { synth_devs[dev]->chn_info[chn].pgm_num = p1; if ((int) dev >= num_synths) synth_devs[dev]->set_instr(dev, chn, p1); } else synth_devs[dev]->set_instr(dev, chn, p1); break; case MIDI_CTL_CHANGE: if (seq_mode == SEQ_2) { if (chn > 15 || p1 > 127) break; synth_devs[dev]->chn_info[chn].controllers[p1] = w14 & 0x7f; if (p1 < 32) /* Setting MSB should clear LSB to 0 */ synth_devs[dev]->chn_info[chn].controllers[p1 + 32] = 0; if ((int) dev < num_synths) { int val = w14 & 0x7f; int i, key; if (p1 < 64) { /* Combine MSB and LSB */ val = ((synth_devs[dev]-> chn_info[chn].controllers[p1 & ~32] & 0x7f) << 7) | (synth_devs[dev]-> chn_info[chn].controllers[p1 | 32] & 0x7f); p1 &= ~32; } /* Handle all playing notes on this channel */ key = ((int) chn << 8); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key) synth_devs[dev]->controller(dev, i, p1, val); } else synth_devs[dev]->controller(dev, chn, p1, w14); } else /* Mode 1 */ synth_devs[dev]->controller(dev, chn, p1, w14); break; case MIDI_PITCH_BEND: if (seq_mode == SEQ_2) { synth_devs[dev]->chn_info[chn].bender_value = w14; if ((int) dev < num_synths) { /* Handle all playing * notes on this channel */ int i, key; key = (chn << 8); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key) synth_devs[dev]->bender(dev, i, w14); } else synth_devs[dev]->bender(dev, chn, w14); } else /* MODE 1 */ synth_devs[dev]->bender(dev, chn, w14); break; default:; } } static int seq_timing_event(u_char *event) { u_char cmd = event[1]; u_int parm = *(int *) &event[4]; if (seq_mode == SEQ_2) { int ret; if ((ret = tmr->event(tmr_no, event)) == TIMER_ARMED) { if ((SEQ_MAX_QUEUE - qlen) >= output_treshold) { u_long flags; flags = splhigh(); if ((seq_sleep_flag.mode & WK_SLEEP)) { seq_sleep_flag.mode = WK_WAKEUP; wakeup(seq_sleeper); } splx(flags); } } return ret; } switch (cmd) { case TMR_WAIT_REL: parm += prev_event_time; /* * NOTE! No break here. Execution of TMR_WAIT_REL continues * in the next case (TMR_WAIT_ABS) */ case TMR_WAIT_ABS: if (parm > 0) { long time; seq_playing = 1; time = parm; prev_event_time = time; request_sound_timer(time); if ((SEQ_MAX_QUEUE - qlen) >= output_treshold) { u_long flags; flags = splhigh(); if ((seq_sleep_flag.mode & WK_SLEEP)) { seq_sleep_flag.mode = WK_WAKEUP; wakeup(seq_sleeper); } splx(flags); } return TIMER_ARMED; } break; case TMR_START: seq_time = get_time(); prev_input_time = 0; prev_event_time = 0; break; case TMR_STOP: break; case TMR_CONTINUE: break; case TMR_TEMPO: break; case TMR_ECHO: if (seq_mode == SEQ_2) seq_copy_to_input(event, 8); else { parm = (parm << 8 | SEQ_ECHO); seq_copy_to_input((u_char *) &parm, 4); } break; default:; } return TIMER_NOT_ARMED; } static void seq_local_event(u_char *event) { u_char cmd = event[1]; u_int parm = *((u_int *) &event[4]); switch (cmd) { case LOCL_STARTAUDIO: #ifdef CONFIG_AUDIO DMAbuf_start_devices(parm); #endif break; default:; } } static void seq_sysex_message(u_char *event) { int dev = event[1]; int i, l = 0; u_char *buf = &event[2]; if ((int) dev > max_synthdev) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; if (!synth_devs[dev]->send_sysex) return; l = 0; for (i = 0; i < 6 && buf[i] != 0xff; i++) l = i + 1; if (l > 0) synth_devs[dev]->send_sysex(dev, buf, l); } static int play_event(u_char *q) { /* * NOTE! This routine returns 0 = normal event played. 