/*- * Copyright (c) 1989, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 */ #include __FBSDID("$FreeBSD$"); /* * Socket operations for use by nfs */ #include "opt_inet6.h" #include "opt_kdtrace.h" #include "opt_kgssapi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef NFS_LEGACYRPC #ifdef KDTRACE_HOOKS #include dtrace_nfsclient_nfs23_start_probe_func_t dtrace_nfsclient_nfs23_start_probe; dtrace_nfsclient_nfs23_done_probe_func_t dtrace_nfsclient_nfs23_done_probe; /* * Registered probes by RPC type. */ uint32_t nfsclient_nfs2_start_probes[NFS_NPROCS]; uint32_t nfsclient_nfs2_done_probes[NFS_NPROCS]; uint32_t nfsclient_nfs3_start_probes[NFS_NPROCS]; uint32_t nfsclient_nfs3_done_probes[NFS_NPROCS]; #endif static int nfs_realign_test; static int nfs_realign_count; static int nfs_bufpackets = 4; static int nfs_reconnects; static int nfs3_jukebox_delay = 10; static int nfs_skip_wcc_data_onerr = 1; static int fake_wchan; SYSCTL_DECL(_vfs_nfs); SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, "Number of realign tests done"); SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, "Number of mbuf realignments done"); SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, "Buffer reservation size 2 < x < 64"); SYSCTL_INT(_vfs_nfs, OID_AUTO, reconnects, CTLFLAG_RD, &nfs_reconnects, 0, "Number of times the nfs client has had to reconnect"); SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs3_jukebox_delay, CTLFLAG_RW, &nfs3_jukebox_delay, 0, "Number of seconds to delay a retry after receiving EJUKEBOX"); SYSCTL_INT(_vfs_nfs, OID_AUTO, skip_wcc_data_onerr, CTLFLAG_RW, &nfs_skip_wcc_data_onerr, 0, "Disable weak cache consistency checking when server returns an error"); static void nfs_down(struct nfsmount *, struct thread *, const char *, int, int); static void nfs_up(struct nfsmount *, struct thread *, const char *, int, int); static int nfs_msg(struct thread *, const char *, const char *, int); extern int nfsv2_procid[]; struct nfs_cached_auth { int ca_refs; /* refcount, including 1 from the cache */ uid_t ca_uid; /* uid that corresponds to this auth */ AUTH *ca_auth; /* RPC auth handle */ }; /* * RTT estimator */ static enum nfs_rto_timer_t nfs_proct[NFS_NPROCS] = { NFS_DEFAULT_TIMER, /* NULL */ NFS_GETATTR_TIMER, /* GETATTR */ NFS_DEFAULT_TIMER, /* SETATTR */ NFS_LOOKUP_TIMER, /* LOOKUP */ NFS_GETATTR_TIMER, /* ACCESS */ NFS_READ_TIMER, /* READLINK */ NFS_READ_TIMER, /* READ */ NFS_WRITE_TIMER, /* WRITE */ NFS_DEFAULT_TIMER, /* CREATE */ NFS_DEFAULT_TIMER, /* MKDIR */ NFS_DEFAULT_TIMER, /* SYMLINK */ NFS_DEFAULT_TIMER, /* MKNOD */ NFS_DEFAULT_TIMER, /* REMOVE */ NFS_DEFAULT_TIMER, /* RMDIR */ NFS_DEFAULT_TIMER, /* RENAME */ NFS_DEFAULT_TIMER, /* LINK */ NFS_READ_TIMER, /* READDIR */ NFS_READ_TIMER, /* READDIRPLUS */ NFS_DEFAULT_TIMER, /* FSSTAT */ NFS_DEFAULT_TIMER, /* FSINFO */ NFS_DEFAULT_TIMER, /* PATHCONF */ NFS_DEFAULT_TIMER, /* COMMIT */ NFS_DEFAULT_TIMER, /* NOOP */ }; /* * Choose the correct RTT timer for this NFS procedure. */ static inline enum nfs_rto_timer_t nfs_rto_timer(u_int32_t procnum) { return