/*- * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__i386__) || defined(__amd64__) #include #include #endif #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "t4_ioctl.h" #include "t4_l2t.h" /* T4 bus driver interface */ static int t4_probe(device_t); static int t4_attach(device_t); static int t4_detach(device_t); static device_method_t t4_methods[] = { DEVMETHOD(device_probe, t4_probe), DEVMETHOD(device_attach, t4_attach), DEVMETHOD(device_detach, t4_detach), DEVMETHOD_END }; static driver_t t4_driver = { "t4nex", t4_methods, sizeof(struct adapter) }; /* T4 port (cxgbe) interface */ static int cxgbe_probe(device_t); static int cxgbe_attach(device_t); static int cxgbe_detach(device_t); static device_method_t cxgbe_methods[] = { DEVMETHOD(device_probe, cxgbe_probe), DEVMETHOD(device_attach, cxgbe_attach), DEVMETHOD(device_detach, cxgbe_detach), { 0, 0 } }; static driver_t cxgbe_driver = { "cxgbe", cxgbe_methods, sizeof(struct port_info) }; static d_ioctl_t t4_ioctl; static d_open_t t4_open; static d_close_t t4_close; static struct cdevsw t4_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = t4_open, .d_close = t4_close, .d_ioctl = t4_ioctl, .d_name = "t4nex", }; /* T5 bus driver interface */ static int t5_probe(device_t); static device_method_t t5_methods[] = { DEVMETHOD(device_probe, t5_probe), DEVMETHOD(device_attach, t4_attach), DEVMETHOD(device_detach, t4_detach), DEVMETHOD_END }; static driver_t t5_driver = { "t5nex", t5_methods, sizeof(struct adapter) }; /* T5 port (cxl) interface */ static driver_t cxl_driver = { "cxl", cxgbe_methods, sizeof(struct port_info) }; static struct cdevsw t5_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = t4_open, .d_close = t4_close, .d_ioctl = t4_ioctl, .d_name = "t5nex", }; /* ifnet + media interface */ static void cxgbe_init(void *); static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); static int cxgbe_transmit(struct ifnet *, struct mbuf *); static void cxgbe_qflush(struct ifnet *); static int cxgbe_media_change(struct ifnet *); static void cxgbe_media_status(struct ifnet *, struct ifmediareq *); MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); /* * Correct lock order when you need to acquire multiple locks is t4_list_lock, * then ADAPTER_LOCK, then t4_uld_list_lock. */ static struct mtx t4_list_lock; static SLIST_HEAD(, adapter) t4_list; #ifdef TCP_OFFLOAD static struct mtx t4_uld_list_lock; static SLIST_HEAD(, uld_info) t4_uld_list; #endif /* * Tunables. See tweak_tunables() too. * * Each tunable is set to a default value here if it's known at compile-time. * Otherwise it is set to -1 as an indication to tweak_tunables() that it should * provide a reasonable default when the driver is loaded. * * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to * T5 are under hw.cxl. */ /* * Number of queues for tx and rx, 10G and 1G, NIC and offload. */ #define NTXQ_10G 16 static int t4_ntxq10g = -1; TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq10g); #define NRXQ_10G 8 static int t4_nrxq10g = -1; TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq10g); #define NTXQ_1G 4 static int t4_ntxq1g = -1; TUNABLE_INT("hw.cxgbe.ntxq1g", &t4_ntxq1g); #define NRXQ_1G 2 static int t4_nrxq1g = -1; TUNABLE_INT("hw.cxgbe.nrxq1g", &t4_nrxq1g); #ifdef TCP_OFFLOAD #define NOFLDTXQ_10G 8 static int t4_nofldtxq10g = -1; TUNABLE_INT("hw.cxgbe.nofldtxq10g", &t4_nofldtxq10g); #define NOFLDRXQ_10G 2 static int t4_nofldrxq10g = -1; TUNABLE_INT("hw.cxgbe.nofldrxq10g", &t4_nofldrxq10g); #define NOFLDTXQ_1G 2 static int t4_nofldtxq1g = -1; TUNABLE_INT("hw.cxgbe.nofldtxq1g", &t4_nofldtxq1g); #define NOFLDRXQ_1G 1 static int t4_nofldrxq1g = -1; TUNABLE_INT("hw.cxgbe.nofldrxq1g", &t4_nofldrxq1g); #endif /* * Holdoff parameters for 10G and 1G ports. */ #define TMR_IDX_10G 1 static int t4_tmr_idx_10g = TMR_IDX_10G; TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx_10g); #define PKTC_IDX_10G (-1) static int t4_pktc_idx_10g = PKTC_IDX_10G; TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx_10g); #define TMR_IDX_1G 1 static int t4_tmr_idx_1g = TMR_IDX_1G; TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &t4_tmr_idx_1g); #define PKTC_IDX_1G (-1) static int t4_pktc_idx_1g = PKTC_IDX_1G; TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &t4_pktc_idx_1g); /* * Size (# of entries) of each tx and rx queue. */ static unsigned int t4_qsize_txq = TX_EQ_QSIZE; TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq); static unsigned int t4_qsize_rxq = RX_IQ_QSIZE; TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq); /* * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). */ static int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types); /* * Configuration file. */ #define DEFAULT_CF "default" #define FLASH_CF "flash" #define UWIRE_CF "uwire" #define