/* * Copyright (c) 1995, David Greenman * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Device driver for National Semiconductor DS8390/WD83C690 based ethernet * adapters. By David Greenman, 29-April-1993 * * Currently supports the Western Digital/SMC 8003 and 8013 series, * the SMC Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000, * and a variety of similar clones. * */ #include "opt_ed.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef ED_NO_MIIBUS #include #include #endif #include #include #include #include #include devclass_t ed_devclass; static void ed_init (void *); static int ed_ioctl (struct ifnet *, u_long, caddr_t); static void ed_start (struct ifnet *); static void ed_reset (struct ifnet *); static void ed_watchdog (struct ifnet *); #ifndef ED_NO_MIIBUS static void ed_tick (void *); #endif static void ds_getmcaf (struct ed_softc *, u_int32_t *); static void ed_get_packet (struct ed_softc *, char *, /* u_short */ int); static __inline void ed_rint (struct ed_softc *); static __inline void ed_xmit (struct ed_softc *); static __inline char * ed_ring_copy(struct ed_softc *, char *, char *, /* u_short */ int); static void ed_hpp_set_physical_link(struct ed_softc *); static void ed_hpp_readmem (struct ed_softc *, int, unsigned char *, /* u_short */ int); static void ed_hpp_writemem (struct ed_softc *, unsigned char *, /* u_short */ int, /* u_short */ int); static u_short ed_hpp_write_mbufs(struct ed_softc *, struct mbuf *, int); static u_short ed_pio_write_mbufs(struct ed_softc *, struct mbuf *, long); static void ed_setrcr (struct ed_softc *); /* * Interrupt conversion table for WD/SMC ASIC/83C584 */ static unsigned short ed_intr_val[] = { 9, 3, 5, 7, 10, 11, 15, 4 }; /* * Interrupt conversion table for 83C790 */ static unsigned short ed_790_intr_val[] = { 0, 9, 3, 5, 7, 10, 11, 15 }; /* * Interrupt conversion table for the HP PC LAN+ */ static unsigned short ed_hpp_intr_val[] = { 0, /* 0 */ 0, /* 1 */ 0, /* 2 */ 3, /* 3 */ 4, /* 4 */ 5, /* 5 */ 6, /* 6 */ 7, /* 7 */ 0, /* 8 */ 9, /* 9 */ 10, /* 10 */ 11, /* 11 */ 12, /* 12 */ 0, /* 13 */ 0, /* 14 */ 15 /* 15 */ }; /* * Generic probe routine for testing for the existance of a DS8390. * Must be called after the NIC has just been reset. This routine * works by looking at certain register values that are guaranteed * to be initialized a certain way after power-up or reset. Seems * not to currently work on the 83C690. * * Specifically: * * Register reset bits set bits * Command Register (CR) TXP, STA RD2, STP * Interrupt Status (ISR) RST * Interrupt Mask (IMR) All bits * Data Control (DCR) LAS * Transmit Config. (TCR) LB1, LB0 * * We only look at the CR and ISR registers, however, because looking at * the others would require changing register pages (which would be * intrusive if this isn't an 8390). * * Return 1 if 8390 was found, 0 if not. */ int ed_probe_generic8390(sc) struct ed_softc *sc; { if ((ed_nic_inb(sc, ED_P0_CR) & (ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) != (ED_CR_RD2 | ED_CR_STP)) return (0); if ((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST) return (0); return (1); } /* * Probe and vendor-specific initialization routine for SMC/WD80x3 boards */ int ed_probe_WD80x3_generic(dev, flags, intr_vals) device_t dev; int flags; unsigned short *intr_vals[]; { struct ed_softc *sc = device_get_softc(dev); int error; int i; u_int memsize, maddr; u_char iptr, isa16bit, sum, totalsum; u_long conf_maddr, conf_msize, irq, junk; sc->chip_type = ED_CHIP_TYPE_DP8390; if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_TOSH_ETHER) { totalsum = ED_WD_ROM_CHECKSUM_TOTAL_TOSH_ETHER; ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_POW); DELAY(10000); } else totalsum = ED_WD_ROM_CHECKSUM_TOTAL; /* * Attempt to do a checksum over the station address PROM. If it * fails, it's probably not a SMC/WD board. There is a problem with * this, though: some clone WD boards don't pass the checksum test. * Danpex boards for one. */ for (sum = 0, i = 0; i < 8; ++i) sum += ed_asic_inb(sc, ED_WD_PROM + i); if (sum != totalsum) { /* * Checksum is invalid. This often happens with cheap WD8003E * clones. In this case, the checksum byte (the eighth byte) * seems to always be zero. */ if (ed_asic_inb(sc, ED_WD_CARD_ID) != ED_TYPE_WD8003E || ed_asic_inb(sc, ED_WD_PROM + 7) != 0) return (ENXIO); } /* reset card to force it into a known state. */ if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_TOSH_ETHER) ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW); else ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_RST); DELAY(100); ed_asic_outb(sc, ED_WD_MSR, ed_asic_inb(sc, ED_WD_MSR) & ~ED_WD_MSR_RST); /* wait in the case this card is reading its EEROM */ DELAY(5000); sc->vendor = ED_VENDOR_WD_SMC; sc->type = ed_asic_inb(sc, ED_WD_CARD_ID); /* * Set initial values for width/size. */ memsize = 8192; isa16bit = 0; switch (sc->type) { case ED_TYPE_WD8003S: sc->type_str = "WD8003S"; break; case ED_TYPE_WD8003E: sc->type_str = "WD8003E"; break; case ED_TYPE_WD8003EB: sc->type_str = "WD8003EB"; break; case ED_TYPE_WD8003W: sc->type_str = "WD8003W"; break; case ED_TYPE_WD8013EBT: sc->type_str = "WD8013EBT"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013W: sc->type_str = "WD8013W"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EP: /* also WD8003EP */ if (ed_asic_inb(sc, ED_WD_ICR) & ED_WD_ICR_16BIT) { isa16bit = 1; memsize = 16384; sc->type_str = "WD8013EP"; } else { sc->type_str = "WD8003EP"; } break; case ED_TYPE_WD8013WC: sc->type_str = "WD8013WC"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EBP: sc->type_str = "WD8013EBP"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EPC: sc->type_str = "WD8013EPC"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_SMC8216C: /* 8216 has 16K shared mem -- 8416 has 8K */ case ED_TYPE_SMC8216T: if (sc->type == ED_TYPE_SMC8216C) { sc->type_str = "SMC8216/SMC8216C"; } else { sc->type_str = "SMC8216T"; } ed_asic_outb(sc, ED_WD790_HWR, ed_asic_inb(sc, ED_WD790_HWR) | ED_WD790_HWR_SWH); switch (ed_asic_inb(sc, ED_WD790_RAR) & ED_WD790_RAR_SZ64) { case ED_WD790_RAR_SZ64: memsize = 65536; break; case ED_WD790_RAR_SZ32: memsize = 32768; break; case ED_WD790_RAR_SZ16: memsize = 16384; break; case ED_WD790_RAR_SZ8: /* 8216 has 16K shared mem -- 8416 has 8K */ if (sc->type == ED_TYPE_SMC8216C) { sc->type_str = "SMC8416C/SMC8416BT"; } else { sc->type_str = "SMC8416T"; } memsize = 8192; break; } ed_asic_outb(sc, ED_WD790_HWR, ed_asic_inb(sc, ED_WD790_HWR) & ~ED_WD790_HWR_SWH); isa16bit = 1; sc->chip_type = ED_CHIP_TYPE_WD790; break; case ED_TYPE_TOSHIBA1: sc->type_str = "Toshiba1"; memsize = 32768; isa16bit = 1; break; case ED_TYPE_TOSHIBA4: sc->type_str = "Toshiba4"; memsize = 32768; isa16bit = 1; break; default: sc->type_str = ""; break; } /* * Make some adjustments to initial values depending on what is found * in the ICR. */ if (isa16bit && (sc->type != ED_TYPE_WD8013EBT) && (sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4) && ((ed_asic_inb(sc, ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) { isa16bit = 0; memsize = 8192; } error = bus_get_resource(dev, SYS_RES_MEMORY, 0, &conf_maddr, &conf_msize); if (error) return (error); #if ED_DEBUG printf("type = %x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n", sc->type, sc->type_str, isa16bit, memsize, conf_msize); for (i = 0; i < 8; i++) printf("%x -> %x\n", i, ed_asic_inb(sc, i)); #endif /* * Allow the user to override the autoconfiguration */ if (conf_msize > 1) memsize = conf_msize; maddr = conf_maddr; if (maddr < 0xa0000 || maddr + memsize > 0x1000000) { device_printf(dev, "Invalid ISA memory address range configured: 0x%x - 0x%x\n", maddr, maddr + memsize); return (ENXIO); } /* * (note that if the user specifies both of the following flags that * '8bit' mode intentionally has precedence) */ if (flags & ED_FLAGS_FORCE_16BIT_MODE) isa16bit = 1; if (flags & ED_FLAGS_FORCE_8BIT_MODE) isa16bit = 0; /* * If possible, get the assigned interrupt number from the card and * use it. */ if ((sc->type & ED_WD_SOFTCONFIG) && (sc->chip_type != ED_CHIP_TYPE_WD790)) { /* * Assemble together the encoded interrupt number. */ iptr = (ed_asic_inb(sc, ED_WD_ICR) & ED_WD_ICR_IR2) | ((ed_asic_inb(sc, ED_WD_IRR) & (ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5); /* * If no interrupt specified (or "?"), use what the board tells us. */ error = bus_get_resource(dev, SYS_RES_IRQ, 0, &irq, &junk); if (error && intr_vals[0] != NULL) { error = bus_set_resource(dev, SYS_RES_IRQ, 0, intr_vals[0][iptr], 1); } if (error) return (error); /* * Enable the interrupt. */ ed_asic_outb(sc, ED_WD_IRR, ed_asic_inb(sc, ED_WD_IRR) | ED_WD_IRR_IEN); } if (sc->chip_type == ED_CHIP_TYPE_WD790) { ed_asic_outb(sc, ED_WD790_HWR, ed_asic_inb(sc, ED_WD790_HWR) | ED_WD790_HWR_SWH); iptr = (((ed_asic_inb(sc, ED_WD790_GCR) & ED_WD790_GCR_IR2) >> 4) | (ed_asic_inb(sc, ED_WD790_GCR) & (ED_WD790_GCR_IR1 | ED_WD790_GCR_IR0)) >> 2); ed_asic_outb(sc, ED_WD790_HWR, ed_asic_inb(sc, ED_WD790_HWR) & ~ED_WD790_HWR_SWH); /* * If no interrupt specified (or "?"), use what the board tells us. */ error = bus_get_resource(dev, SYS_RES_IRQ, 0, &irq, &junk); if (error && intr_vals[1] != NULL) { error = bus_set_resource(dev, SYS_RES_IRQ, 0, intr_vals[1][iptr], 1); } if (error) return (error); /* * Enable interrupts. */ ed_asic_outb(sc, ED_WD790_ICR, ed_asic_inb(sc, ED_WD790_ICR) | ED_WD790_ICR_EIL); } error = bus_get_resource(dev, SYS_RES_IRQ, 0, &irq, &junk); if (error) { device_printf(dev, "%s cards don't support auto-detected/assigned interrupts.