nfs_proct[procnum]; } /* * Initialize the RTT estimator state for a new mount point. */ static void nfs_init_rtt(struct nfsmount *nmp) { int i; for (i = 0; i < NFS_MAX_TIMER; i++) { nmp->nm_timers[i].rt_srtt = hz; nmp->nm_timers[i].rt_deviate = 0; nmp->nm_timers[i].rt_rtxcur = hz; } } /* * Initialize sockets and congestion for a new NFS connection. * We do not free the sockaddr if error. */ int nfs_connect(struct nfsmount *nmp, struct nfsreq *rep) { int rcvreserve, sndreserve; int pktscale; struct sockaddr *saddr; struct ucred *origcred; struct thread *td = curthread; CLIENT *client; struct netconfig *nconf; rpcvers_t vers; int one = 1, retries; /* * We need to establish the socket using the credentials of * the mountpoint. Some parts of this process (such as * sobind() and soconnect()) will use the curent thread's * credential instead of the socket credential. To work * around this, temporarily change the current thread's * credential to that of the mountpoint. * * XXX: It would be better to explicitly pass the correct * credential to sobind() and soconnect(). */ origcred = td->td_ucred; td->td_ucred = nmp->nm_mountp->mnt_cred; saddr = nmp->nm_nam; vers = NFS_VER2; if (nmp->nm_flag & NFSMNT_NFSV3) vers = NFS_VER3; else if (nmp->nm_flag & NFSMNT_NFSV4) vers = NFS_VER4; if (saddr->sa_family == AF_INET) if (nmp->nm_sotype == SOCK_DGRAM) nconf = getnetconfigent("udp"); else nconf = getnetconfigent("tcp"); else if (nmp->nm_sotype == SOCK_DGRAM) nconf = getnetconfigent("udp6"); else nconf = getnetconfigent("tcp6"); /* * Get buffer reservation size from sysctl, but impose reasonable * limits. */ pktscale = nfs_bufpackets; if (pktscale < 2) pktscale = 2; if (pktscale > 64) pktscale = 64; mtx_lock(&nmp->nm_mtx); if (nmp->nm_sotype == SOCK_DGRAM) { sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + NFS_MAXPKTHDR) * pktscale; } else if (nmp->nm_sotype == SOCK_SEQPACKET) { sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + NFS_MAXPKTHDR) * pktscale; } else { if (nmp->nm_sotype != SOCK_STREAM) panic("nfscon sotype"); sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_int32_t)) * pktscale; rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_int32_t)) * pktscale; } mtx_unlock(&nmp->nm_mtx); client = clnt_reconnect_create(nconf, saddr, NFS_PROG, vers, sndreserve, rcvreserve); CLNT_CONTROL(client, CLSET_WAITCHAN, "nfsreq"); if (nmp->nm_flag & NFSMNT_INT) CLNT_CONTROL(client, CLSET_INTERRUPTIBLE, &one); if (nmp->nm_flag & NFSMNT_RESVPORT) CLNT_CONTROL(client, CLSET_PRIVPORT, &one); if (nmp->nm_flag & NFSMNT_SOFT) retries = nmp->nm_retry; else retries = INT_MAX; CLNT_CONTROL(client, CLSET_RETRIES, &retries); mtx_lock(&nmp->nm_mtx); if (nmp->nm_client) { /* * Someone else already connected. */ CLNT_RELEASE(client); } else { nmp->nm_client = client; } /* * Protocols that do not require connections may be optionally left * unconnected for servers that reply from a port other than NFS_PORT. */ if (!