FPGA_CF "fpga" static char t4_cfg_file[32] = DEFAULT_CF; TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file)); /* * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, * encouraged respectively). */ static unsigned int t4_fw_install = 1; TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install); /* * ASIC features that will be used. Disable the ones you don't want so that the * chip resources aren't wasted on features that will not be used. */ static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed); static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC; TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed); static int t4_toecaps_allowed = -1; TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed); static int t4_rdmacaps_allowed = 0; TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed); static int t4_iscsicaps_allowed = 0; TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed); static int t4_fcoecaps_allowed = 0; TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed); static int t5_write_combine = 0; TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine); struct intrs_and_queues { int intr_type; /* INTx, MSI, or MSI-X */ int nirq; /* Number of vectors */ int intr_flags; int ntxq10g; /* # of NIC txq's for each 10G port */ int nrxq10g; /* # of NIC rxq's for each 10G port */ int ntxq1g; /* # of NIC txq's for each 1G port */ int nrxq1g; /* # of NIC rxq's for each 1G port */ #ifdef TCP_OFFLOAD int nofldtxq10g; /* # of TOE txq's for each 10G port */ int nofldrxq10g; /* # of TOE rxq's for each 10G port */ int nofldtxq1g; /* # of TOE txq's for each 1G port */ int nofldrxq1g; /* # of TOE rxq's for each 1G port */ #endif }; struct filter_entry { uint32_t valid:1; /* filter allocated and valid */ uint32_t locked:1; /* filter is administratively locked */ uint32_t pending:1; /* filter action is pending firmware reply */ uint32_t smtidx:8; /* Source MAC Table index for smac */ struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ struct t4_filter_specification fs; }; enum { XGMAC_MTU = (1 << 0), XGMAC_PROMISC = (1 << 1), XGMAC_ALLMULTI = (1 << 2), XGMAC_VLANEX = (1 << 3), XGMAC_UCADDR = (1 << 4), XGMAC_MCADDRS = (1 << 5), XGMAC_ALL = 0xffff }; static int map_bars_0_and_4(struct adapter *); static int map_bar_2(struct adapter *); static void setup_memwin(struct adapter *); static int validate_mem_range(struct adapter *, uint32_t, int); static int validate_mt_off_len(struct adapter *, int, uint32_t, int, uint32_t *); static void memwin_info(struct adapter *, int, uint32_t *, uint32_t *); static uint32_t position_memwin(struct adapter *, int, uint32_t); static int cfg_itype_and_nqueues(struct adapter *, int, int, struct intrs_and_queues *); static int prep_firmware(struct adapter *); static int partition_resources(struct adapter *, const struct firmware *, const char *); static int get_params__pre_init(struct adapter *); static int get_params__post_init(struct adapter *); static int set_params__post_init(struct adapter *); static void t4_set_desc(struct adapter *); static void build_medialist(struct port_info *); static int update_mac_settings(struct port_info *, int); static int cxgbe_init_synchronized(struct port_info *); static int cxgbe_uninit_synchronized(struct port_info *); static int setup_intr_handlers(struct adapter *); static int adapter_full_init(struct adapter *); static int adapter_full_uninit(struct adapter *); static int port_full_init(struct port_info *); static int port_full_uninit(struct port_info *); static void quiesce_eq(struct adapter *, struct sge_eq *); static void quiesce_iq(struct adapter *, struct sge_iq *); static void quiesce_fl(struct adapter *, struct sge_fl *); static int t4_alloc_irq(struct adapter *, struct irq *, int rid, driver_intr_t *, void *, char *); static int t4_free_irq(struct adapter *, struct irq *); static void reg_block_dump(struct adapter *, uint8_t *, unsigned int, unsigned int); static void t4_get_regs(struct adapter *, struct t4_regdump *, uint8_t *); static void cxgbe_tick(void *); static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t); static int cpl_not_handled(struct sge_iq *, const struct rss_header *, struct mbuf *); static int an_not_handled(struct sge_iq *, const struct rsp_ctrl *); static int fw_msg_not_handled(struct adapter *, const __be64 *); static int t4_sysctls(struct adapter *); static int cxgbe_sysctls(struct port_info *); static int sysctl_int_array(SYSCTL_HANDLER_ARGS); static int sysctl_bitfield(SYSCTL_HANDLER_ARGS); static int sysctl_btphy(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); #ifdef SBUF_DRAIN static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); static int sysctl_devlog(SYSCTL_HANDLER_ARGS); static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tids(SYSCTL_HANDLER_ARGS); static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); #endif