1 = Timer * armed. Suspend playback until timer callback. 2 = MIDI output * buffer full. Restore queue and suspend until timer */ u_long *delay; switch (q[0]) { case SEQ_NOTEOFF: if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->kill_note(0, q[1], 255, q[3]); break; case SEQ_NOTEON: if (q[4] < 128 || q[4] == 255) if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->start_note(0, q[1], q[2], q[3]); break; case SEQ_WAIT: delay = (u_long *) q; /* Bytes 1 to 3 are * containing the * delay in * get_time() */ *delay = (*delay >> 8) & 0xffffff; if (*delay > 0) { long time; seq_playing = 1; time = *delay; prev_event_time = time; request_sound_timer(time); if ((SEQ_MAX_QUEUE - qlen) >= output_treshold) { u_long flags; flags = splhigh(); if ((seq_sleep_flag.mode & WK_SLEEP)) { seq_sleep_flag.mode = WK_WAKEUP; wakeup(seq_sleeper); } splx(flags); } /* * The timer is now active and will reinvoke this * function after the timer expires. Return to the * caller now. */ return 1; } break; case SEQ_PGMCHANGE: if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->set_instr(0, q[1], q[2]); break; case SEQ_SYNCTIMER: /* Reset timer */ seq_time = get_time(); prev_input_time = 0; prev_event_time = 0; break; case SEQ_MIDIPUTC: /* Put a midi character */ if (midi_opened[q[2]]) { int dev; dev = q[2]; if (!midi_devs[dev]->putc(dev, q[1])) { /* * Output FIFO is full. Wait one timer cycle and try again. */ seq_playing = 1; request_sound_timer(-1); return 2; } else midi_written[dev] = 1; } break; case SEQ_ECHO: seq_copy_to_input(q, 4); /* Echo back to the process */ break; case SEQ_PRIVATE: if ((int) q[1] < max_synthdev) synth_devs[q[1]]->hw_control(q[1], q); break; case SEQ_EXTENDED: extended_event(q); break; case EV_CHN_VOICE: seq_chn_voice_event(q); break; case EV_CHN_COMMON: seq_chn_common_event(q); break; case EV_TIMING: if (seq_timing_event(q) == TIMER_ARMED) { return 1; } break; case EV_SEQ_LOCAL: seq_local_event(q); break; case EV_SYSEX: seq_sysex_message(q); break; default:; } return 0; } static void seq_startplay(void) { u_long flags; int this_one, action; while (qlen > 0) { flags = splhigh(); qhead = ((this_one = qhead) + 1) % SEQ_MAX_QUEUE; qlen--; splx(flags); seq_playing = 1; if ((action = play_event(&queue[this_one * EV_SZ]))) { /* * Suspend playback. Next timer routine invokes this routine again */ if (action == 2) { qlen++; qhead = this_one; } return; } } seq_playing = 0; if ((SEQ_MAX_QUEUE - qlen) >= output_treshold) { u_long flags; flags = splhigh(); if ((seq_sleep_flag.mode & WK_SLEEP)) { seq_sleep_flag.mode = WK_WAKEUP; wakeup(seq_sleeper); } splx(flags); } } static void reset_controllers(int dev, u_char *controller, int update_dev) { int i; for (i = 0; i < 128; i++) controller[i] = ctrl_def_values[i]; } static