(nmp->nm_flag & NFSMNT_NOCONN)) { mtx_unlock(&nmp->nm_mtx); CLNT_CONTROL(client, CLSET_CONNECT, &one); } else { mtx_unlock(&nmp->nm_mtx); } /* Restore current thread's credentials. */ td->td_ucred = origcred; mtx_lock(&nmp->nm_mtx); /* Initialize other non-zero congestion variables */ nfs_init_rtt(nmp); mtx_unlock(&nmp->nm_mtx); return (0); } /* * NFS disconnect. Clean up and unlink. */ void nfs_disconnect(struct nfsmount *nmp) { CLIENT *client; mtx_lock(&nmp->nm_mtx); if (nmp->nm_client) { client = nmp->nm_client; nmp->nm_client = NULL; mtx_unlock(&nmp->nm_mtx); #ifdef KGSSAPI rpc_gss_secpurge(client); #endif CLNT_CLOSE(client); CLNT_RELEASE(client); } else { mtx_unlock(&nmp->nm_mtx); } } void nfs_safedisconnect(struct nfsmount *nmp) { nfs_disconnect(nmp); } static AUTH * nfs_getauth(struct nfsmount *nmp, struct ucred *cred) { #ifdef KGSSAPI rpc_gss_service_t svc; AUTH *auth; #endif switch (nmp->nm_secflavor) { #ifdef KGSSAPI case RPCSEC_GSS_KRB5: case RPCSEC_GSS_KRB5I: case RPCSEC_GSS_KRB5P: if (!nmp->nm_mech_oid) { if (!rpc_gss_mech_to_oid("kerberosv5", &nmp->nm_mech_oid)) return (NULL); } if (nmp->nm_secflavor == RPCSEC_GSS_KRB5) svc = rpc_gss_svc_none; else if (nmp->nm_secflavor == RPCSEC_GSS_KRB5I) svc = rpc_gss_svc_integrity; else svc = rpc_gss_svc_privacy; auth = rpc_gss_secfind(nmp->nm_client, cred, nmp->nm_principal, nmp->nm_mech_oid, svc); if (auth) return (auth); /* fallthrough */ #endif case AUTH_SYS: default: return (authunix_create(cred)); } } /* * Callback from the RPC code to generate up/down notifications. */ struct nfs_feedback_arg { struct nfsmount *nf_mount; int nf_lastmsg; /* last tprintf */ int nf_tprintfmsg; struct thread *nf_td; }; static void nfs_feedback(int type, int proc, void *arg) { struct nfs_feedback_arg *nf = (struct nfs_feedback_arg *) arg; struct nfsmount *nmp = nf->nf_mount; struct timeval now; getmicrouptime(&now); switch (type) { case FEEDBACK_REXMIT2: case FEEDBACK_RECONNECT: if (nf->nf_lastmsg + nmp->nm_tprintf_delay < now.tv_sec) { nfs_down(nmp, nf->nf_td, "not responding", 0, NFSSTA_TIMEO); nf->nf_tprintfmsg = TRUE; nf->nf_lastmsg = now.tv_sec; } break; case FEEDBACK_OK: nfs_up(nf->nf_mount, nf->nf_td, "is alive again", NFSSTA_TIMEO, nf->nf_tprintfmsg); break; } } /* * nfs_request - goes something like this * - fill in request struct * - links it into list * - calls nfs_send() for first transmit * - calls nfs_receive() to get reply * - break down rpc header and return with nfs reply pointed to * by mrep or error * nb: always frees up mreq mbuf list */ int nfs_request(struct vnode *vp, struct mbuf *mreq, int procnum, struct thread *td, struct ucred *cred, struct mbuf **mrp, struct mbuf **mdp, caddr_t *dposp) { struct mbuf *mrep; u_int32_t *tl; struct nfsmount *nmp; struct mbuf *md; time_t waituntil; caddr_t dpos; int error = 0; struct timeval now; AUTH *auth = NULL; enum nfs_rto_timer_t timer; struct nfs_feedback_arg nf; struct rpc_callextra ext; enum clnt_stat stat; struct timeval timo; /* Reject requests while attempting a forced unmount. */ if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) { m_freem(mreq); return (ESTALE); } nmp = VFSTONFS(vp->v_mount); if ((nmp->nm_flag & NFSMNT_NFSV4) != 0) return