static inline void txq_start(struct ifnet *, struct sge_txq *); static uint32_t fconf_to_mode(uint32_t); static uint32_t mode_to_fconf(uint32_t); static uint32_t fspec_to_fconf(struct t4_filter_specification *); static int get_filter_mode(struct adapter *, uint32_t *); static int set_filter_mode(struct adapter *, uint32_t); static inline uint64_t get_filter_hits(struct adapter *, uint32_t); static int get_filter(struct adapter *, struct t4_filter *); static int set_filter(struct adapter *, struct t4_filter *); static int del_filter(struct adapter *, struct t4_filter *); static void clear_filter(struct filter_entry *); static int set_filter_wr(struct adapter *, int); static int del_filter_wr(struct adapter *, int); static int get_sge_context(struct adapter *, struct t4_sge_context *); static int load_fw(struct adapter *, struct t4_data *); static int read_card_mem(struct adapter *, int, struct t4_mem_range *); static int read_i2c(struct adapter *, struct t4_i2c_data *); #ifdef TCP_OFFLOAD static int toe_capability(struct port_info *, int); #endif static int mod_event(module_t, int, void *); struct { uint16_t device; char *desc; } t4_pciids[] = { {0xa000, "Chelsio Terminator 4 FPGA"}, {0x4400, "Chelsio T440-dbg"}, {0x4401, "Chelsio T420-CR"}, {0x4402, "Chelsio T422-CR"}, {0x4403, "Chelsio T440-CR"}, {0x4404, "Chelsio T420-BCH"}, {0x4405, "Chelsio T440-BCH"}, {0x4406, "Chelsio T440-CH"}, {0x4407, "Chelsio T420-SO"}, {0x4408, "Chelsio T420-CX"}, {0x4409, "Chelsio T420-BT"}, {0x440a, "Chelsio T404-BT"}, {0x440e, "Chelsio T440-LP-CR"}, }, t5_pciids[] = { {0xb000, "Chelsio Terminator 5 FPGA"}, {0x5400, "Chelsio T580-dbg"}, {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ #ifdef notyet {0x5404, "Chelsio T520-BCH"}, {0x5405, "Chelsio T540-BCH"}, {0x5406, "Chelsio T540-CH"}, {0x5408, "Chelsio T520-CX"}, {0x540b, "Chelsio B520-SR"}, {0x540c, "Chelsio B504-BT"}, {0x540f, "Chelsio Amsterdam"}, {0x5413, "Chelsio T580-CHR"}, #endif }; #ifdef TCP_OFFLOAD /* * service_iq() has an iq and needs the fl. Offset of fl from the iq should be * exactly the same for both rxq and ofld_rxq. */ CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); #endif /* No easy way to include t4_msg.h before adapter.h so we check this way */ CTASSERT(nitems(((struct adapter *)0)->cpl_handler) == NUM_CPL_CMDS); CTASSERT(nitems(((struct adapter *)0)->fw_msg_handler) == NUM_FW6_TYPES); static int t4_probe(device_t dev) { int i; uint16_t v = pci_get_vendor(dev); uint16_t d = pci_get_device(dev); uint8_t f = pci_get_function(dev); if (v != PCI_VENDOR_ID_CHELSIO) return (ENXIO); /* Attach only to PF0 of the FPGA */ if (d == 0xa000 && f != 0) return (ENXIO); for (i = 0; i < nitems(t4_pciids); i++) { if (d == t4_pciids[i].device) { device_set_desc(dev, t4_pciids[i].desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int t5_probe(device_t dev) { int i; uint16_t v = pci_get_vendor(dev); uint16_t d = pci_get_device(dev); uint8_t f = pci_get_function(dev); if (v != PCI_VENDOR_ID_CHELSIO) return (ENXIO); /* Attach only to PF0 of the FPGA */ if (d == 0xb000 && f != 0) return (ENXIO); for (i = 0; i < nitems(t5_pciids); i++) { if (d == t5_pciids[i].device) { device_set_desc(dev, t5_pciids[i].desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int t4_attach(device_t dev) { struct adapter *sc; int rc = 0, i, n10g, n1g, rqidx, tqidx; struct intrs_and_queues iaq; struct sge *s; #ifdef TCP_OFFLOAD int ofld_rqidx, ofld_tqidx; #endif sc = device_get_softc(dev); sc->dev = dev; pci_enable_busmaster(dev); if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { uint32_t v; pci_set_max_read_req(dev, 4096); v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); v |= PCIEM_CTL_RELAXED_ORD_ENABLE; pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); } sc->traceq = -1; mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", device_get_nameunit(dev)); snprintf(sc->lockname, sizeof(sc->lockname), "%s", device_get_nameunit(dev)); mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); mtx_lock(&t4_list_lock); SLIST_INSERT_HEAD(&t4_list, sc, link); mtx_unlock(&t4_list_lock); mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); TAILQ_INIT(&sc->sfl); callout_init(&sc->sfl_callout, CALLOUT_MPSAFE); rc = map_bars_0_and_4(sc); if (rc != 0) goto done; /* error message displayed already */ /* * This is the real PF# to which we're attaching. Works from within PCI * passthrough environments too, where pci_get_function() could return a * different PF# depending on the passthrough configuration. We need to * use the real PF# in all our communication with the firmware. */ sc->pf = G_SOURCEPF(t4_read_reg(sc, A_PL_WHOAMI)); sc->mbox = sc->pf; memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); sc->an_handler = an_not_handled; for (i = 0; i < nitems(sc->cpl_handler); i++) sc->cpl_handler[i] = cpl_not_handled; for (i = 0; i < nitems(sc->fw_msg_handler); i++) sc->fw_msg_handler[i] = fw_msg_not_handled; t4_register_cpl_handler(sc, CPL_SET_TCB_RPL, t4_filter_rpl); t4_register_cpl_handler(sc, CPL_TRACE_PKT, t4_trace_pkt); t4_register_cpl_handler(sc, CPL_TRACE_PKT_T5, t5_trace_pkt); t4_init_sge_cpl_handlers(sc); /* Prepare the adapter for operation */ rc = -t4_prep_adapter(sc); if (rc != 0) { device_printf(dev, "failed to prepare adapter: %d.