void setup_mode2(void) { int dev; max_synthdev = num_synths; for (dev = 0; dev < num_midis; dev++) if (midi_devs[dev]->converter != NULL) synth_devs[max_synthdev++] = midi_devs[dev]->converter; for (dev = 0; dev < max_synthdev; dev++) { int chn; for (chn = 0; chn < 16; chn++) { synth_devs[dev]->chn_info[chn].pgm_num = 0; reset_controllers(dev, synth_devs[dev]->chn_info[chn].controllers, 0); synth_devs[dev]->chn_info[chn].bender_value = (1<<7); /* Neutral */ } } max_mididev = 0; seq_mode = SEQ_2; } int sequencer_open(int dev, struct fileinfo * file) { int retval, mode, i; int level, tmp; u_long flags; level = ((dev & 0x0f) == SND_DEV_SEQ2) ? 2 : 1; dev = dev >> 4; mode = file->mode & O_ACCMODE; DEB(printf("sequencer_open(dev=%d)\n", dev)); if (!sequencer_ok) { printf("Soundcard: Sequencer not initialized\n"); return -(ENXIO); } if (dev) { /* Patch manager device */ int err; printf("Patch manager interface is currently broken. Sorry\n"); return -(ENXIO); dev--; if (dev >= MAX_SYNTH_DEV) return -(ENXIO); if (pmgr_present[dev]) return -(EBUSY); if ((err = pmgr_open(dev)) < 0) return err; pmgr_present[dev] = 1; return err; } flags = splhigh(); if (sequencer_busy) { printf("Sequencer busy\n"); splx(flags); return -(EBUSY); } sequencer_busy = 1; splx(flags); max_mididev = num_midis; max_synthdev = num_synths; pre_event_timeout = 0; seq_mode = SEQ_1; if (pending_timer != -1) { tmr_no = pending_timer; pending_timer = -1; } if (tmr_no == -1) { /* Not selected yet */ int i, best; best = -1; for (i = 0; i < num_sound_timers; i++) if (sound_timer_devs[i]->priority > best) { tmr_no = i; best = sound_timer_devs[i]->priority; } if (tmr_no == -1) /* Should not be */ tmr_no = 0; } tmr = sound_timer_devs[tmr_no]; if (level == 2) { if (tmr == NULL) { printf("sequencer: No timer for level 2\n"); sequencer_busy = 0; return -(ENXIO); } setup_mode2(); } if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE)) if (!max_mididev) { printf("Sequencer: No Midi devices. Input not possible\n"); sequencer_busy = 0; return -(ENXIO); } if (!max_synthdev && !max_mididev) return -(ENXIO); synth_open_mask = 0; for (i = 0; i < max_mididev; i++) { midi_opened[i] = 0; midi_written[i] = 0; } /* * if (mode == OPEN_WRITE || mode == OPEN_READWRITE) */ for (i = 0; i < max_synthdev; i++) /* Open synth devices */ if ((tmp = synth_devs[i]->open(i, mode)) < 0) { printf("Sequencer: Warning! Cannot open synth device #%d (%d)\n", i, tmp); if (synth_devs[i]->midi_dev) printf("(Maps to MIDI dev #%d)\n", synth_devs[i]->midi_dev); } else { synth_open_mask |= (1 << i); if (synth_devs[i]->midi_dev) /* Is a midi interface */ midi_opened[synth_devs[i]->midi_dev] = 1; } seq_time = get_time(); prev_input_time = 0; prev_event_time = 0; if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE)) { /* Initialize midi input devices */ for (i = 0; i < max_mididev; i++) if (!midi_opened[i]) { if ((retval = midi_devs[i]->open(i, mode, sequencer_midi_input, sequencer_midi_output)) >= 0) midi_opened[i] = 1; } } if (seq_mode == SEQ_2) { tmr->open(tmr_no, seq_mode); } seq_sleep_flag.aborting = 0; seq_sleep_flag.mode = WK_NONE; midi_sleep_flag.aborting = 0; midi_sleep_flag.mode = WK_NONE; output_treshold = SEQ_MAX_QUEUE / 2; for (i = 0; i < num_synths; i++) if (pmgr_present[i]) pmgr_inform(i, PM_E_OPENED, 0, 0, 0, 0); return 0; } static void seq_drain_midi_queues(void) { int i, n; /* * Give the Midi drivers time to drain their output queues */ n = 1; while (!