nfs4_request(vp, mreq, procnum, td, cred, mrp, mdp, dposp); bzero(&nf, sizeof(struct nfs_feedback_arg)); nf.nf_mount = nmp; nf.nf_td = td; getmicrouptime(&now); nf.nf_lastmsg = now.tv_sec - ((nmp->nm_tprintf_delay) - (nmp->nm_tprintf_initial_delay)); /* * XXX if not already connected call nfs_connect now. Longer * term, change nfs_mount to call nfs_connect unconditionally * and let clnt_reconnect_create handle reconnects. */ if (!nmp->nm_client) nfs_connect(nmp, NULL); auth = nfs_getauth(nmp, cred); if (!auth) { m_freem(mreq); return (EACCES); } bzero(&ext, sizeof(ext)); ext.rc_auth = auth; ext.rc_feedback = nfs_feedback; ext.rc_feedback_arg = &nf; /* * Use a conservative timeout for RPCs other than getattr, * lookup, read or write. The justification for doing "other" * this way is that these RPCs happen so infrequently that * timer est. would probably be stale. Also, since many of * these RPCs are non-idempotent, a conservative timeout is * desired. */ timer = nfs_rto_timer(procnum); if (timer != NFS_DEFAULT_TIMER) { ext.rc_timers = &nmp->nm_timers[timer - 1]; } else { ext.rc_timers = NULL; } #ifdef KDTRACE_HOOKS if (dtrace_nfsclient_nfs23_start_probe != NULL) { uint32_t probe_id; int probe_procnum; if (nmp->nm_flag & NFSMNT_NFSV3) { probe_id = nfsclient_nfs3_start_probes[procnum]; probe_procnum = procnum; } else { probe_id = nfsclient_nfs2_start_probes[procnum]; probe_procnum = nfsv2_procid[procnum]; } if (probe_id != 0) (dtrace_nfsclient_nfs23_start_probe)(probe_id, vp, mreq, cred, probe_procnum); } #endif nfsstats.rpcrequests++; tryagain: timo.tv_sec = nmp->nm_timeo / NFS_HZ; timo.tv_usec = (nmp->nm_timeo * 1000000) / NFS_HZ; mrep = NULL; stat = CLNT_CALL_MBUF(nmp->nm_client, &ext, (nmp->nm_flag & NFSMNT_NFSV3) ? procnum : nfsv2_procid[procnum], mreq, &mrep, timo); /* * If there was a successful reply and a tprintf msg. * tprintf a response. */ if (stat == RPC_SUCCESS) { error = 0; } else if (stat == RPC_TIMEDOUT) { error = ETIMEDOUT; } else if (stat == RPC_VERSMISMATCH) { error = EOPNOTSUPP; } else if (stat == RPC_PROGVERSMISMATCH) { error = EPROTONOSUPPORT; } else { error = EACCES; } md = mrep; if (error) goto nfsmout; KASSERT(mrep != NULL, ("mrep shouldn't be NULL if no error\n")); dpos = mtod(mrep, caddr_t); tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); if (*tl != 0) { error = fxdr_unsigned(int, *tl); if ((nmp->nm_flag & NFSMNT_NFSV3) && error == NFSERR_TRYLATER) { m_freem(mrep); error = 0; waituntil = time_second + nfs3_jukebox_delay; while (time_second < waituntil) { (void) tsleep(&fake_wchan, PSOCK, "nqnfstry", hz); } goto tryagain; } /* * If the File Handle was stale, invalidate the lookup * cache, just in case. */ if (error == ESTALE) nfs_purgecache(vp); /* * Skip wcc data on NFS errors for now. NetApp filers * return corrupt postop attrs in the wcc data for NFS * err EROFS. Not sure if they could return corrupt * postop attrs for others errors. */ if ((nmp->nm_flag & NFSMNT_NFSV3) && !nfs_skip_wcc_data_onerr) { *mrp = mrep; *mdp = md; *dposp = dpos; error |= NFSERR_RETERR; } else m_freem(mrep); goto nfsmout; } #ifdef KDTRACE_HOOKS