\n", rc); goto done; } /* * Do this really early, with the memory windows set up even before the * character device. The userland tool's register i/o and mem read * will work even in "recovery mode". */ setup_memwin(sc); sc->cdev = make_dev(is_t4(sc) ? &t4_cdevsw : &t5_cdevsw, device_get_unit(dev), UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev)); if (sc->cdev == NULL) device_printf(dev, "failed to create nexus char device.\n"); else sc->cdev->si_drv1 = sc; /* Go no further if recovery mode has been requested. */ if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { device_printf(dev, "recovery mode.\n"); goto done; } /* Prepare the firmware for operation */ rc = prep_firmware(sc); if (rc != 0) goto done; /* error message displayed already */ rc = get_params__post_init(sc); if (rc != 0) goto done; /* error message displayed already */ rc = set_params__post_init(sc); if (rc != 0) goto done; /* error message displayed already */ rc = map_bar_2(sc); if (rc != 0) goto done; /* error message displayed already */ rc = t4_create_dma_tag(sc); if (rc != 0) goto done; /* error message displayed already */ /* * First pass over all the ports - allocate VIs and initialize some * basic parameters like mac address, port type, etc. We also figure * out whether a port is 10G or 1G and use that information when * calculating how many interrupts to attempt to allocate. */ n10g = n1g = 0; for_each_port(sc, i) { struct port_info *pi; pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); sc->port[i] = pi; /* These must be set before t4_port_init */ pi->adapter = sc; pi->port_id = i; /* Allocate the vi and initialize parameters like mac addr */ rc = -t4_port_init(pi, sc->mbox, sc->pf, 0); if (rc != 0) { device_printf(dev, "unable to initialize port %d: %d\n", i, rc); free(pi, M_CXGBE); sc->port[i] = NULL; goto done; } snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", device_get_nameunit(dev), i); mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); sc->chan_map[pi->tx_chan] = i; if (is_10G_port(pi) || is_40G_port(pi)) { n10g++; pi->tmr_idx = t4_tmr_idx_10g; pi->pktc_idx = t4_pktc_idx_10g; } else { n1g++; pi->tmr_idx = t4_tmr_idx_1g; pi->pktc_idx = t4_pktc_idx_1g; } pi->xact_addr_filt = -1; pi->linkdnrc = -1; pi->qsize_rxq = t4_qsize_rxq; pi->qsize_txq = t4_qsize_txq; pi->dev = device_add_child(dev, is_t4(sc) ? "cxgbe" : "cxl", -1); if (pi->dev == NULL) { device_printf(dev, "failed to add device for port %d.\n", i); rc = ENXIO; goto done; } device_set_softc(pi->dev, pi); } /* * Interrupt type, # of interrupts, # of rx/tx queues, etc. */ rc = cfg_itype_and_nqueues(sc, n10g, n1g, &iaq); if (rc != 0) goto done; /* error message displayed already */ sc->intr_type = iaq.intr_type; sc->intr_count = iaq.nirq; sc->flags |= iaq.intr_flags; s = &sc->sge; s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g; s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g; s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */ s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ #ifdef TCP_OFFLOAD if (is_offload(sc)) { s->nofldrxq = n10g * iaq.nofldrxq10g + n1g * iaq.nofldrxq1g; s->nofldtxq = n10g * iaq.nofldtxq10g + n1g * iaq.nofldtxq1g; s->neq += s->nofldtxq + s->nofldrxq; s->niq += s->nofldrxq; s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), M_CXGBE, M_ZERO | M_WAITOK); s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), M_CXGBE, M_ZERO | M_WAITOK); } #endif s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_wrq), M_CXGBE, M_ZERO | M_WAITOK); s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, M_ZERO | M_WAITOK); s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, M_ZERO | M_WAITOK); s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, M_ZERO | M_WAITOK); s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, M_ZERO | M_WAITOK); sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, M_ZERO | M_WAITOK); t4_init_l2t(sc, M_WAITOK); /* * Second pass over the ports. This time we know the number of rx and * tx queues that each port should get. */ rqidx = tqidx = 0; #ifdef TCP_OFFLOAD ofld_rqidx = ofld_tqidx = 0; #endif for_each_port(sc, i) { struct port_info *pi = sc->port[i]; if (pi == NULL) continue; pi->first_rxq = rqidx; pi->first_txq = tqidx; if (is_10G_port(pi) || is_40G_port(pi)) { pi->nrxq = iaq.nrxq10g; pi->ntxq = iaq.ntxq10g; } else { pi->nrxq = iaq.nrxq1g; pi->ntxq = iaq.ntxq1g; } rqidx += pi->nrxq; tqidx += pi->ntxq; #ifdef TCP_OFFLOAD if (is_offload(sc)) { pi->first_ofld_rxq = ofld_rqidx; pi->first_ofld_txq = ofld_tqidx; if (is_10G_port(pi) || is_40G_port(pi)) { pi->nofldrxq = iaq.nofldrxq10g; pi->nofldtxq = iaq.nofldtxq10g; } else { pi->nofldrxq = iaq.nofldrxq1g; pi->nofldtxq = iaq.nofldtxq1g; } ofld_rqidx += pi->nofldrxq; ofld_tqidx += pi->nofldtxq; } #endif } rc = setup_intr_handlers(sc); if (rc != 0) { device_printf(dev, "failed to setup interrupt handlers: %d\n", rc); goto done; } rc = bus_generic_attach(dev); if (rc != 0) { device_printf(dev, "failed to attach all child ports: %d\n", rc); goto done; } device_printf(dev, "PCIe x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", sc->params.pci.width, sc->params.nports, sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); t4_set_desc(sc); done: if (rc != 0 && sc->cdev) { /* cdev was created and so cxgbetool works; recover that way. */ device_printf(dev, "error during attach, adapter is now in recovery mode.\n"); rc = 0; } if (rc != 0) t4_detach(dev); else t4_sysctls(sc); return (rc); } /* * Idempotent */ static int t4_detach(device_t dev) { struct adapter *sc; struct port_info *pi; int i, rc; sc = device_get_softc(dev); if (sc->flags & FULL_INIT_DONE) t4_intr_disable(sc); if (sc->cdev) { destroy_dev(sc->cdev); sc->cdev = NULL; } rc = bus_generic_detach(dev); if (rc) { device_printf(dev, "failed to detach child devices: %d\n", rc); return (rc); } for (i = 0; i < sc->intr_count; i++) t4_free_irq(sc, &sc->irq[i]); for (i = 0; i < MAX_NPORTS; i++) { pi = sc->port[i]; if (pi) { t4_free_vi(pi->adapter, sc->mbox, sc->pf, 0, pi->viid); if (pi->dev) device_delete_child(dev, pi->dev); mtx_destroy(&pi->pi_lock); free(pi, M_CXGBE); } } if (sc->flags & FULL_INIT_DONE) adapter_full_uninit(sc); if (sc->flags & FW_OK) t4_fw_bye(sc, sc->mbox); if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) pci_release_msi(dev); if (sc->regs_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, sc->regs_res); if (sc->udbs_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, sc->udbs_res); if (sc->msix_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, sc->msix_res); if (sc->l2t) t4_free_l2t(sc->l2t); #ifdef TCP_OFFLOAD free(sc->sge.ofld_rxq, M_CXGBE); free(sc->sge.ofld_txq, M_CXGBE); #endif free(sc->irq, M_CXGBE); free(sc->sge.rxq, M_CXGBE); free(sc->sge.txq, M_CXGBE); free(sc->sge.ctrlq, M_CXGBE); free(sc->sge.iqmap, M_CXGBE); free(sc->sge.eqmap, M_CXGBE); free(sc->tids.ftid_tab, M_CXGBE); t4_destroy_dma_tag(sc); if (mtx_initialized(&sc->sc_lock)) { mtx_lock(&t4_list_lock); SLIST_REMOVE(&t4_list, sc, adapter, link); mtx_unlock(&t4_list_lock); mtx_destroy(&sc->sc_lock); } if (mtx_initialized(&sc->tids.ftid_lock)) mtx_destroy(&sc->tids.ftid_lock); if (mtx_initialized(&sc->sfl_lock)) mtx_destroy(&sc->sfl_lock); if (mtx_initialized(&sc->ifp_lock)) mtx_destroy(&sc->ifp_lock); bzero(sc, sizeof(*sc)); return (0); } static int cxgbe_probe(device_t dev) { char buf[128]; struct port_info *pi = device_get_softc(dev); snprintf(buf, sizeof(buf), "port %d", pi->port_id); device_set_desc_copy(dev, buf); return (BUS_PROBE_DEFAULT); } #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6) #define T4_CAP_ENABLE (T4_CAP) static int cxgbe_attach(device_t dev) { struct port_info *pi = device_get_softc(dev); struct ifnet *ifp; /* Allocate an ifnet and set it up */ ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "Cannot allocate ifnet\n"); return (ENOMEM); } pi->ifp = ifp; ifp->if_softc = pi; callout_init(&pi->tick, CALLOUT_MPSAFE); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = cxgbe_init; ifp->if_ioctl = cxgbe_ioctl; ifp->if_transmit = cxgbe_transmit; ifp->if_qflush = cxgbe_qflush; ifp->if_capabilities = T4_CAP; #ifdef TCP_OFFLOAD if (is_offload(pi->adapter)) ifp->if_capabilities |= IFCAP_TOE; #endif ifp->if_capenable = T4_CAP_ENABLE; ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | CSUM_UDP_IPV6 | CSUM_TCP_IPV6; /* Initialize ifmedia for this port */ ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, cxgbe_media_status); build_medialist(pi); pi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp, EVENTHANDLER_PRI_ANY); ether_ifattach(ifp, pi->hw_addr); #ifdef TCP_OFFLOAD if (is_offload(pi->adapter)) { device_printf(dev, "%d txq, %d rxq (NIC); %d txq, %d rxq (TOE)\n", pi->ntxq, pi->nrxq, pi->nofldtxq, pi->nofldrxq); } else #endif device_printf(dev, "%d txq, %d rxq\n", pi->ntxq, pi->nrxq); cxgbe_sysctls(pi); return (0); } static int cxgbe_detach(device_t dev) { struct port_info *pi = device_get_softc(dev); struct adapter *sc = pi->adapter; struct ifnet *ifp = pi->ifp; /* Tell if_ioctl and if_init