(seq_sleep_flag.aborting) && n) { n = 0; for (i = 0; i < max_mididev; i++) if (midi_opened[i] && midi_written[i]) if (midi_devs[i]->buffer_status != NULL) if (midi_devs[i]->buffer_status(i)) n++; /* * Let's have a delay */ if (n) { int chn; seq_sleeper = &chn; DO_SLEEP(chn, seq_sleep_flag, hz / 10); } } } void sequencer_release(int dev, struct fileinfo * file) { int i; int mode = file->mode & O_ACCMODE; dev = dev >> 4; DEB(printf("sequencer_release(dev=%d)\n", dev)); if (dev) { /* Patch manager device */ dev--; pmgr_release(dev); pmgr_present[dev] = 0; return; } /* * Wait until the queue is empty (if we don't have nonblock) */ if (mode != OPEN_READ && !0) while (!(seq_sleep_flag.aborting) && qlen) { seq_sync(); } if (mode != OPEN_READ) seq_drain_midi_queues(); /* Ensure the output queues are empty */ seq_reset(); if (mode != OPEN_READ) seq_drain_midi_queues(); /* Flush the all notes off messages */ for (i = 0; i < max_synthdev; i++) if (synth_open_mask & (1 << i)) /* Actually opened */ if (synth_devs[i]) { synth_devs[i]->close(i); if (synth_devs[i]->midi_dev) midi_opened[synth_devs[i]->midi_dev] = 0; } for (i = 0; i < num_synths; i++) if (pmgr_present[i]) pmgr_inform(i, PM_E_CLOSED, 0, 0, 0, 0); for (i = 0; i < max_mididev; i++) if (midi_opened[i]) midi_devs[i]->close(i); if (seq_mode == SEQ_2) tmr->close(tmr_no); sequencer_busy = 0; } static int seq_sync(void) { u_long flags; if (qlen && !seq_playing && !(seq_sleep_flag.aborting)) seq_startplay(); flags = splhigh(); if (qlen && !(seq_sleep_flag.mode & WK_SLEEP)) { int chn; seq_sleeper = &chn; DO_SLEEP(chn, seq_sleep_flag, 0); } splx(flags); return qlen; } static void midi_outc(int dev, u_char data) { /* * NOTE! Calls sleep(). Don't call this from interrupt. */ int n; u_long flags; /* * This routine sends one byte to the Midi channel. If the output * Fifo is full, it waits until there is space in the queue */ n = 3 * hz; /* Timeout */ flags = splhigh(); while (n && !midi_devs[dev]->putc(dev, data)) { int chn; seq_sleeper = &chn; DO_SLEEP(chn, seq_sleep_flag, 4); n--; } splx(flags); } static void seq_reset(void) { /* * NOTE! Calls sleep(). Don't call this from interrupt. */ int i; int chn; u_long flags; sound_stop_timer(); seq_time = get_time(); prev_input_time = 0; prev_event_time = 0; qlen = qhead = qtail = 0; iqlen = iqhead = iqtail = 0; for (i = 0; i < max_synthdev; i++) if (synth_open_mask & (1 << i)) if (synth_devs[i]) synth_devs[i]->reset(i); if (seq_mode == SEQ_2) { for (chn = 0; chn < 16; chn++) for (i = 0; i < max_synthdev; i++) if ( (synth_open_mask & (1 << i)) && (synth_devs[i]) ) { synth_devs[i]->controller(i, chn,123,0);/* All