\n", sc->type_str); return (ENXIO); } sc->isa16bit = isa16bit; sc->mem_shared = 1; error = ed_alloc_memory(dev, 0, memsize); if (error) { printf("*** ed_alloc_memory() failed! (%d)\n", error); return (error); } sc->mem_start = (caddr_t) rman_get_virtual(sc->mem_res); /* * allocate one xmit buffer if < 16k, two buffers otherwise */ if ((memsize < 16384) || (flags & ED_FLAGS_NO_MULTI_BUFFERING)) { sc->txb_cnt = 1; } else { sc->txb_cnt = 2; } sc->tx_page_start = ED_WD_PAGE_OFFSET; sc->rec_page_start = ED_WD_PAGE_OFFSET + ED_TXBUF_SIZE * sc->txb_cnt; sc->rec_page_stop = ED_WD_PAGE_OFFSET + memsize / ED_PAGE_SIZE; sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * sc->rec_page_start); sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; /* * Get station address from on-board ROM */ for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->arpcom.ac_enaddr[i] = ed_asic_inb(sc, ED_WD_PROM + i); /* * Set upper address bits and 8/16 bit access to shared memory. */ if (isa16bit) { if (sc->chip_type == ED_CHIP_TYPE_WD790) { sc->wd_laar_proto = ed_asic_inb(sc, ED_WD_LAAR); } else { sc->wd_laar_proto = ED_WD_LAAR_L16EN | ((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI); } /* * Enable 16bit access */ ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto | ED_WD_LAAR_M16EN); } else { if (((sc->type & ED_WD_SOFTCONFIG) || (sc->type == ED_TYPE_TOSHIBA1) || (sc->type == ED_TYPE_TOSHIBA4) || (sc->type == ED_TYPE_WD8013EBT)) && (sc->chip_type != ED_CHIP_TYPE_WD790)) { sc->wd_laar_proto = (kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI; ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto); } } /* * Set address and enable interface shared memory. */ if (sc->chip_type != ED_CHIP_TYPE_WD790) { if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_TOSH_ETHER) { ed_asic_outb(sc, ED_WD_MSR + 1, ((kvtop(sc->mem_start) >> 8) & 0xe0) | 4); ed_asic_outb(sc, ED_WD_MSR + 2, ((kvtop(sc->mem_start) >> 16) & 0x0f)); ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB | ED_WD_MSR_POW); } else { ed_asic_outb(sc, ED_WD_MSR, ((kvtop(sc->mem_start) >> 13) & ED_WD_MSR_ADDR) | ED_WD_MSR_MENB); } sc->cr_proto = ED_CR_RD2; } else { ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB); ed_asic_outb(sc, ED_WD790_HWR, (ed_asic_inb(sc, ED_WD790_HWR) | ED_WD790_HWR_SWH)); ed_asic_outb(sc, ED_WD790_RAR, ((kvtop(sc->mem_start) >> 13) & 0x0f) | ((kvtop(sc->mem_start) >> 11) & 0x40) | (ed_asic_inb(sc, ED_WD790_RAR) & 0xb0)); ed_asic_outb(sc, ED_WD790_HWR, (ed_asic_inb(sc, ED_WD790_HWR) & ~ED_WD790_HWR_SWH)); sc->cr_proto = 0; } #if 0 printf("starting memory performance test at 0x%x, size %d...\n", sc->mem_start, memsize*16384); for (i = 0; i < 16384; i++) bzero(sc->mem_start, memsize); printf("***DONE***\n"); #endif /* * Now zero memory and verify that it is clear */ bzero(sc->mem_start, memsize); for (i = 0; i < memsize; ++i) { if (sc->mem_start[i]) { device_printf(dev, "failed to clear shared memory at %jx - check configuration\n", (uintmax_t)kvtop(sc->mem_start + i)); /* * Disable 16 bit access to shared memory */ if (isa16bit) { if (sc->chip_type == ED_CHIP_TYPE_WD790) { ed_asic_outb(sc, ED_WD_MSR, 0x00); } ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto & ~ED_WD_LAAR_M16EN); } return (ENXIO); } } /* * Disable 16bit access to shared memory - we leave it * disabled so that 1) machines reboot properly when the board * is set 16 bit mode and there are conflicting 8bit * devices/ROMS in the same 128k address space as this boards * shared memory. and 2) so that other 8 bit devices with * shared memory can be used in this 128k region, too. */ if (isa16bit) { if (sc->chip_type == ED_CHIP_TYPE_WD790) { ed_asic_outb(sc, ED_WD_MSR, 0x00); } ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto & ~ED_WD_LAAR_M16EN); } return (0); } int ed_probe_WD80x3(dev, port_rid, flags) device_t dev; int port_rid; int flags; { struct ed_softc *sc = device_get_softc(dev); int error; static unsigned short *intr_vals[] = {ed_intr_val, ed_790_intr_val}; error = ed_alloc_port(dev, port_rid, ED_WD_IO_PORTS); if (error) return (error); sc->asic_offset = ED_WD_ASIC_OFFSET; sc->nic_offset = ED_WD_NIC_OFFSET; return ed_probe_WD80x3_generic(dev, flags, intr_vals); } /* * Probe and vendor-specific initialization routine for 3Com 3c503 boards */ int ed_probe_3Com(dev, port_rid, flags) device_t dev; int port_rid; int flags; { struct ed_softc *sc = device_get_softc(dev); int error; int i; u_int memsize; u_char isa16bit; u_long conf_maddr, conf_msize, irq, junk; error = ed_alloc_port(dev, 0, ED_3COM_IO_PORTS); if (error) return (error); sc->asic_offset = ED_3COM_ASIC_OFFSET; sc->nic_offset = ED_3COM_NIC_OFFSET; /* * Verify that the kernel configured I/O address matches the board * configured address */ switch (ed_asic_inb(sc, ED_3COM_BCFR)) { case ED_3COM_BCFR_300: if (rman_get_start(sc->port_res) != 0x300) return (ENXIO); break; case ED_3COM_BCFR_310: if (rman_get_start(sc->port_res) != 0x310) return (ENXIO); break; case ED_3COM_BCFR_330: if (rman_get_start(sc->port_res) != 0x330) return (ENXIO); break; case ED_3COM_BCFR_350: if (rman_get_start(sc->port_res) != 0x350) return (ENXIO); break; case ED_3COM_BCFR_250: if (rman_get_start(sc->port_res) != 0x250) return (ENXIO); break; case ED_3COM_BCFR_280: if (rman_get_start(sc->port_res) != 0x280) return (ENXIO); break; case ED_3COM_BCFR_2A0: if (rman_get_start(sc->port_res) != 0x2a0) return (ENXIO); break; case ED_3COM_BCFR_2E0: if (rman_get_start(sc->port_res) != 0x2e0) return (ENXIO); break; default: return (ENXIO); } error = bus_get_resource(dev, SYS_RES_MEMORY, 0, &conf_maddr, &conf_msize); if (error) return (error); /* * Verify that the kernel shared memory address matches the board * configured address. */ switch (ed_asic_inb(sc, ED_3COM_PCFR)) { case ED_3COM_PCFR_DC000: if (conf_maddr != 0xdc000) return (ENXIO); break; case ED_3COM_PCFR_D8000: if (conf_maddr != 0xd8000) return (ENXIO); break; case ED_3COM_PCFR_CC000: if (conf_maddr != 0xcc000) return (ENXIO); break; case ED_3COM_PCFR_C8000: if (conf_maddr != 0xc8000) return (ENXIO); break; default: return (ENXIO); } /* * Reset NIC and ASIC. Enable on-board transceiver throughout reset * sequence because it'll lock up if the cable isn't connected if we * don't. */ ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL); /* * Wait for a while, then un-reset it */ DELAY(50); /* * The 3Com ASIC defaults to rather strange settings for the CR after * a reset - it's important to set it again after the following outb * (this is done when we map the PROM below). */ ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL); /* * Wait a bit for the NIC to recover from the reset */ DELAY(5000); sc->vendor = ED_VENDOR_3COM; sc->type_str = "3c503"; sc->mem_shared = 1; sc->cr_proto = ED_CR_RD2; /* * Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window * to it. */ memsize = 8192; /* * Get station address from on-board ROM */ /* * First, map ethernet address PROM over the top of where the NIC * registers normally appear. */ ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL); for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->arpcom.ac_enaddr[i] = ed_nic_inb(sc, i); /* * Unmap PROM - select NIC registers. The proper setting of the * tranceiver is set in ed_init so that the attach code is given a * chance to set the default based on a compile-time config option */ ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL); /* * Determine if this is an 8bit or 16bit board */ /* * select page 0 registers */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STP); /* * Attempt to clear WTS bit. If it doesn't clear, then this is a 16bit * board. */ ed_nic_outb(sc, ED_P0_DCR, 0); /* * select page 2 registers */ ed_nic_outb(sc, ED_P0_CR, ED_CR_PAGE_2 | ED_CR_RD2 | ED_CR_STP); /* * The 3c503 forces the WTS bit to a one if this is a 16bit board */ if (ed_nic_inb(sc, ED_P2_DCR) & ED_DCR_WTS) isa16bit = 1; else isa16bit = 0; /* * select page 0 registers */ ed_nic_outb(sc, ED_P2_CR, ED_CR_RD2 | ED_CR_STP); error = ed_alloc_memory(dev, 0, memsize); if (error) return (error); sc->mem_start = (caddr_t) rman_get_virtual(sc->mem_res); sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; /* * We have an entire 8k window to put the transmit buffers on the * 16bit boards. But since the 16bit 3c503's shared memory is only * fast enough to overlap the loading of one full-size packet, trying * to load more than 2 buffers can actually leave the transmitter idle * during the load. So 2 seems the best value. (Although a mix of * variable-sized packets might change this assumption. Nonetheless, * we optimize for linear transfers of same-size packets.) */ if (isa16bit) { if (flags & ED_FLAGS_NO_MULTI_BUFFERING) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT; sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT; sc->rec_page_stop = memsize / ED_PAGE_SIZE + ED_3COM_RX_PAGE_OFFSET_16BIT; sc->mem_ring = sc->mem_start; } else { sc->txb_cnt = 1; sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT; sc->rec_page_start = ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT; sc->rec_page_stop = memsize / ED_PAGE_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT; sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE); } sc->isa16bit = isa16bit; /* * Initialize GA page start/stop registers. Probably only needed if * doing DMA, but what the hell. */ ed_asic_outb(sc, ED_3COM_PSTR, sc->rec_page_start); ed_asic_outb(sc, ED_3COM_PSPR, sc->rec_page_stop); /* * Set IRQ. 3c503 only allows a choice of irq 2-5. */ error = bus_get_resource(dev, SYS_RES_IRQ, 0, &irq, &junk); if (error) return (error); switch (irq) { case 2: case 9: ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2); break; case 3: ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3); break; case 4: ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4); break; case 5: ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5); break; default: device_printf(dev, "Invalid irq configuration (%ld) must be 3-5,9 for 3c503\n", irq); return (ENXIO); } /* * Initialize GA configuration register. Set bank and enable shared * mem. */ ed_asic_outb(sc, ED_3COM_GACFR, ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0); /* * Initialize "Vector Pointer" registers. These gawd-awful things are * compared to 20 bits of the address on ISA, and if they match, the * shared memory is disabled. We set them to 0xffff0...allegedly the * reset vector. */ ed_asic_outb(sc, ED_3COM_VPTR2, 0xff); ed_asic_outb(sc, ED_3COM_VPTR1, 0xff); ed_asic_outb(sc, ED_3COM_VPTR0, 0x00); /* * Zero memory and verify that it is clear */ bzero(sc->mem_start, memsize); for (i = 0; i < memsize; ++i) if (sc->mem_start[i]) { device_printf(dev, "failed to clear shared memory at %jx - check configuration\n", (uintmax_t)kvtop(sc->mem_start + i)); return (ENXIO); } return (0); } /* * Probe and vendor-specific initialization routine for SIC boards */ int ed_probe_SIC(dev, port_rid, flags) device_t dev; int port_rid; int flags; { struct ed_softc *sc = device_get_softc(dev); int error; int i; u_int memsize; u_long conf_maddr, conf_msize; u_char sum; error = ed_alloc_port(dev, 0, ED_SIC_IO_PORTS); if (error) return (error); sc->asic_offset = ED_SIC_ASIC_OFFSET; sc->nic_offset = ED_SIC_NIC_OFFSET; error = bus_get_resource(dev, SYS_RES_MEMORY, 0, &conf_maddr, &conf_msize); if (error) return (error); memsize = 16384; if (conf_msize > 1) memsize = conf_msize; error = ed_alloc_memory(dev, 0, memsize); if (error) return (error); sc->mem_start = (caddr_t) rman_get_virtual(sc->mem_res); sc->mem_size = memsize; /* Reset card to force it into a known state. */ ed_asic_outb(sc, 0, 0x00); DELAY(100); /* * Here we check the card ROM, if the checksum passes, and the * type code and ethernet address check out, then we know we have * an SIC card. */ ed_asic_outb(sc, 0, 0x81); DELAY(100); sum = sc->mem_start[6]; for (i = 0; i < ETHER_ADDR_LEN; i++) { sum ^= (sc->arpcom.ac_enaddr[i] = sc->mem_start[i]); } #ifdef ED_DEBUG device_printf(dev, "ed_probe_sic: got address %6D\n", sc->arpcom.ac_enaddr, ":"); #endif if (sum != 0) { return (ENXIO); } if ((sc->arpcom.ac_enaddr[0] | sc->arpcom.ac_enaddr[1] | sc->arpcom.ac_enaddr[2]) == 0) { return (ENXIO); } sc->vendor = ED_VENDOR_SIC; sc->type_str = "SIC"; sc->isa16bit = 0; sc->cr_proto = 0; /* * SIC RAM page 0x0000-0x3fff(or 0x7fff) */ ed_asic_outb(sc, 0, 0x80); DELAY(100); /* * Now zero memory and verify that it is clear */ bzero(sc->mem_start, sc->mem_size); for (i = 0; i < sc->mem_size; i++) { if (sc->mem_start[i]) { device_printf(dev, "failed to clear shared memory " "at %jx - check configuration\n", (uintmax_t)kvtop(sc->mem_start + i)); return (ENXIO); } } sc->mem_shared = 1; sc->mem_end = sc->mem_start + sc->mem_size; /* * allocate one xmit buffer if < 16k, two buffers otherwise */ if ((sc->mem_size < 16384) || (flags & ED_FLAGS_NO_MULTI_BUFFERING)) { sc->txb_cnt = 1; } else { sc->txb_cnt = 2; } sc->tx_page_start = 0; sc->rec_page_start = sc->tx_page_start + ED_TXBUF_SIZE * sc->txb_cnt; sc->rec_page_stop = sc->tx_page_start + sc->mem_size / ED_PAGE_SIZE; sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE; return (0); } /* * Probe and vendor-specific initialization routine for NE1000/2000 boards */ int ed_probe_Novell_generic(dev, flags) device_t dev; int flags; { struct ed_softc *sc = device_get_softc(dev); u_int memsize, n; u_char romdata[16], tmp; static char test_pattern[32] = "THIS is A memory TEST pattern"; char test_buffer[32]; /* XXX - do Novell-specific probe here */ /* Reset the board */ if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_GWETHER) { ed_asic_outb(sc, ED_NOVELL_RESET, 0); DELAY(200); } tmp = ed_asic_inb(sc, ED_NOVELL_RESET); /* * I don't know if this is necessary; probably cruft leftover from * Clarkson packet driver code. Doesn't do a thing on the boards I've * tested. -DG [note that an outb(0x84, 0) seems to work here, and is * non-invasive...but some boards don't seem to reset and I don't have * complete documentation on what the 'right' thing to do is...so we * do the invasive thing for now. Yuck.] */ ed_asic_outb(sc, ED_NOVELL_RESET, tmp); DELAY(5000); /* * This is needed because some NE clones apparently don't reset the * NIC properly (or the NIC chip doesn't reset fully on power-up) XXX * - this makes the probe invasive! ...Done against my better * judgement. -DLG */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STP); DELAY(5000); /* Make sure that we really have an 8390 based board */ if (!ed_probe_generic8390(sc)) return (ENXIO); sc->vendor = ED_VENDOR_NOVELL; sc->mem_shared = 0; sc->cr_proto = ED_CR_RD2; /* * Test the ability to read and write to the NIC memory. This has the * side affect of determining if this is an NE1000 or an NE2000. */ /* * This prevents packets from being stored in the NIC memory when the * readmem routine turns on the start bit in the CR. */ ed_nic_outb(sc, ED_P0_RCR, ED_RCR_MON); /* Temporarily initialize DCR for byte operations */ ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); ed_nic_outb(sc, ED_P0_PSTART, 8192 / ED_PAGE_SIZE); ed_nic_outb(sc, ED_P0_PSTOP, 16384 / ED_PAGE_SIZE); sc->isa16bit = 0; /* * Write a test pattern in byte mode. If this fails, then there * probably isn't any memory at 8k - which likely means that the board * is an NE2000. */ ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern)); ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)) == 0) { sc->type = ED_TYPE_NE1000; sc->type_str = "NE1000"; } else { /* neither an NE1000 nor a Linksys - try NE2000 */ ed_nic_outb(sc, ED_P0_DCR, ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS); ed_nic_outb(sc, ED_P0_PSTART, 16384 / ED_PAGE_SIZE); ed_nic_outb(sc, ED_P0_PSTOP, 32768 / ED_PAGE_SIZE); sc->isa16bit = 1; /* * Write a test pattern in word mode. If this also fails, then * we don't know what this board is. */ ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern)); ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)) == 0) { sc->type = ED_TYPE_NE2000; sc->type_str = "NE2000"; } else { return (ENXIO); } } /* 8k of memory plus an additional 8k if 16bit */ memsize = 8192 + sc->isa16bit * 8192; #if 0 /* probably not useful - NE boards only come two ways */ /* allow kernel config file overrides */ if (isa_dev->id_msize) memsize = isa_dev->id_msize; #endif sc->mem_size = memsize; /* NIC memory doesn't start at zero on an NE board */ /* The start address is tied to the bus width */ sc->mem_start = (char *) 8192 + sc->isa16bit * 8192; sc->mem_end = sc->mem_start + memsize; sc->tx_page_start = memsize / ED_PAGE_SIZE; if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_GWETHER) { int x, i, msize = 0; long mstart = 0; char pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE]; for (i = 0; i < ED_PAGE_SIZE; i++) pbuf0[i] = 0; /* Clear all the memory. */ for (x = 1; x < 256; x++) ed_pio_writemem(sc, pbuf0, x * 256, ED_PAGE_SIZE); /* Search for the start of RAM. */ for (x = 1; x < 256; x++) { ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE); if (bcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) { for (i = 0; i < ED_PAGE_SIZE; i++) pbuf[i] = 255 - x; ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE); ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE); if (bcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0) { mstart = x * ED_PAGE_SIZE; msize = ED_PAGE_SIZE; break; } } } if (mstart == 0) { device_printf(dev, "Cannot find start of RAM.\n"); return (ENXIO); } /* Search for the start of RAM. */ for (x = (mstart / ED_PAGE_SIZE) + 1; x < 256; x++) { ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE); if (bcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) { for (i = 0; i < ED_PAGE_SIZE; i++) pbuf[i] = 255 - x; ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE); ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE); if (bcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0) msize += ED_PAGE_SIZE; else { break; } } else { break; } } if (msize == 0) { device_printf(dev, "Cannot find any RAM, start : %ld, x = %d.\n", mstart, x); return (ENXIO); } device_printf(dev, "RAM start at %ld, size : %d.