that the port is going away */ ADAPTER_LOCK(sc); SET_DOOMED(pi); wakeup(&sc->flags); while (IS_BUSY(sc)) mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); SET_BUSY(sc); #ifdef INVARIANTS sc->last_op = "t4detach"; sc->last_op_thr = curthread; #endif ADAPTER_UNLOCK(sc); if (pi->flags & HAS_TRACEQ) { sc->traceq = -1; /* cloner should not create ifnet */ t4_tracer_port_detach(sc); } if (pi->vlan_c) EVENTHANDLER_DEREGISTER(vlan_config, pi->vlan_c); PORT_LOCK(pi); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; callout_stop(&pi->tick); PORT_UNLOCK(pi); callout_drain(&pi->tick); /* Let detach proceed even if these fail. */ cxgbe_uninit_synchronized(pi); port_full_uninit(pi); ifmedia_removeall(&pi->media); ether_ifdetach(pi->ifp); if_free(pi->ifp); ADAPTER_LOCK(sc); CLR_BUSY(sc); wakeup(&sc->flags); ADAPTER_UNLOCK(sc); return (0); } static void cxgbe_init(void *arg) { struct port_info *pi = arg; struct adapter *sc = pi->adapter; if (begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4init") != 0) return; cxgbe_init_synchronized(pi); end_synchronized_op(sc, 0); } static int cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) { int rc = 0, mtu, flags; struct port_info *pi = ifp->if_softc; struct adapter *sc = pi->adapter; struct ifreq *ifr = (struct ifreq *)data; uint32_t mask; switch (cmd) { case SIOCSIFMTU: mtu = ifr->ifr_mtu; if ((mtu < ETHERMIN) || (mtu > ETHERMTU_JUMBO)) return (EINVAL); rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4mtu"); if (rc) return (rc); ifp->if_mtu = mtu; if (pi->flags & PORT_INIT_DONE) { t4_update_fl_bufsize(ifp); if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = update_mac_settings(pi, XGMAC_MTU); } end_synchronized_op(sc, 0); break; case SIOCSIFFLAGS: rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4flg"); if (rc) return (rc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { flags = pi->if_flags; if ((ifp->if_flags ^ flags) & (IFF_PROMISC | IFF_ALLMULTI)) { rc = update_mac_settings(pi, XGMAC_PROMISC | XGMAC_ALLMULTI); } } else rc = cxgbe_init_synchronized(pi); pi->if_flags = ifp->if_flags; } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = cxgbe_uninit_synchronized(pi); end_synchronized_op(sc, 0); break; case SIOCADDMULTI: case SIOCDELMULTI: /* these two are called with a mutex held :-( */ rc = begin_synchronized_op(sc, pi, HOLD_LOCK, "t4multi"); if (rc) return (rc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = update_mac_settings(pi, XGMAC_MCADDRS); end_synchronized_op(sc, LOCK_HELD); break; case SIOCSIFCAP: rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4cap"); if (rc) return (rc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); if (IFCAP_TSO4 & ifp->if_capenable && !(IFCAP_TXCSUM & ifp->if_capenable)) { ifp->if_capenable &= ~IFCAP_TSO4; if_printf(ifp, "tso4 disabled due to -txcsum.\n"); } } if (mask & IFCAP_TXCSUM_IPV6) { ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); if (IFCAP_TSO6 & ifp->if_capenable && !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { ifp->if_capenable &= ~IFCAP_TSO6; if_printf(ifp, "tso6 disabled due to -txcsum6.\n"); } } if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; if (mask & IFCAP_RXCSUM_IPV6) ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; /* * Note that we leave CSUM_TSO alone (it is always set). The * kernel takes both IFCAP_TSOx and CSUM_TSO into account before * sending a TSO request our way, so it's sufficient to toggle * IFCAP_TSOx only. */ if (mask & IFCAP_TSO4) { if (!(IFCAP_TSO4 & ifp->if_capenable) && !(IFCAP_TXCSUM & ifp->if_capenable)) { if_printf(ifp, "enable txcsum first.\n"); rc = EAGAIN; goto fail; } ifp->if_capenable ^= IFCAP_TSO4; } if (mask & IFCAP_TSO6) { if (!(IFCAP_TSO6 & ifp->if_capenable) && !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { if_printf(ifp, "enable txcsum6 first.\n"); rc = EAGAIN; goto fail; } ifp->if_capenable ^= IFCAP_TSO6; } if (mask & IFCAP_LRO) { #if defined(INET) || defined(INET6) int i; struct sge_rxq *rxq; ifp->if_capenable ^= IFCAP_LRO; for_each_rxq(pi, i, rxq) { if (ifp->if_capenable & IFCAP_LRO) rxq->iq.flags |= IQ_LRO_ENABLED; else rxq->iq.flags &= ~IQ_LRO_ENABLED; } #endif } #ifdef TCP_OFFLOAD if (mask & IFCAP_TOE) { int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; rc = toe_capability(pi, enable); if (rc != 0) goto fail; ifp->if_capenable ^= mask; } #endif if (mask & IFCAP_VLAN_HWTAGGING) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = update_mac_settings(pi, XGMAC_VLANEX); } if (mask & IFCAP_VLAN_MTU) { ifp->if_capenable ^= IFCAP_VLAN_MTU; /* Need to find out how to disable auto-mtu-inflation */ } if (mask & IFCAP_VLAN_HWTSO) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if (mask & IFCAP_VLAN_HWCSUM) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; #ifdef VLAN_CAPABILITIES