notes off */ synth_devs[i]->controller(i, chn,121,0);/* Reset all ctl */ synth_devs[i]->bender(i, chn, 1 << 13); /* Bender off */ } } else { /* seq_mode == SEQ_1 */ for (i = 0; i < max_mididev; i++) if (midi_written[i]) { /* Midi used. Some notes may still be playing */ /* * Sending just a ACTIVE SENSING message * should be enough to stop all playing * notes. Since there are devices not * recognizing the active sensing, we have to * send some all notes off messages also. */ midi_outc(i, 0xfe); for (chn = 0; chn < 16; chn++) { midi_outc(i, (u_char) (0xb0 + (chn & 0x0f))); /* control change */ midi_outc(i, 0x7b); /* All notes off */ midi_outc(i, 0); /* Dummy parameter */ } midi_devs[i]->close(i); midi_written[i] = 0; midi_opened[i] = 0; } } seq_playing = 0; flags = splhigh(); if ((seq_sleep_flag.mode & WK_SLEEP)) { seq_sleep_flag.mode = WK_WAKEUP; wakeup(seq_sleeper); } splx(flags); } static void seq_panic(void) { /* * This routine is called by the application in case the user wants * to reset the system to the default state. */ seq_reset(); /* * Since some of the devices don't recognize the active sensing and * all notes off messages, we have to shut all notes manually. * * TO BE IMPLEMENTED LATER */ /* * Also return the controllers to their default states */ } int sequencer_ioctl(int dev, struct fileinfo * file, u_int cmd, ioctl_arg arg) { int midi_dev, orig_dev; int mode = file->mode & O_ACCMODE; orig_dev = dev = dev >> 4; switch (cmd) { case SNDCTL_TMR_TIMEBASE: case SNDCTL_TMR_TEMPO: case SNDCTL_TMR_START: case SNDCTL_TMR_STOP: case SNDCTL_TMR_CONTINUE: case SNDCTL_TMR_METRONOME: case SNDCTL_TMR_SOURCE: if (dev) /* Patch manager */ return -(EIO); if (seq_mode != SEQ_2) return -(EINVAL); return tmr->ioctl(tmr_no, cmd, arg); break; case SNDCTL_TMR_SELECT: if (dev) /* Patch manager */ return -(EIO); if (seq_mode != SEQ_2) return -(EINVAL); pending_timer = (*(int *) arg); if (pending_timer < 0 || pending_timer >= num_sound_timers) { pending_timer = -1; return -(EINVAL); } return *(int *) arg = pending_timer; break; case SNDCTL_SEQ_PANIC: seq_panic(); break; case SNDCTL_SEQ_SYNC: if (dev) /* Patch manager */ return -(EIO); if (mode == OPEN_READ) return 0; while (qlen && !(seq_sleep_flag.aborting)) seq_sync(); if (qlen) return -(EINTR); else return 0; break; case SNDCTL_SEQ_RESET: if (dev) /* Patch manager */ return -(EIO); seq_reset(); return 0; break; case SNDCTL_SEQ_TESTMIDI: if (dev) /* Patch manager */ return -(EIO); midi_dev = (*(int *) arg); if (midi_dev >= max_mididev) return -(ENXIO); if (!midi_opened[midi_dev]) { int err, mode; mode = file->mode & O_ACCMODE; if ((err = midi_devs[midi_dev]->open(midi_dev, mode, sequencer_midi_input, sequencer_midi_output)) < 0) return err; } midi_opened[midi_dev] = 1; return 0; break; case SNDCTL_SEQ_GETINCOUNT: if (dev) /* Patch manager */ return -(EIO); if (mode == OPEN_WRITE) return 0; return *(int *) arg = iqlen; break; case SNDCTL_SEQ_GETOUTCOUNT: if (mode == OPEN_READ) return 0; return *(int *) arg = SEQ_MAX_QUEUE - qlen; break; case SNDCTL_SEQ_CTRLRATE: if (dev) /* Patch manager */ return -(EIO); /* * If *arg == 0, just return the current rate */ if (seq_mode == SEQ_2) return tmr->ioctl(tmr_no, cmd, arg); if ((*(int *) arg) != 0) return -(EINVAL); return *(int *) arg = hz; break; case SNDCTL_SEQ_RESETSAMPLES: { int err; dev = (*(int *) arg); if (dev < 0 || dev >= num_synths) return -(ENXIO); if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -(EBUSY); if (!orig_dev && pmgr_present[dev]) pmgr_inform(dev, PM_E_PATCH_RESET, 0, 0, 0, 0); err = synth_devs[dev]->ioctl(dev, cmd, arg); return err; } break; case SNDCTL_SEQ_NRSYNTHS: return *(int *) arg = max_synthdev; break; case SNDCTL_SEQ_NRMIDIS: return *(int *) arg = max_mididev; break; case SNDCTL_SYNTH_MEMAVL: { int dev = (*(int *) arg); if (dev < 0 || dev >= num_synths) return -(ENXIO); if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -(EBUSY); return *(int *) arg = synth_devs[dev]->ioctl(dev, cmd, arg); } break; case SNDCTL_FM_4OP_ENABLE: { int dev = (*(int *) arg); if (dev < 0 || dev >= num_synths) return -(ENXIO); if (!(synth_open_mask & (1 << dev))) return -(ENXIO); synth_devs[dev]->ioctl(dev, cmd, arg); return 0; } break; case SNDCTL_SYNTH_INFO: { struct synth_info inf; int dev; bcopy(&(((char *) arg)[0]), (char *) &inf, sizeof(inf)); dev = inf.device; if (dev < 0 || dev >= max_synthdev) return -(ENXIO); if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -(EBUSY); return synth_devs[dev]->ioctl(dev, cmd, arg); } break; case SNDCTL_SEQ_OUTOFBAND: { struct seq_event_rec event; u_long flags; bcopy(&(((char *) arg)[0]), (char *) &event, sizeof(event)); flags = splhigh(); play_event(event.arr); splx(flags); return 0; } break; case SNDCTL_MIDI_INFO: { struct midi_info inf; int dev; bcopy(&(((char *) arg)[0]), (char *) &inf, sizeof(inf)); dev = inf.device; if (dev < 0 || dev >= max_mididev) return -(ENXIO); bcopy((char *) &(midi_devs[dev]->info), &(((char *) arg)[0]), sizeof(inf)); return 0; } break; case SNDCTL_PMGR_IFACE: { struct patmgr_info *inf; int dev, err; if ((inf = (struct patmgr_info *) malloc(sizeof(*inf), M_TEMP, M_WAITOK)) == NULL) { printf("patmgr: Can't allocate memory for a message\n"); return -(EIO); } bcopy(&(((char *) arg)[0]), (char *) inf, sizeof(*inf)); dev = inf->device; if (dev < 0 || dev >= num_synths) { free(inf, M_TEMP); return -(ENXIO); } if (!synth_devs[dev]->pmgr_interface) { free(inf, M_TEMP); return -(ENXIO); } if ((err = synth_devs[dev]->pmgr_interface(dev, inf)) == -1) { free(inf, M_TEMP); return err; } bcopy((char *) inf, &(((char *) arg)[0]), sizeof(*inf)); free(inf, M_TEMP); return 0; } break; case SNDCTL_PMGR_ACCESS: { struct patmgr_info *inf; int dev, err; if ((inf = (struct patmgr_info *) malloc(sizeof(*inf), M_TEMP, M_WAITOK)) == NULL) { printf("patmgr: Can't allocate memory for a message\n"); return -(EIO); } bcopy(&(((char *) arg)[0]), (char *) inf, sizeof(*inf)); dev = inf->device; if (dev < 0 || dev >= num_synths) { free(inf, M_TEMP); return -(ENXIO); } if (!pmgr_present[dev]) { free(inf, M_TEMP); return -(ESRCH); } if ((err = pmgr_access(dev, inf)) < 0) { free(inf, M_TEMP); return err; } bcopy((char *) inf, &(((char *) arg)[0]), sizeof(*inf)); free(inf, M_TEMP); return 0; } break; case SNDCTL_SEQ_THRESHOLD: { int tmp = (*(int *) arg); if (dev)/* Patch manager */ return -(EIO); if (tmp < 1) tmp = 1; if (tmp >= SEQ_MAX_QUEUE) tmp = SEQ_MAX_QUEUE - 1; output_treshold = tmp; return 0; } break; case SNDCTL_MIDI_PRETIME: { int val = (*(int *) arg); if (val < 0) val = 0; val = (hz * val) / 10; pre_event_timeout = val; return *(int *) arg = val; } break; default: if (dev) /* Patch manager */ return -(EIO); if (mode == OPEN_READ) return -(EIO); if (!synth_devs[0]) return -(ENXIO); if (!(synth_open_mask & (1 << 0))) return -(ENXIO); return synth_devs[0]->ioctl(0, cmd, arg); break; } return -(EINVAL); } #ifdef ALLOW_POLL int sequencer_poll (int dev, struct fileinfo *file, int events, select_table * wait) { unsigned long flags; int revents = 0; dev = dev >> 4; flags = splhigh(); if (events & (POLLIN | POLLRDNORM)) if (!iqlen) selrecord(wait, &selinfo[dev]); else { revents |= events & (POLLIN | POLLRDNORM); midi_sleep_flag.mode &= ~WK_SLEEP; } if (events & (POLLOUT | POLLWRNORM)) if (qlen >= SEQ_MAX_QUEUE) selrecord(wait, &selinfo[dev]); else { revents |= events & (POLLOUT | POLLWRNORM); seq_sleep_flag.mode &= ~WK_SLEEP; } splx(flags); return (revents); } #endif void sequencer_timer(void *dummy) { seq_startplay(); } int note_to_freq(int note_num) { /* * This routine converts a midi note to a frequency (multiplied by * 1000) */ int note, octave, note_freq; int notes[] = { 261632, 277189, 293671, 311132, 329632, 349232, 369998, 391998, 415306, 440000, 466162, 493880 }; #define BASE_OCTAVE 5 octave = note_num / 12; note = note_num % 12; note_freq = notes[note]; if (octave < BASE_OCTAVE) note_freq >>= (BASE_OCTAVE - octave); else if (octave > BASE_OCTAVE) note_freq <<= (octave - BASE_OCTAVE); /* * note_freq >>= 1; */ return note_freq; } u_long compute_finetune(u_long base_freq, int bend, int range) { u_long amount; int negative, semitones, cents, multiplier = 1; if (!bend) return base_freq; if (!range) return base_freq; if (!base_freq) return base_freq; if (range >= 8192) range = 8192; bend = bend * range / 8192; if (!bend) return base_freq; negative = bend < 0 ? 1 : 0; if (bend < 0) bend *= -1; if (bend > range) bend = range; /* * if (bend > 2399) bend = 2399; */ while (bend > 2399) { multiplier *= 4; bend -= 2400; } semitones = bend / 100; cents = bend % 100; amount = (int) (semitone_tuning[semitones] * multiplier * cent_tuning[cents]) / 10000; if (negative) return (base_freq * 10000) / amount; /* Bend down */ else return (base_freq * amount) / 10000; /* Bend up */ } void sequencer_init() { sequencer_ok = 1; queue = (u_char *) malloc(SEQ_MAX_QUEUE * EV_SZ, M_DEVBUF, M_NOWAIT); if (!queue) panic("SOUND: Cannot allocate memory\n"); iqueue = (u_char *) malloc(SEQ_MAX_QUEUE * IEV_SZ, M_DEVBUF, M_NOWAIT); if (!iqueue) panic("SOUND: Cannot allocate memory\n"); } #endif #endif