\n", mstart, msize); sc->mem_size = msize; sc->mem_start = (caddr_t)(uintptr_t) mstart; sc->mem_end = (caddr_t)(uintptr_t) (msize + mstart); sc->tx_page_start = mstart / ED_PAGE_SIZE; } /* * Use one xmit buffer if < 16k, two buffers otherwise (if not told * otherwise). */ if ((memsize < 16384) || (flags & ED_FLAGS_NO_MULTI_BUFFERING)) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE; sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE; sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE; ed_pio_readmem(sc, 0, romdata, 16); for (n = 0; n < ETHER_ADDR_LEN; n++) sc->arpcom.ac_enaddr[n] = romdata[n * (sc->isa16bit + 1)]; if ((ED_FLAGS_GETTYPE(flags) == ED_FLAGS_GWETHER) && (sc->arpcom.ac_enaddr[2] == 0x86)) { sc->type_str = "Gateway AT"; } /* clear any pending interrupts that might have occurred above */ ed_nic_outb(sc, ED_P0_ISR, 0xff); return (0); } int ed_probe_Novell(dev, port_rid, flags) device_t dev; int port_rid; int flags; { struct ed_softc *sc = device_get_softc(dev); int error; error = ed_alloc_port(dev, port_rid, ED_NOVELL_IO_PORTS); if (error) return (error); sc->asic_offset = ED_NOVELL_ASIC_OFFSET; sc->nic_offset = ED_NOVELL_NIC_OFFSET; return ed_probe_Novell_generic(dev, flags); } #define ED_HPP_TEST_SIZE 16 /* * Probe and vendor specific initialization for the HP PC Lan+ Cards. * (HP Part nos: 27247B and 27252A). * * The card has an asic wrapper around a DS8390 core. The asic handles * host accesses and offers both standard register IO and memory mapped * IO. Memory mapped I/O allows better performance at the expense of greater * chance of an incompatibility with existing ISA cards. * * The card has a few caveats: it isn't tolerant of byte wide accesses, only * short (16 bit) or word (32 bit) accesses are allowed. Some card revisions * don't allow 32 bit accesses; these are indicated by a bit in the software * ID register (see if_edreg.h). * * Other caveats are: we should read the MAC address only when the card * is inactive. * * For more information; please consult the CRYNWR packet driver. * * The AUI port is turned on using the "link2" option on the ifconfig * command line. */ int ed_probe_HP_pclanp(dev, port_rid, flags) device_t dev; int port_rid; int flags; { struct ed_softc *sc = device_get_softc(dev); int error; int n; /* temp var */ int memsize; /* mem on board */ u_char checksum; /* checksum of board address */ u_char irq; /* board configured IRQ */ char test_pattern[ED_HPP_TEST_SIZE]; /* read/write areas for */ char test_buffer[ED_HPP_TEST_SIZE]; /* probing card */ u_long conf_maddr, conf_msize, conf_irq, junk; error = ed_alloc_port(dev, 0, ED_HPP_IO_PORTS); if (error) return (error); /* Fill in basic information */ sc->asic_offset = ED_HPP_ASIC_OFFSET; sc->nic_offset = ED_HPP_NIC_OFFSET; sc->chip_type = ED_CHIP_TYPE_DP8390; sc->isa16bit = 0; /* the 8390 core needs to be in byte mode */ /* * Look for the HP PCLAN+ signature: "0x50,0x48,0x00,0x53" */ if ((ed_asic_inb(sc, ED_HPP_ID) != 0x50) || (ed_asic_inb(sc, ED_HPP_ID + 1) != 0x48) || ((ed_asic_inb(sc, ED_HPP_ID + 2) & 0xF0) != 0) || (ed_asic_inb(sc, ED_HPP_ID + 3) != 0x53)) return ENXIO; /* * Read the MAC address and verify checksum on the address. */ ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_MAC); for (n = 0, checksum = 0; n < ETHER_ADDR_LEN; n++) checksum += (sc->arpcom.ac_enaddr[n] = ed_asic_inb(sc, ED_HPP_MAC_ADDR + n)); checksum += ed_asic_inb(sc, ED_HPP_MAC_ADDR + ETHER_ADDR_LEN); if (checksum != 0xFF) return ENXIO; /* * Verify that the software model number is 0. */ ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_ID); if (((sc->hpp_id = ed_asic_inw(sc, ED_HPP_PAGE_4)) & ED_HPP_ID_SOFT_MODEL_MASK) != 0x0000) return ENXIO; /* * Read in and save the current options configured on card. */ sc->hpp_options = ed_asic_inw(sc, ED_HPP_OPTION); sc->hpp_options |= (ED_HPP_OPTION_NIC_RESET | ED_HPP_OPTION_CHIP_RESET | ED_HPP_OPTION_ENABLE_IRQ); /* * Reset the chip. This requires writing to the option register * so take care to preserve the other bits. */ ed_asic_outw(sc, ED_HPP_OPTION, (sc->hpp_options & ~(ED_HPP_OPTION_NIC_RESET | ED_HPP_OPTION_CHIP_RESET))); DELAY(5000); /* wait for chip reset to complete */ ed_asic_outw(sc, ED_HPP_OPTION, (sc->hpp_options | (ED_HPP_OPTION_NIC_RESET | ED_HPP_OPTION_CHIP_RESET | ED_HPP_OPTION_ENABLE_IRQ))); DELAY(5000); if (!(ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST)) return ENXIO; /* reset did not complete */ /* * Read out configuration information. */ ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_HW); irq = ed_asic_inb(sc, ED_HPP_HW_IRQ); /* * Check for impossible IRQ. */ if (irq >= (sizeof(ed_hpp_intr_val) / sizeof(ed_hpp_intr_val[0]))) return ENXIO; /* * If the kernel IRQ was specified with a '?' use the cards idea * of the IRQ. If the kernel IRQ was explicitly specified, it * should match that of the hardware. */ error = bus_get_resource(dev, SYS_RES_IRQ, 0, &conf_irq, &junk); if (error) { bus_set_resource(dev, SYS_RES_IRQ, 0, ed_hpp_intr_val[irq], 1); } else { if (conf_irq != ed_hpp_intr_val[irq]) return (ENXIO); } /* * Fill in softconfig info. */ sc->vendor = ED_VENDOR_HP; sc->type = ED_TYPE_HP_PCLANPLUS; sc->type_str = "HP-PCLAN+"; sc->mem_shared = 0; /* we DON'T have dual ported RAM */ sc->mem_start = 0; /* we use offsets inside the card RAM */ sc->hpp_mem_start = NULL;/* no memory mapped I/O by default */ /* * The board has 32KB of memory. Is there a way to determine * this programmatically? */ memsize = 32768; /* * Check if memory mapping of the I/O registers possible. */ if (sc->hpp_options & ED_HPP_OPTION_MEM_ENABLE) { u_long mem_addr; /* * determine the memory address from the board. */ ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_HW); mem_addr = (ed_asic_inw(sc, ED_HPP_HW_MEM_MAP) << 8); /* * Check that the kernel specified start of memory and * hardware's idea of it match. */ error = bus_get_resource(dev, SYS_RES_MEMORY, 0, &conf_maddr, &conf_msize); if (error) return (error); if (mem_addr != conf_maddr) return ENXIO; error = ed_alloc_memory(dev, 0, memsize); if (error) return (error); sc->hpp_mem_start = rman_get_virtual(sc->mem_res); } /* * Fill in the rest of the soft config structure. */ /* * The transmit page index. */ sc->tx_page_start = ED_HPP_TX_PAGE_OFFSET; if (device_get_flags(dev) & ED_FLAGS_NO_MULTI_BUFFERING) sc->txb_cnt = 1; else sc->txb_cnt = 2; /* * Memory description */ sc->mem_size = memsize; sc->mem_ring = sc->mem_start + (sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE); sc->mem_end = sc->mem_start + sc->mem_size; /* * Receive area starts after the transmit area and * continues till the end of memory. */ sc->rec_page_start = sc->tx_page_start + (sc->txb_cnt * ED_TXBUF_SIZE); sc->rec_page_stop = (sc->mem_size / ED_PAGE_SIZE); sc->cr_proto = 0; /* value works */ /* * Set the wrap registers for string I/O reads. */ ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_HW); ed_asic_outw(sc, ED_HPP_HW_WRAP, ((sc->rec_page_start / ED_PAGE_SIZE) | (((sc->rec_page_stop / ED_PAGE_SIZE) - 1) << 8))); /* * Reset the register page to normal operation. */ ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_PERF); /* * Verify that we can read/write from adapter memory. * Create test pattern. */ for (n = 0; n < ED_HPP_TEST_SIZE; n++) { test_pattern[n] = (n*n) ^ ~n; } #undef ED_HPP_TEST_SIZE /* * Check that the memory is accessible thru the I/O ports. * Write out the contents of "test_pattern", read back * into "test_buffer" and compare the two for any * mismatch. */ for (n = 0; n < (32768 / ED_PAGE_SIZE); n ++) { ed_hpp_writemem(sc, test_pattern, (n * ED_PAGE_SIZE), sizeof(test_pattern)); ed_hpp_readmem(sc, (n * ED_PAGE_SIZE), test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) return ENXIO; } return (0); } /* * HP PC Lan+ : Set the physical link to use AUI or TP/TL. */ static void ed_hpp_set_physical_link(struct ed_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; int lan_page; ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_LAN); lan_page = ed_asic_inw(sc, ED_HPP_PAGE_0); if (ifp->if_flags & IFF_ALTPHYS) { /* * Use the AUI port. */ lan_page |= ED_HPP_LAN_AUI; ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_LAN); ed_asic_outw(sc, ED_HPP_PAGE_0, lan_page); } else { /* * Use the ThinLan interface */ lan_page &= ~ED_HPP_LAN_AUI; ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_LAN); ed_asic_outw(sc, ED_HPP_PAGE_0, lan_page); } /* * Wait for the lan card to re-initialize itself */ DELAY(150000); /* wait 150 ms */ /* * Restore normal pages. */ ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_PERF); } /* * Allocate a port resource with the given resource id. */ int ed_alloc_port(dev, rid, size) device_t dev; int rid; int size; { struct ed_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid, 0ul, ~0ul, size, RF_ACTIVE); if (res) { sc->port_rid = rid; sc->port_res = res; sc->port_used = size; return (0); } else { return (ENOENT); } } /* * Allocate a memory resource with the given resource id. */ int ed_alloc_memory(dev, rid, size) device_t dev; int rid; int size; { struct ed_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0ul, ~0ul, size, RF_ACTIVE); if (res) { sc->mem_rid = rid; sc->mem_res = res; sc->mem_used = size; return (0); } else { return (ENOENT); } } /* * Allocate an irq resource with the given resource id. */ int ed_alloc_irq(dev, rid, flags) device_t dev; int rid; int flags; { struct ed_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, (RF_ACTIVE | flags)); if (res) { sc->irq_rid = rid; sc->irq_res = res; return (0); } else { return (ENOENT); } } /* * Release all resources */ void ed_release_resources(dev) device_t dev; { struct ed_softc *sc = device_get_softc(dev); if (sc->port_res) { bus_deactivate_resource(dev, SYS_RES_IOPORT, sc->port_rid, sc->port_res); bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid, sc->port_res); sc->port_res = 0; } if (sc->mem_res) { bus_deactivate_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res); bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res); sc->mem_res = 0; } if (sc->irq_res) { bus_deactivate_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq_res); bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq_res); sc->irq_res = 0; } } /* * Install interface into kernel networking data structures */ int ed_attach(dev) device_t dev; { struct ed_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; callout_handle_init(&sc->tick_ch); /* * Set interface to stopped condition (reset) */ ed_stop(sc); /* * Initialize ifnet structure */ ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_start = ed_start; ifp->if_ioctl = ed_ioctl; ifp->if_watchdog = ed_watchdog; ifp->if_init = ed_init; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; ifp->if_linkmib = &sc->mibdata; ifp->if_linkmiblen = sizeof sc->mibdata; /* * XXX - should do a better job. */ if (sc->chip_type == ED_CHIP_TYPE_WD790) sc->mibdata.dot3StatsEtherChipSet = DOT3CHIPSET(dot3VendorWesternDigital, dot3ChipSetWesternDigital83C790); else sc->mibdata.dot3StatsEtherChipSet = DOT3CHIPSET(dot3VendorNational, dot3ChipSetNational8390); sc->mibdata.dot3Compliance = DOT3COMPLIANCE_COLLS; /* * Set default state for ALTPHYS flag (used to disable the * tranceiver for AUI operation), based on compile-time * config option. */ if (device_get_flags(dev) & ED_FLAGS_DISABLE_TRANCEIVER) ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_ALTPHYS); else ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); /* * Attach the interface */ ether_ifattach(ifp, sc->arpcom.ac_enaddr); /* device attach does transition from UNCONFIGURED to IDLE state */ if (sc->type_str && (*sc->type_str != 0)) printf("type %s ", sc->type_str); else printf("type unknown (0x%x) ", sc->type); if (sc->vendor == ED_VENDOR_HP) printf("(%s %s IO)", (sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS) ? "16-bit" : "32-bit", sc->hpp_mem_start ? "memory mapped" : "regular"); else printf("%s ", sc->isa16bit ? "(16 bit)" : "(8 bit)"); printf("%s\n", (((sc->vendor == ED_VENDOR_3COM) || (sc->vendor == ED_VENDOR_HP)) && (ifp->if_flags & IFF_ALTPHYS)) ? " tranceiver disabled" : ""); return (0); } /* * Reset interface. */ static void ed_reset(ifp) struct ifnet *ifp; { struct ed_softc *sc = ifp->if_softc; int s; if (sc->gone) return; s = splimp(); /* * Stop interface and re-initialize. */ ed_stop(sc); ed_init(sc); (void) splx(s); } /* * Take interface offline. */ void ed_stop(sc) struct ed_softc *sc; { int n = 5000; #ifndef ED_NO_MIIBUS untimeout(ed_tick, sc, sc->tick_ch); callout_handle_init(&sc->tick_ch); #endif if (sc->gone) return; /* * Stop everything on the interface, and select page 0 registers. */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP); /* * Wait for interface to enter stopped state, but limit # of checks to * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but * just in case it's an old one. */ if (sc->chip_type != ED_CHIP_TYPE_AX88190) while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n); } /* * Device timeout/watchdog routine. Entered if the device neglects to * generate an interrupt after a transmit has been started on it. */ static void ed_watchdog(ifp) struct ifnet *ifp; { struct ed_softc *sc = ifp->if_softc; if (sc->gone) return; log(LOG_ERR, "%s: device timeout\n", ifp->if_xname); ifp->if_oerrors++; ed_reset(ifp); } #ifndef ED_NO_MIIBUS static void ed_tick(arg) void *arg; { struct ed_softc *sc = arg; struct mii_data *mii; int s; if (sc->gone) { callout_handle_init(&sc->tick_ch); return; } s = splimp(); if (sc->miibus != NULL) { mii = device_get_softc(sc->miibus); mii_tick(mii); } sc->tick_ch = timeout(ed_tick, sc, hz); splx(s); } #endif /* * Initialize device. */ static void ed_init(xsc) void *xsc; { struct ed_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int i, s; if (sc->gone) return; /* * Initialize the NIC in the exact order outlined in the NS manual. * This init procedure is "mandatory"...don't change what or when * things happen. */ s = splimp(); /* reset transmitter flags */ sc->xmit_busy = 0; ifp->if_timer = 0; sc->txb_inuse = 0; sc->txb_new = 0; sc->txb_next_tx = 0; /* This variable is used below - don't move this assignment */ sc->next_packet = sc->rec_page_start + 1; /* * Set interface for page 0, Remote DMA complete, Stopped */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP); if (sc->isa16bit) { /* * Set FIFO threshold to 8, No auto-init Remote DMA, byte * order=80x86, word-wide DMA xfers, */ ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS); } else { /* * Same as above, but byte-wide DMA xfers */ ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); } /* * Clear Remote Byte Count Registers */ ed_nic_outb(sc, ED_P0_RBCR0, 0); ed_nic_outb(sc, ED_P0_RBCR1, 0); /* * For the moment, don't store incoming packets in memory. */ ed_nic_outb(sc, ED_P0_RCR, ED_RCR_MON); /* * Place NIC in internal loopback mode */ ed_nic_outb(sc, ED_P0_TCR, ED_TCR_LB0); /* * Initialize transmit/receive (ring-buffer) Page Start */ ed_nic_outb(sc, ED_P0_TPSR, sc->tx_page_start); ed_nic_outb(sc, ED_P0_PSTART, sc->rec_page_start); /* Set lower bits of byte addressable framing to 0 */ if (sc->chip_type == ED_CHIP_TYPE_WD790) ed_nic_outb(sc, 0x09, 0); /* * Initialize Receiver (ring-buffer) Page Stop and Boundry */ ed_nic_outb(sc, ED_P0_PSTOP, sc->rec_page_stop); ed_nic_outb(sc, ED_P0_BNRY, sc->rec_page_start); /* * Clear all interrupts. A '1' in each bit position clears the * corresponding flag. */ ed_nic_outb(sc, ED_P0_ISR, 0xff); /* * Enable the following interrupts: receive/transmit complete, * receive/transmit error, and Receiver OverWrite. * * Counter overflow and Remote DMA complete are *not* enabled. */ ed_nic_outb(sc, ED_P0_IMR, ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE); /* * Program Command Register for page 1 */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); /* * Copy out our station address */ for (i = 0; i < ETHER_ADDR_LEN; ++i) ed_nic_outb(sc, ED_P1_PAR(i), sc->arpcom.ac_enaddr[i]); /* * Set Current Page pointer to next_packet (initialized above) */ ed_nic_outb(sc, ED_P1_CURR, sc->next_packet); /* * Program Receiver Configuration Register and multicast filter. CR is * set to page 0 on return. */ ed_setrcr(sc); /* * Take interface out of loopback */ ed_nic_outb(sc, ED_P0_TCR, 0); /* * If this is a 3Com board, the tranceiver must be software enabled * (there is no settable hardware default). */ if (sc->vendor == ED_VENDOR_3COM) { if (ifp->if_flags & IFF_ALTPHYS) { ed_asic_outb(sc, ED_3COM_CR, 0); } else { ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL); } } #ifndef ED_NO_MIIBUS if (sc->miibus != NULL) { struct mii_data *mii; mii = device_get_softc(sc->miibus); mii_mediachg(mii); } #endif /* * Set 'running' flag, and clear output active flag. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* * ...and attempt to start output */ ed_start(ifp); #ifndef ED_NO_MIIBUS untimeout(ed_tick, sc, sc->tick_ch); sc->tick_ch = timeout(ed_tick, sc, hz); #endif (void) splx(s); } /* * This routine actually starts the transmission on the interface */ static __inline void ed_xmit(sc) struct ed_softc *sc; { struct ifnet *ifp = (struct ifnet *)sc; unsigned short len; if (sc->gone) return; len = sc->txb_len[sc->txb_next_tx]; /* * Set NIC for page 0 register access */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); /* * Set TX buffer start page */ ed_nic_outb(sc, ED_P0_TPSR, sc->tx_page_start + sc->txb_next_tx * ED_TXBUF_SIZE); /* * Set TX length */ ed_nic_outb(sc, ED_P0_TBCR0, len); ed_nic_outb(sc, ED_P0_TBCR1, len >> 8); /* * Set page 0, Remote DMA complete, Transmit Packet, and *Start* */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_TXP | ED_CR_STA); sc->xmit_busy = 1; /* * Point to next transmit buffer slot and wrap if necessary. */ sc->txb_next_tx++; if (sc->txb_next_tx == sc->txb_cnt) sc->txb_next_tx = 0; /* * Set a timer just in case we never hear from the board again */ ifp->if_timer = 2; } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splimp _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ static void ed_start(ifp) struct ifnet *ifp; { struct ed_softc *sc = ifp->if_softc; struct mbuf *m0, *m; caddr_t buffer; int len; if (sc->gone) { printf("ed_start(%p) GONE\n",ifp); return; } outloop: /* * First, see if there are buffered packets and an idle transmitter - * should never happen at this point. */ if (sc->txb_inuse && (sc->xmit_busy == 0)) { printf("ed: packets buffered, but transmitter idle\n"); ed_xmit(sc); } /* * See if there is room to put another packet in the buffer. */ if (sc->txb_inuse == sc->txb_cnt) { /* * No room. Indicate this to the outside world and exit. */ ifp->if_flags |= IFF_OACTIVE; return; } IF_DEQUEUE(&ifp->if_snd, m); if (m == 0) { /* * We are using the !OACTIVE flag to indicate to the outside * world that we can accept an additional packet rather than * that the transmitter is _actually_ active. Indeed, the * transmitter may be active, but if we haven't filled all the * buffers with data then we still want to accept more. */ ifp->if_flags &= ~IFF_OACTIVE; return; } /* * Copy the mbuf chain into the transmit buffer */ m0 = m; /* txb_new points to next open buffer slot */ buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE); if (sc->mem_shared) { /* * Special case setup for 16 bit boards... */ if (sc->isa16bit) { switch (sc->vendor) { /* * For 16bit 3Com boards (which have 16k of * memory), we have the xmit buffers in a * different page of memory ('page 0') - so * change pages. */ case ED_VENDOR_3COM: ed_asic_outb(sc, ED_3COM_GACFR, ED_3COM_GACFR_RSEL); break; /* * Enable 16bit access to shared memory on * WD/SMC boards. */ case ED_VENDOR_WD_SMC: ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto | ED_WD_LAAR_M16EN); if (sc->chip_type == ED_CHIP_TYPE_WD790) { ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB); } break; } } for (len = 0; m != 0; m = m->m_next) { bcopy(mtod(m, caddr_t), buffer, m->m_len); buffer += m->m_len; len += m->m_len; } /* * Restore previous shared memory access */ if (sc->isa16bit) { switch (sc->vendor) { case ED_VENDOR_3COM: ed_asic_outb(sc, ED_3COM_GACFR, ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0); break; case ED_VENDOR_WD_SMC: if (sc->chip_type == ED_CHIP_TYPE_WD790) { ed_asic_outb(sc, ED_WD_MSR, 0x00); } ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto & ~ED_WD_LAAR_M16EN); break; } } } else { len = ed_pio_write_mbufs(sc, m, (uintptr_t)buffer); if (len == 0) { m_freem(m0); goto outloop; } } sc->txb_len[sc->txb_new] = max(len, (ETHER_MIN_LEN-ETHER_CRC_LEN)); sc->txb_inuse++; /* * Point to next buffer slot and wrap if necessary. */ sc->txb_new++; if (sc->txb_new == sc->txb_cnt) sc->txb_new = 0; if (sc->xmit_busy == 0) ed_xmit(sc); /* * Tap off here if there is a bpf listener. */ BPF_MTAP(ifp, m0); m_freem(m0); /* * Loop back to the top to possibly buffer more packets */ goto outloop; } /* * Ethernet interface receiver interrupt. */ static __inline void ed_rint(sc) struct ed_softc *sc; { struct ifnet *ifp = &sc->arpcom.ac_if; u_char boundry; u_short len; struct ed_ring packet_hdr; char *packet_ptr; if (sc->gone) return; /* * Set NIC to page 1 registers to get 'current' pointer */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); /* * 'sc->next_packet' is the logical beginning of the ring-buffer - * i.e. it points to where new data has been buffered. The 'CURR' * (current) register points to the logical end of the ring-buffer - * i.e. it points to where additional new data will be added. We loop * here until the logical beginning equals the logical end (or in * other words, until the ring-buffer is empty). */ while (sc->next_packet != ed_nic_inb(sc, ED_P1_CURR)) { /* get pointer to this buffer's header structure */ packet_ptr = sc->mem_ring + (sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE; /* * The byte count includes a 4 byte header that was added by * the NIC. */ if (sc->mem_shared) packet_hdr = *(struct ed_ring *) packet_ptr; else ed_pio_readmem(sc, (uintptr_t)packet_ptr, (char *) &packet_hdr, sizeof(packet_hdr)); len = packet_hdr.count; if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring)) || len < (ETHER_MIN_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring))) { /* * Length is a wild value. There's a good chance that * this was caused by the NIC being old and buggy. * The bug is that the length low byte is duplicated in * the high byte. Try to recalculate the length based on * the pointer to the next packet. */ /* * NOTE: sc->next_packet is pointing at the current packet. */ len &= ED_PAGE_SIZE - 1; /* preserve offset into page */ if (packet_hdr.next_packet >= sc->next_packet) { len += (packet_hdr.next_packet - sc->next_packet) * ED_PAGE_SIZE; } else { len += ((packet_hdr.next_packet - sc->rec_page_start) + (sc->rec_page_stop - sc->next_packet)) * ED_PAGE_SIZE; } /* * because buffers are aligned on 256-byte boundary, * the length computed above is off by 256 in almost * all cases. Fix it... */ if (len & 0xff) len -= 256 ; if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring))) sc->mibdata.dot3StatsFrameTooLongs++; } /* * Be fairly liberal about what we allow as a "reasonable" length * so that a [crufty] packet will make it to BPF (and can thus * be analyzed). Note that all that is really important is that * we have a length that will fit into one mbuf cluster or less; * the upper layer protocols can then figure out the length from * their own length field(s). * But make sure that we have at least a full ethernet header * or we would be unable to call ether_input() later. */ if ((len >= sizeof(struct ed_ring) + ETHER_HDR_LEN) && (len <= MCLBYTES) && (packet_hdr.next_packet >= sc->rec_page_start) && (packet_hdr.next_packet < sc->rec_page_stop)) { /* * Go get packet. */ ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring), len - sizeof(struct ed_ring)); ifp->if_ipackets++; } else { /* * Really BAD. The ring pointers are corrupted. */ log(LOG_ERR, "%s: NIC memory corrupt - invalid packet length %d\n", ifp->if_xname, len); ifp->if_ierrors++; ed_reset(ifp); return; } /* * Update next packet pointer */ sc->next_packet = packet_hdr.next_packet; /* * Update NIC boundry pointer - being careful to keep it one * buffer behind. (as recommended by NS databook) */ boundry = sc->next_packet - 1; if (boundry < sc->rec_page_start) boundry = sc->rec_page_stop - 1; /* * Set NIC to page 0 registers to update boundry register */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); ed_nic_outb(sc, ED_P0_BNRY, boundry); /* * Set NIC to page 1 registers before looping to top (prepare * to get 'CURR' current pointer) */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); } } /* * Ethernet interface interrupt processor */ void edintr(arg) void *arg; { struct ed_softc *sc = (struct ed_softc*) arg; struct ifnet *ifp = (struct ifnet *)sc; u_char isr; int count; if (sc->gone) return; /* * Set NIC to page 0 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); /* * loop until there are no more new interrupts. When the card * goes away, the hardware will read back 0xff. Looking at * the interrupts, it would appear that 0xff is impossible, * or at least extremely unlikely. */ while ((isr = ed_nic_inb(sc, ED_P0_ISR)) != 0 && isr != 0xff) { /* * reset all the bits that we are 'acknowledging' by writing a * '1' to each bit position that was set (writing a '1' * *clears* the bit) */ ed_nic_outb(sc, ED_P0_ISR, isr); /* * XXX workaround for AX88190 * We limit this to 5000 iterations. At 1us per inb/outb, * this translates to about 15ms, which should be plenty * of time, and also gives protection in the card eject * case. */ if (sc->chip_type == ED_CHIP_TYPE_AX88190) { count = 5000; /* 15ms */ while (count-- && (ed_nic_inb(sc, ED_P0_ISR) & isr)) { ed_nic_outb(sc, ED_P0_ISR,0); ed_nic_outb(sc, ED_P0_ISR,isr); } if (count == 0) break; } /* * Handle transmitter interrupts. Handle these first because * the receiver will reset the board under some conditions. */ if (isr & (ED_ISR_PTX | ED_ISR_TXE)) { u_char collisions = ed_nic_inb(sc, ED_P0_NCR) & 0x0f; /* * Check for transmit error. If a TX completed with an * error, we end up throwing the packet away. Really * the only error that is possible is excessive * collisions, and in this case it is best to allow * the automatic mechanisms of TCP to backoff the * flow. Of course, with UDP we're screwed, but this * is expected when a network is heavily loaded. */ (void) ed_nic_inb(sc, ED_P0_TSR); if (isr & ED_ISR_TXE) { u_char tsr; /* * Excessive collisions (16) */ tsr = ed_nic_inb(sc, ED_P0_TSR); if ((tsr & ED_TSR_ABT) && (collisions == 0)) { /* * When collisions total 16, the * P0_NCR will indicate 0, and the * TSR_ABT is set. */ collisions = 16; sc->mibdata.dot3StatsExcessiveCollisions++; sc->mibdata.dot3StatsCollFrequencies[15]++; } if (tsr & ED_TSR_OWC) sc->mibdata.dot3StatsLateCollisions++; if (tsr & ED_TSR_CDH) sc->mibdata.dot3StatsSQETestErrors++; if (tsr & ED_TSR_CRS) sc->mibdata.dot3StatsCarrierSenseErrors++; if (tsr & ED_TSR_FU) sc->mibdata.dot3StatsInternalMacTransmitErrors++; /* * update output errors counter */ ifp->if_oerrors++; } else { /* * Update total number of successfully * transmitted packets. */ ifp->if_opackets++; } /* * reset tx busy and output active flags */ sc->xmit_busy = 0; ifp->if_flags &= ~IFF_OACTIVE; /* * clear watchdog timer */ ifp->if_timer = 0; /* * Add in total number of collisions on last * transmission. */ ifp->if_collisions += collisions; switch(collisions) { case 0: case 16: break; case 1: sc->mibdata.dot3StatsSingleCollisionFrames++; sc->mibdata.dot3StatsCollFrequencies[0]++; break; default: sc->mibdata.dot3StatsMultipleCollisionFrames++; sc->mibdata. dot3StatsCollFrequencies[collisions-1] ++; break; } /* * Decrement buffer in-use count if not zero (can only * be zero if a transmitter interrupt occured while * not actually transmitting). If data is ready to * transmit, start it transmitting, otherwise defer * until after handling receiver */ if (sc->txb_inuse && --sc->txb_inuse) ed_xmit(sc); } /* * Handle receiver interrupts */ if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) { /* * Overwrite warning. In order to make sure that a * lockup of the local DMA hasn't occurred, we reset * and re-init the NIC. The NSC manual suggests only a * partial reset/re-init is necessary - but some chips * seem to want more. The DMA lockup has been seen * only with early rev chips - Methinks this bug was * fixed in later revs. -DG */ if (isr & ED_ISR_OVW) { ifp->if_ierrors++; #ifdef DIAGNOSTIC log(LOG_WARNING, "%s: warning - receiver ring buffer overrun\n", ifp->if_xname); #endif /* * Stop/reset/re-init NIC */ ed_reset(ifp); } else { /* * Receiver Error. One or more of: CRC error, * frame alignment error FIFO overrun, or * missed packet. */ if (isr & ED_ISR_RXE) { u_char rsr; rsr = ed_nic_inb(sc, ED_P0_RSR); if (rsr & ED_RSR_CRC) sc->mibdata.dot3StatsFCSErrors++; if (rsr & ED_RSR_FAE) sc->mibdata.dot3StatsAlignmentErrors++; if (rsr & ED_RSR_FO) sc->mibdata.dot3StatsInternalMacReceiveErrors++; ifp->if_ierrors++; #ifdef ED_DEBUG if_printf(ifp, "receive error %x\n", ed_nic_inb(sc, ED_P0_RSR)); #endif } /* * Go get the packet(s) XXX - Doing this on an * error is dubious because there shouldn't be * any data to get (we've configured the * interface to not accept packets with * errors). */ /* * Enable 16bit access to shared memory first * on WD/SMC boards. */ if (sc->isa16bit && (sc->vendor == ED_VENDOR_WD_SMC)) { ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto | ED_WD_LAAR_M16EN); if (sc->chip_type == ED_CHIP_TYPE_WD790) { ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB); } } ed_rint(sc); /* disable 16bit access */ if (sc->isa16bit && (sc->vendor == ED_VENDOR_WD_SMC)) { if (sc->chip_type == ED_CHIP_TYPE_WD790) { ed_asic_outb(sc, ED_WD_MSR, 0x00); } ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto & ~ED_WD_LAAR_M16EN); } } } /* * If it looks like the transmitter can take more data, * attempt