VLAN_CAPABILITIES(ifp); #endif fail: end_synchronized_op(sc, 0); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: ifmedia_ioctl(ifp, ifr, &pi->media, cmd); break; default: rc = ether_ioctl(ifp, cmd, data); } return (rc); } static int cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) { struct port_info *pi = ifp->if_softc; struct adapter *sc = pi->adapter; struct sge_txq *txq = &sc->sge.txq[pi->first_txq]; struct buf_ring *br; int rc; M_ASSERTPKTHDR(m); if (__predict_false(pi->link_cfg.link_ok == 0)) { m_freem(m); return (ENETDOWN); } if (m->m_flags & M_FLOWID) txq += (m->m_pkthdr.flowid % pi->ntxq); br = txq->br; if (TXQ_TRYLOCK(txq) == 0) { struct sge_eq *eq = &txq->eq; /* * It is possible that t4_eth_tx finishes up and releases the * lock between the TRYLOCK above and the drbr_enqueue here. We * need to make sure that this mbuf doesn't just sit there in * the drbr. */ rc = drbr_enqueue(ifp, br, m); if (rc == 0 && callout_pending(&eq->tx_callout) == 0 && !(eq->flags & EQ_DOOMED)) callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); return (rc); } /* * txq->m is the mbuf that is held up due to a temporary shortage of * resources and it should be put on the wire first. Then what's in * drbr and finally the mbuf that was just passed in to us. * * Return code should indicate the fate of the mbuf that was passed in * this time. */ TXQ_LOCK_ASSERT_OWNED(txq); if (drbr_needs_enqueue(ifp, br) || txq->m) { /* Queued for transmission. */ rc = drbr_enqueue(ifp, br, m); m = txq->m ? txq->m : drbr_dequeue(ifp, br); (void) t4_eth_tx(ifp, txq, m); TXQ_UNLOCK(txq); return (rc); } /* Direct transmission. */ rc = t4_eth_tx(ifp, txq, m); if (rc != 0 && txq->m) rc = 0; /* held, will be transmitted soon (hopefully) */ TXQ_UNLOCK(txq); return (rc); } static void cxgbe_qflush(struct ifnet *ifp) { struct port_info *pi = ifp->if_softc; struct sge_txq *txq; int i; struct mbuf *m; /* queues do not exist if !PORT_INIT_DONE. */ if (pi->flags & PORT_INIT_DONE) { for_each_txq(pi, i, txq) { TXQ_LOCK(txq); m_freem(txq->m); txq->m = NULL; while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) m_freem(m); TXQ_UNLOCK(txq); } } if_qflush(ifp); } static int cxgbe_media_change(struct ifnet *ifp) { struct port_info *pi = ifp->if_softc; device_printf(pi->dev, "%s unimplemented.\n", __func__); return (EOPNOTSUPP); } static void cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct port_info *pi = ifp->if_softc; struct ifmedia_entry *cur = pi->media.ifm_cur; int speed = pi->link_cfg.speed; int data = (pi->port_type << 8) | pi->mod_type; if (cur->ifm_data != data) { build_medialist(pi); cur = pi->media.ifm_cur; } ifmr->ifm_status = IFM_AVALID; if (!pi->link_cfg.link_ok) return; ifmr->ifm_status |= IFM_ACTIVE; /* active and current will differ iff current media is autoselect. */ if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO) return; ifmr->ifm_active = IFM_ETHER | IFM_FDX; if (speed == SPEED_10000) ifmr->ifm_active |= IFM_10G_T; else if (speed == SPEED_1000) ifmr->ifm_active |= IFM_1000_T; else if (speed == SPEED_100) ifmr->ifm_active |= IFM_100_TX; else if (speed == SPEED_10) ifmr->ifm_active |= IFM_10_T; else KASSERT(0, ("%s: link up but speed unknown (%u)", __func__, speed)); } void t4_fatal_err(struct adapter *sc) { t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0); t4_intr_disable(sc); log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n", device_get_nameunit(sc->dev)); } static int map_bars_0_and_4(struct adapter *sc) { sc->regs_rid = PCIR_BAR(0); sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->regs_rid, RF_ACTIVE); if (sc->regs_res == NULL) { device_printf(sc->dev, "cannot map registers.\n"); return (ENXIO); } sc->bt = rman_get_bustag(sc->regs_res); sc->bh = rman_get_bushandle(sc->regs_res); sc->mmio_len = rman_get_size(sc->regs_res); setbit(&sc->doorbells, DOORBELL_KDB); sc->msix_rid = PCIR_BAR(4); sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->msix_rid, RF_ACTIVE); if (sc->msix_res == NULL) { device_printf(sc->dev, "cannot map MSI-X BAR.\n"); return (ENXIO); } return (0); } static int map_bar_2(struct adapter *sc) { /* * T4: only iWARP driver uses the userspace doorbells. There is no need * to map it if RDMA is disabled. */ if (is_t4(sc) && sc->rdmacaps == 0) return (0); sc->udbs_rid = PCIR_BAR(2); sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->udbs_rid, RF_ACTIVE); if (sc->udbs_res == NULL) { device_printf(sc->dev, "cannot map doorbell BAR.