if (dtrace_nfsclient_nfs23_done_probe != NULL) { uint32_t probe_id; int probe_procnum; if (nmp->nm_flag & NFSMNT_NFSV3) { probe_id = nfsclient_nfs3_done_probes[procnum]; probe_procnum = procnum; } else { probe_id = nfsclient_nfs2_done_probes[procnum]; probe_procnum = (nmp->nm_flag & NFSMNT_NFSV3) ? procnum : nfsv2_procid[procnum]; } if (probe_id != 0) (dtrace_nfsclient_nfs23_done_probe)(probe_id, vp, mreq, cred, probe_procnum, 0); } #endif m_freem(mreq); *mrp = mrep; *mdp = md; *dposp = dpos; AUTH_DESTROY(auth); return (0); nfsmout: #ifdef KDTRACE_HOOKS if (dtrace_nfsclient_nfs23_done_probe != NULL) { uint32_t probe_id; int probe_procnum; if (nmp->nm_flag & NFSMNT_NFSV3) { probe_id = nfsclient_nfs3_done_probes[procnum]; probe_procnum = procnum; } else { probe_id = nfsclient_nfs2_done_probes[procnum]; probe_procnum = (nmp->nm_flag & NFSMNT_NFSV3) ? procnum : nfsv2_procid[procnum]; } if (probe_id != 0) (dtrace_nfsclient_nfs23_done_probe)(probe_id, vp, mreq, cred, probe_procnum, error); } #endif m_freem(mreq); if (auth) AUTH_DESTROY(auth); return (error); } /* * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and * wait for all requests to complete. This is used by forced unmounts * to terminate any outstanding RPCs. */ int nfs_nmcancelreqs(struct nfsmount *nmp) { if (nmp->nm_client) CLNT_CLOSE(nmp->nm_client); return (0); } /* * Any signal that can interrupt an NFS operation in an intr mount * should be added to this set. SIGSTOP and SIGKILL cannot be masked. */ int nfs_sig_set[] = { SIGINT, SIGTERM, SIGHUP, SIGKILL, SIGSTOP, SIGQUIT }; /* * Check to see if one of the signals in our subset is pending on * the process (in an intr mount). */ static int nfs_sig_pending(sigset_t set) { int i; for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) if (SIGISMEMBER(set, nfs_sig_set[i])) return (1); return (0); } /* * The set/restore sigmask functions are used to (temporarily) overwrite * the process p_sigmask during an RPC call (for example). These are also * used in other places in the NFS client that might tsleep(). */ void nfs_set_sigmask(struct thread *td, sigset_t *oldset) { sigset_t newset; int i; struct proc *p; SIGFILLSET(newset); if (td == NULL) td = curthread; /* XXX */ p = td->td_proc; /* Remove the NFS set of signals from newset */ PROC_LOCK(p); mtx_lock(&p->p_sigacts->ps_mtx); for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) { /* * But make sure we leave the ones already masked * by the process, ie. remove the signal from the * temporary signalmask only if it wasn't already * in p_sigmask. */ if (!SIGISMEMBER(td->td_sigmask, nfs_sig_set[i]) && !SIGISMEMBER(p->p_sigacts->ps_sigignore, nfs_sig_set[i])) SIGDELSET(newset, nfs_sig_set[i]); } mtx_unlock(&p->p_sigacts->ps_mtx); PROC_UNLOCK(p); kern_sigprocmask(td, SIG_SETMASK, &newset, oldset, 0); } void nfs_restore_sigmask(struct thread *td, sigset_t *set) { if (td == NULL) td = curthread; /* XXX */ kern_sigprocmask(td, SIG_SETMASK, set, NULL, 0); } /* * NFS wrapper to msleep(), that shoves a new p_sigmask and restores the * old one after msleep() returns. */ int nfs_msleep(struct thread *td, void *ident, struct mtx *mtx, int priority, char *wmesg, int timo) { sigset_t oldset; int error; struct proc *p; if ((priority & PCATCH) == 0) return msleep(ident, mtx, priority, wmesg, timo); if (td == NULL) td = curthread; /* XXX */ nfs_set_sigmask(td, &oldset); error = msleep(ident, mtx, priority, wmesg, timo); nfs_restore_sigmask(td, &oldset); p = td->td_proc; return (error); } /* * Test for a termination condition pending on the process. * This is used for NFSMNT_INT mounts. */ int nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td) { struct proc *p; sigset_t tmpset; if ((nmp->nm_flag & NFSMNT_NFSV4) != 0) return nfs4_sigintr(nmp, rep, td); /* Terminate all requests while attempting a forced unmount. */ if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF) return (EIO); if (!(nmp->nm_flag & NFSMNT_INT)) return (0); if (td == NULL) return (0); p = td->td_proc; PROC_LOCK(p); tmpset = p->p_siglist; SIGSETOR(tmpset, td->td_siglist); SIGSETNAND(tmpset, td->td_sigmask); mtx_lock(&p->p_sigacts->ps_mtx); SIGSETNAND(tmpset, p->p_sigacts->ps_sigignore); mtx_unlock(&p->p_sigacts->ps_mtx); if ((SIGNOTEMPTY(p->p_siglist) || SIGNOTEMPTY(td->td_siglist)) && nfs_sig_pending(tmpset)) { PROC_UNLOCK(p); return (EINTR); } PROC_UNLOCK(p); return (0); } static int nfs_msg(struct thread *td, const char *server, const char *msg, int error) { struct proc *p; p = td ? td->td_proc : NULL; if (error) { tprintf(p, LOG_INFO, "nfs server %s: %s, error %d\n", server, msg, error); } else { tprintf(p, LOG_INFO, "nfs server %s: %s\n", server, msg); } return (0); } static void nfs_down(struct nfsmount *nmp, struct thread *td, const char *msg, int error, int flags) { if (nmp == NULL) return; mtx_lock(&nmp->nm_mtx); if ((flags & NFSSTA_TIMEO) && !(nmp->nm_state & NFSSTA_TIMEO)) { nmp->nm_state |= NFSSTA_TIMEO; mtx_unlock(&nmp->nm_mtx); vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid, VQ_NOTRESP, 0); } else mtx_unlock(&nmp->nm_mtx); mtx_lock(&nmp->nm_mtx); if ((flags & NFSSTA_LOCKTIMEO) && !(nmp->nm_state & NFSSTA_LOCKTIMEO)) { nmp->nm_state |= NFSSTA_LOCKTIMEO; mtx_unlock(&nmp->nm_mtx); vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid, VQ_NOTRESPLOCK, 0); } else mtx_unlock(&nmp->nm_mtx); nfs_msg(td, nmp->nm_mountp->mnt_stat.f_mntfromname, msg, error); } static void nfs_up(struct nfsmount *nmp, struct thread *td, const char *msg, int flags, int tprintfmsg) { if (nmp == NULL) return; if (tprintfmsg) { nfs_msg(td, nmp->nm_mountp->mnt_stat.f_mntfromname, msg, 0); } mtx_lock(&nmp->nm_mtx); if ((flags & NFSSTA_TIMEO) && (nmp->nm_state & NFSSTA_TIMEO)) { nmp->nm_state &= ~NFSSTA_TIMEO; mtx_unlock(&nmp->nm_mtx); vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid, VQ_NOTRESP, 1); } else mtx_unlock(&nmp->nm_mtx); mtx_lock(&nmp->nm_mtx); if ((flags & NFSSTA_LOCKTIMEO) && (nmp->nm_state & NFSSTA_LOCKTIMEO)) { nmp->nm_state &= ~NFSSTA_LOCKTIMEO; mtx_unlock(&nmp->nm_mtx); vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid, VQ_NOTRESPLOCK, 1); } else mtx_unlock(&nmp->nm_mtx); } #endif /* !NFS_LEGACYRPC */