to start output on the interface. This is done * after handling the receiver to give the receiver priority. */ if ((ifp->if_flags & IFF_OACTIVE) == 0) ed_start(ifp); /* * return NIC CR to standard state: page 0, remote DMA * complete, start (toggling the TXP bit off, even if was just * set in the transmit routine, is *okay* - it is 'edge' * triggered from low to high) */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); /* * If the Network Talley Counters overflow, read them to reset * them. It appears that old 8390's won't clear the ISR flag * otherwise - resulting in an infinite loop. */ if (isr & ED_ISR_CNT) { (void) ed_nic_inb(sc, ED_P0_CNTR0); (void) ed_nic_inb(sc, ED_P0_CNTR1); (void) ed_nic_inb(sc, ED_P0_CNTR2); } } } /* * Process an ioctl request. This code needs some work - it looks * pretty ugly. */ static int ed_ioctl(ifp, command, data) register struct ifnet *ifp; u_long command; caddr_t data; { struct ed_softc *sc = ifp->if_softc; #ifndef ED_NO_MIIBUS struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; #endif int s, error = 0; if (sc == NULL || sc->gone) { ifp->if_flags &= ~IFF_RUNNING; return ENXIO; } s = splimp(); switch (command) { case SIOCSIFFLAGS: /* * If the interface is marked up and stopped, then start it. * If it is marked down and running, then stop it. */ if (ifp->if_flags & IFF_UP) { if ((ifp->if_flags & IFF_RUNNING) == 0) ed_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { ed_stop(sc); ifp->if_flags &= ~IFF_RUNNING; } } /* * Promiscuous flag may have changed, so reprogram the RCR. */ ed_setrcr(sc); /* * An unfortunate hack to provide the (required) software * control of the tranceiver for 3Com boards. The ALTPHYS flag * disables the tranceiver if set. */ if (sc->vendor == ED_VENDOR_3COM) { if (ifp->if_flags & IFF_ALTPHYS) { ed_asic_outb(sc, ED_3COM_CR, 0); } else { ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL); } } else if (sc->vendor == ED_VENDOR_HP) ed_hpp_set_physical_link(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: /* * Multicast list has changed; set the hardware filter * accordingly. */ ed_setrcr(sc); error = 0; break; #ifndef ED_NO_MIIBUS case SIOCGIFMEDIA: case SIOCSIFMEDIA: if (sc->miibus == NULL) { error = EINVAL; break; } mii = device_get_softc(sc->miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; #endif default: error = ether_ioctl(ifp, command, data); } (void) splx(s); return (error); } /* * Given a source and destination address, copy 'amount' of a packet from * the ring buffer into a linear destination buffer. Takes into account * ring-wrap. */ static __inline char * ed_ring_copy(sc, src, dst, amount) struct ed_softc *sc; char *src; char *dst; u_short amount; { u_short tmp_amount; /* does copy wrap to lower addr in ring buffer? */ if (src + amount > sc->mem_end) { tmp_amount = sc->mem_end - src; /* copy amount up to end of NIC memory */ if (sc->mem_shared) bcopy(src, dst, tmp_amount); else ed_pio_readmem(sc, (uintptr_t)src, dst, tmp_amount); amount -= tmp_amount; src = sc->mem_ring; dst += tmp_amount; } if (sc->mem_shared) bcopy(src, dst, amount); else ed_pio_readmem(sc, (uintptr_t)src, dst, amount); return (src + amount); } /* * Retreive packet from shared memory and send to the next level up via * ether_input(). */ static void ed_get_packet(sc, buf, len) struct ed_softc *sc; char *buf; u_short len; { struct ifnet *ifp = &sc->arpcom.ac_if; struct ether_header *eh; struct mbuf *m; /* Allocate a header mbuf */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; /* * We always put the received packet in a single buffer - * either with just an mbuf header or in a cluster attached * to the header. The +2 is to compensate for the alignment * fixup below. */ if ((len + 2) > MHLEN) { /* Attach an mbuf cluster */ MCLGET(m, M_DONTWAIT); /* Insist on getting a cluster */ if ((m->m_flags & M_EXT) == 0) { m_freem(m); return; } } /* * The +2 is to longword align the start of the real packet. * This is important for NFS. */ m->m_data += 2; eh = mtod(m, struct ether_header *); /* * Don't read in the entire packet if we know we're going to drop it * and no bpf is active. */ if (!ifp->if_bpf && BDG_ACTIVE( (ifp) ) ) { struct ifnet *bif; ed_ring_copy(sc, buf, (char *)eh, ETHER_HDR_LEN); bif = bridge_in_ptr(ifp, eh) ; if (bif == BDG_DROP) { m_freem(m); return; } if (len > ETHER_HDR_LEN) ed_ring_copy(sc, buf + ETHER_HDR_LEN, (char *)(eh + 1), len - ETHER_HDR_LEN); } else /* * Get packet, including link layer address, from interface. */ ed_ring_copy(sc, buf, (char *)eh, len); m->m_pkthdr.len = m->m_len = len; (*ifp->if_input)(ifp, m); } /* * Supporting routines */ /* * Given a NIC memory source address and a host memory destination * address, copy 'amount' from NIC to host using Programmed I/O. * The 'amount' is rounded up to a word - okay as long as mbufs * are word sized. * This routine is currently Novell-specific. */ void ed_pio_readmem(sc, src, dst, amount) struct ed_softc *sc; long src; unsigned char *dst; unsigned short amount; { /* HP PC Lan+ cards need special handling */ if (sc->vendor == ED_VENDOR_HP && sc->type == ED_TYPE_HP_PCLANPLUS) { ed_hpp_readmem(sc, src, dst, amount); return; } /* Regular Novell cards */ /* select page 0 registers */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* round up to a word */ if (amount & 1) ++amount; /* set up DMA byte count */ ed_nic_outb(sc, ED_P0_RBCR0, amount); ed_nic_outb(sc, ED_P0_RBCR1, amount >> 8); /* set up source address in NIC mem */ ed_nic_outb(sc, ED_P0_RSAR0, src); ed_nic_outb(sc, ED_P0_RSAR1, src >> 8); ed_nic_outb(sc, ED_P0_CR, ED_CR_RD0 | ED_CR_STA); if (sc->isa16bit) { ed_asic_insw(sc, ED_NOVELL_DATA, dst, amount / 2); } else { ed_asic_insb(sc, ED_NOVELL_DATA, dst, amount); } } /* * Stripped down routine for writing a linear buffer to NIC memory. * Only used in the probe routine to test the memory. 'len' must * be even. */ void ed_pio_writemem(sc, src, dst, len) struct ed_softc *sc; char *src; unsigned short dst; unsigned short len; { int maxwait = 200; /* about 240us */ /* select page 0 registers */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* reset remote DMA complete flag */ ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC); /* set up DMA byte count */ ed_nic_outb(sc, ED_P0_RBCR0, len); ed_nic_outb(sc, ED_P0_RBCR1, len >> 8); /* set up destination address in NIC mem */ ed_nic_outb(sc, ED_P0_RSAR0, dst); ed_nic_outb(sc, ED_P0_RSAR1, dst >> 8); /* set remote DMA write */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_STA); if (sc->isa16bit) { ed_asic_outsw(sc, ED_NOVELL_DATA, src, len / 2); } else { ed_asic_outsb(sc, ED_NOVELL_DATA, src, len); } /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait); } /* * Write an mbuf chain to the destination NIC memory address using * programmed I/O. */ static u_short ed_pio_write_mbufs(sc, m, dst) struct ed_softc *sc; struct mbuf *m; long dst; { struct ifnet *ifp = (struct ifnet *)sc; unsigned short total_len, dma_len; struct mbuf *mp; int maxwait = 200; /* about 240us */ /* HP PC Lan+ cards need special handling */ if (sc->vendor == ED_VENDOR_HP && sc->type == ED_TYPE_HP_PCLANPLUS) { return ed_hpp_write_mbufs(sc, m, dst); } /* Regular Novell cards */ /* First, count up the total number of bytes to copy */ for (total_len = 0, mp = m; mp; mp = mp->m_next) total_len += mp->m_len; dma_len = total_len; if (sc->isa16bit && (dma_len & 1)) dma_len++; /* select page 0 registers */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* reset remote DMA complete flag */ ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC); /* set up DMA byte count */ ed_nic_outb(sc, ED_P0_RBCR0, dma_len); ed_nic_outb(sc, ED_P0_RBCR1, dma_len >> 8); /* set up destination address in NIC mem */ ed_nic_outb(sc, ED_P0_RSAR0, dst); ed_nic_outb(sc, ED_P0_RSAR1, dst >> 8); /* set remote DMA write */ ed_nic_outb(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_STA); /* * Transfer the mbuf chain to the NIC memory. * 16-bit cards require that data be transferred as words, and only words. * So that case requires some extra code to patch over odd-length mbufs. */ if (!sc->isa16bit) { /* NE1000s are easy */ while (m) { if (m->m_len) { ed_asic_outsb(sc, ED_NOVELL_DATA, m->m_data, m->m_len); } m = m->m_next; } } else { /* NE2000s are a pain */ unsigned char *data; int len, wantbyte; unsigned char savebyte[2]; wantbyte = 0; while (m) { len = m->m_len; if (len) { data = mtod(m, caddr_t); /* finish the last word */ if (wantbyte) { savebyte[1] = *data; ed_asic_outw(sc, ED_NOVELL_DATA, *(u_short *)savebyte); data++; len--; wantbyte = 0; } /* output contiguous words */ if (len > 1) { ed_asic_outsw(sc, ED_NOVELL_DATA, data, len >> 1); data += len & ~1; len &= 1; } /* save last byte, if necessary */ if (len == 1) { savebyte[0] = *data; wantbyte = 1; } } m = m->m_next; } /* spit last byte */ if (wantbyte) { ed_asic_outw(sc, ED_NOVELL_DATA, *(u_short *)savebyte); } } /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait); if (!maxwait) { log(LOG_WARNING, "%s: remote transmit DMA failed to complete\n", ifp->if_xname); ed_reset(ifp); return(0); } return (total_len); } /* * Support routines to handle the HP PC Lan+ card. */ /* * HP PC Lan+: Read from NIC memory, using either PIO or memory mapped * IO. */ static void ed_hpp_readmem(sc, src, dst, amount) struct ed_softc *sc; unsigned short src; unsigned char *dst; unsigned short amount; { int use_32bit_access = !(sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS); /* Program the source address in RAM */ ed_asic_outw(sc, ED_HPP_PAGE_2, src); /* * The HP PC Lan+ card supports word reads as well as * a memory mapped i/o port that is aliased to every * even address on the board. */ if (sc->hpp_mem_start) { /* Enable memory mapped access. */ ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options & ~(ED_HPP_OPTION_MEM_DISABLE | ED_HPP_OPTION_BOOT_ROM_ENB)); if (use_32bit_access && (amount > 3)) { u_int32_t *dl = (u_int32_t *) dst; volatile u_int32_t *const sl = (u_int32_t *) sc->hpp_mem_start; u_int32_t *const fence = dl + (amount >> 2); /* Copy out NIC data. We could probably write this as a `movsl'. The currently generated code is lousy. */ while (dl < fence) *dl++ = *sl; dst += (amount & ~3); amount &= 3; } /* Finish off any words left, as a series of short reads */ if (amount > 1) { u_short *d = (u_short *) dst; volatile u_short *const s = (u_short *) sc->hpp_mem_start; u_short *const fence = d + (amount >> 1); /* Copy out NIC data. */ while (d < fence) *d++ = *s; dst += (amount & ~1); amount &= 1; } /* * read in a byte; however we need to always read 16 bits * at a time or the hardware gets into a funny state */ if (amount == 1) { /* need to read in a short and copy LSB */ volatile u_short *const s = (volatile u_short *) sc->hpp_mem_start; *dst = (*s) & 0xFF; } /* Restore Boot ROM access. */ ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options); } else { /* Read in data using the I/O port */ if (use_32bit_access && (amount > 3)) { ed_asic_insl(sc, ED_HPP_PAGE_4, dst, amount >> 2); dst += (amount & ~3); amount &= 3; } if (amount > 1) { ed_asic_insw(sc, ED_HPP_PAGE_4, dst, amount >> 1); dst += (amount & ~1); amount &= 1; } if (amount == 1) { /* read in a short and keep the LSB */ *dst = ed_asic_inw(sc, ED_HPP_PAGE_4) & 0xFF; } } } /* * HP PC Lan+: Write to NIC memory, using either PIO or memory mapped * IO. * Only used in the probe routine to test the memory. 'len' must * be even. */ static void ed_hpp_writemem(sc, src, dst, len) struct ed_softc *sc; unsigned char *src; unsigned short dst; unsigned short len; { /* reset remote DMA complete flag */ ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC); /* program the write address in RAM */ ed_asic_outw(sc, ED_HPP_PAGE_0, dst); if (sc->hpp_mem_start) { u_short *s = (u_short *) src; volatile u_short *d = (u_short *) sc->hpp_mem_start; u_short *const fence = s + (len >> 1); /* * Enable memory mapped access. */ ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options & ~(ED_HPP_OPTION_MEM_DISABLE | ED_HPP_OPTION_BOOT_ROM_ENB)); /* * Copy to NIC memory. */ while (s < fence) *d = *s++; /* * Restore Boot ROM access. */ ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options); } else { /* write data using I/O writes */ ed_asic_outsw(sc, ED_HPP_PAGE_4, src, len / 2); } } /* * Write to HP PC Lan+ NIC memory. Access to the NIC can be by using * outsw() or via the memory mapped interface to the same register. * Writes have to be in word units; byte accesses won't work and may cause * the NIC to behave weirdly. Long word accesses are permitted if the ASIC * allows it. */ static u_short ed_hpp_write_mbufs(struct ed_softc *sc, struct mbuf *m, int dst) { int len, wantbyte; unsigned short total_len; unsigned char savebyte[2]; volatile u_short * const d = (volatile u_short *) sc->hpp_mem_start; int use_32bit_accesses = !(sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS); /* select page 0 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); /* reset remote DMA complete flag */ ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC); /* program the write address in RAM */ ed_asic_outw(sc, ED_HPP_PAGE_0, dst); if (sc->hpp_mem_start) /* enable memory mapped I/O */ ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options & ~(ED_HPP_OPTION_MEM_DISABLE | ED_HPP_OPTION_BOOT_ROM_ENB)); wantbyte = 0; total_len = 0; if (sc->hpp_mem_start) { /* Memory mapped I/O port */ while (m) { total_len += (len = m->m_len); if (len) { caddr_t data = mtod(m, caddr_t); /* finish the last word of the previous mbuf */ if (wantbyte) { savebyte[1] = *data; *d = *((u_short *) savebyte); data++; len--; wantbyte = 0; } /* output contiguous words */ if ((len > 3) && (use_32bit_accesses)) { volatile u_int32_t *const dl = (volatile u_int32_t *) d; u_int32_t *sl = (u_int32_t *) data; u_int32_t *fence = sl + (len >> 2); while (sl < fence) *dl = *sl++; data += (len & ~3); len &= 3; } /* finish off remain 16 bit writes */ if (len > 1) { u_short *s = (u_short *) data; u_short *fence = s + (len >> 1); while (s < fence) *d = *s++; data += (len & ~1); len &= 1; } /* save last byte if needed */ if ((wantbyte = (len == 1)) != 0) savebyte[0] = *data; } m = m->m_next; /* to next mbuf */ } if (wantbyte) /* write last byte */ *d = *((u_short *) savebyte); } else { /* use programmed I/O */ while (m) { total_len += (len = m->m_len); if (len) { caddr_t data = mtod(m, caddr_t); /* finish the last word of the previous mbuf */ if (wantbyte) { savebyte[1] = *data; ed_asic_outw(sc, ED_HPP_PAGE_4, *((u_short *)savebyte)); data++; len--; wantbyte = 0; } /* output contiguous words */ if ((len > 3) && use_32bit_accesses) { ed_asic_outsl(sc, ED_HPP_PAGE_4, data, len >> 2); data += (len & ~3); len &= 3; } /* finish off remaining 16 bit accesses */ if (len > 1) { ed_asic_outsw(sc, ED_HPP_PAGE_4, data, len >> 1); data += (len & ~1); len &= 1; } if ((wantbyte = (len == 1)) != 0) savebyte[0] = *data; } /* if len != 0 */ m = m->m_next; } if (wantbyte) /* spit last byte */ ed_asic_outw(sc, ED_HPP_PAGE_4, *(u_short *)savebyte); } if (sc->hpp_mem_start) /* turn off memory mapped i/o */ ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options); return (total_len); } #ifndef ED_NO_MIIBUS /* * MII bus support routines. */ int ed_miibus_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct ed_softc *sc; int failed, s, val; s = splimp(); sc = device_get_softc(dev); if (sc->gone) { splx(s); return (0); } (*sc->mii_writebits)(sc, 0xffffffff, 32); (*sc->mii_writebits)(sc, ED_MII_STARTDELIM, ED_MII_STARTDELIM_BITS); (*sc->mii_writebits)(sc, ED_MII_READOP, ED_MII_OP_BITS); (*sc->mii_writebits)(sc, phy, ED_MII_PHY_BITS); (*sc->mii_writebits)(sc, reg, ED_MII_REG_BITS); failed = (*sc->mii_readbits)(sc, ED_MII_ACK_BITS); val = (*sc->mii_readbits)(sc, ED_MII_DATA_BITS); (*sc->mii_writebits)(sc, ED_MII_IDLE, ED_MII_IDLE_BITS); splx(s); return (failed ? 0 : val); } void ed_miibus_writereg(dev, phy, reg, data) device_t dev; int phy, reg, data; { struct ed_softc *sc; int s; s = splimp(); sc = device_get_softc(dev); if (sc->gone) { splx(s); return; } (*sc->mii_writebits)(sc, 0xffffffff, 32); (*sc->mii_writebits)(sc, ED_MII_STARTDELIM, ED_MII_STARTDELIM_BITS); (*sc->mii_writebits)(sc, ED_MII_WRITEOP, ED_MII_OP_BITS); (*sc->mii_writebits)(sc, phy, ED_MII_PHY_BITS); (*sc->mii_writebits)(sc, reg, ED_MII_REG_BITS); (*sc->mii_writebits)(sc, ED_MII_TURNAROUND, ED_MII_TURNAROUND_BITS); (*sc->mii_writebits)(sc, data, ED_MII_DATA_BITS); (*sc->mii_writebits)(sc, ED_MII_IDLE, ED_MII_IDLE_BITS); splx(s); } int ed_ifmedia_upd(ifp) struct ifnet *ifp; { struct ed_softc *sc; struct mii_data *mii; sc = ifp->if_softc; if (sc->gone || sc->miibus == NULL) return (ENXIO); mii = device_get_softc(sc->miibus); return mii_mediachg(mii); } void ed_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct ed_softc *sc; struct mii_data *mii; sc = ifp->if_softc; if (sc->gone || sc->miibus == NULL) return; mii = device_get_softc(sc->miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } void ed_child_detached(dev, child) device_t dev; device_t child; { struct ed_softc *sc; sc = device_get_softc(dev); if (child == sc->miibus) sc->miibus = NULL; } #endif static void ed_setrcr(sc) struct ed_softc *sc; { struct ifnet *ifp = (struct ifnet *)sc; int i; u_char reg1; /* Bit 6 in AX88190 RCR register must be set. */ if (sc->chip_type == ED_CHIP_TYPE_AX88190) reg1 = ED_RCR_INTT; else reg1 = 0x00; /* set page 1 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); if (ifp->if_flags & IFF_PROMISC) { /* * Reconfigure the multicast filter. */ for (i = 0; i < 8; i++) ed_nic_outb(sc, ED_P1_MAR(i), 0xff); /* * And turn on promiscuous mode. Also enable reception of * runts and packets with CRC & alignment errors. */ /* Set page 0 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP); ed_nic_outb(sc, ED_P0_RCR, ED_RCR_PRO | ED_RCR_AM | ED_RCR_AB | ED_RCR_AR | ED_RCR_SEP | reg1); } else { /* set up multicast addresses and filter modes */ if (ifp->if_flags & IFF_MULTICAST) { u_int32_t mcaf[2]; if (ifp->if_flags & IFF_ALLMULTI) { mcaf[0] = 0xffffffff; mcaf[1] = 0xffffffff; } else ds_getmcaf(sc, mcaf); /* * Set multicast filter on chip. */ for (i = 0; i < 8; i++) ed_nic_outb(sc, ED_P1_MAR(i), ((u_char *) mcaf)[i]); /* Set page 0 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP); ed_nic_outb(sc, ED_P0_RCR, ED_RCR_AM | ED_RCR_AB | reg1); } else { /* * Initialize multicast address hashing registers to * not accept multicasts. */ for (i = 0; i < 8; ++i) ed_nic_outb(sc, ED_P1_MAR(i), 0x00); /* Set page 0 registers */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP); ed_nic_outb(sc, ED_P0_RCR, ED_RCR_AB | reg1); } } /* * Start interface. */ ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA); } /* * Compute the multicast address filter from the * list of multicast addresses we need to listen to. */ static void ds_getmcaf(sc, mcaf) struct ed_softc *sc; u_int32_t *mcaf; { register u_int32_t index; register u_char *af = (u_char *) mcaf; struct ifmultiaddr *ifma; mcaf[0] = 0; mcaf[1] = 0; TAILQ_FOREACH(ifma, &sc->arpcom.ac_if.if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; index = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; af[index >> 3] |= 1 << (index & 7); } }