\n"); return (ENXIO); } sc->udbs_base = rman_get_virtual(sc->udbs_res); if (is_t5(sc)) { setbit(&sc->doorbells, DOORBELL_UDB); #if defined(__i386__) || defined(__amd64__) if (t5_write_combine) { int rc; /* * Enable write combining on BAR2. This is the * userspace doorbell BAR and is split into 128B * (UDBS_SEG_SIZE) doorbell regions, each associated * with an egress queue. The first 64B has the doorbell * and the second 64B can be used to submit a tx work * request with an implicit doorbell. */ rc = pmap_change_attr((vm_offset_t)sc->udbs_base, rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); if (rc == 0) { clrbit(&sc->doorbells, DOORBELL_UDB); setbit(&sc->doorbells, DOORBELL_WCWR); setbit(&sc->doorbells, DOORBELL_UDBWC); } else { device_printf(sc->dev, "couldn't enable write combining: %d\n", rc); } t4_write_reg(sc, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) | V_STATMODE(0)); } #endif } return (0); } static const struct memwin t4_memwin[] = { { MEMWIN0_BASE, MEMWIN0_APERTURE }, { MEMWIN1_BASE, MEMWIN1_APERTURE }, { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } }; static const struct memwin t5_memwin[] = { { MEMWIN0_BASE, MEMWIN0_APERTURE }, { MEMWIN1_BASE, MEMWIN1_APERTURE }, { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, }; static void setup_memwin(struct adapter *sc) { const struct memwin *mw; int i, n; uint32_t bar0; if (is_t4(sc)) { /* * Read low 32b of bar0 indirectly via the hardware backdoor * mechanism. Works from within PCI passthrough environments * too, where rman_get_start() can return a different value. We * need to program the T4 memory window decoders with the actual * addresses that will be coming across the PCIe link. */ bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; mw = &t4_memwin[0]; n = nitems(t4_memwin); } else { /* T5 uses the relative offset inside the PCIe BAR */ bar0 = 0; mw = &t5_memwin[0]; n = nitems(t5_memwin); } for (i = 0; i < n; i++, mw++) { t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), (mw->base + bar0) | V_BIR(0) | V_WINDOW(ilog2(mw->aperture) - 10)); } /* flush */ t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); } /* * Verify that the memory range specified by the addr/len pair is valid and lies * entirely within a single region (EDCx or MCx). */ static int validate_mem_range(struct adapter *sc, uint32_t addr, int len) { uint32_t em, addr_len, maddr, mlen; /* Memory can only be accessed in naturally aligned 4 byte units */ if (addr & 3 || len & 3 || len == 0) return (EINVAL); /* Enabled memories */ em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); if (em & F_EDRAM0_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); maddr = G_EDRAM0_BASE(addr_len) << 20; mlen = G_EDRAM0_SIZE(addr_len) << 20; if (mlen > 0 && addr >= maddr && addr < maddr + mlen && addr + len <= maddr + mlen) return (0); } if (em & F_EDRAM1_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); maddr = G_EDRAM1_BASE(addr_len) << 20; mlen = G_EDRAM1_SIZE(addr_len) << 20; if (mlen > 0 && addr >= maddr && addr < maddr + mlen && addr + len <= maddr + mlen) return (0); } if (em & F_EXT_MEM_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); maddr = G_EXT_MEM_BASE(addr_len) << 20; mlen = G_EXT_MEM_SIZE(addr_len) << 20; if (mlen > 0 && addr >= maddr && addr < maddr + mlen && addr + len <= maddr + mlen) return (0); } if (!is_t4(sc) && em & F_EXT_MEM1_ENABLE) { addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); maddr = G_EXT_MEM1_BASE(addr_len) << 20; mlen = G_EXT_MEM1_SIZE(addr_len) << 20; if (mlen > 0 && addr >= maddr && addr < maddr + mlen && addr + len <= maddr + mlen) return (0); } return (EFAULT); } /* * Verify that the memory range specified by the memtype/offset/len pair is * valid and lies entirely within the memtype specified. The global address of * the start of the range is returned in addr. */ static int validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len, uint32_t *addr) { uint32_t em, addr_len, maddr, mlen; /* Memory can only be accessed in naturally aligned 4 byte units */ if (off & 3 || len & 3 || len == 0) return (EINVAL); em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); switch (mtype) { case MEM_EDC0: if (!(em & F_EDRAM0_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); maddr = G_EDRAM0_BASE(addr_len) << 20; mlen = G_EDRAM0_SIZE(addr_len) << 20; break; case MEM_EDC1: if (!(em & F_EDRAM1_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); maddr = G_EDRAM1_BASE(addr_len) << 20; mlen = G_EDRAM1_SIZE(addr_len) << 20; break; case MEM_MC: if (!(em & F_EXT_MEM_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); maddr = G_EXT_MEM_BASE(addr_len) << 20; mlen = G_EXT_MEM_SIZE(addr_len) << 20; break; case MEM_MC1: if (is_t4(sc) || !(em & F_EXT_MEM1_ENABLE)) return (EINVAL); addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); maddr = G_EXT_MEM1_BASE(addr_len) << 20; mlen = G_EXT_MEM1_SIZE(addr_len) << 20; break; default: return (EINVAL); } if (mlen > 0 && off < mlen && off + len <= mlen) { *addr = maddr + off; /* global address */ return (0); } return (EFAULT); } static void memwin_info(struct adapter *sc, int win, uint32_t *base, uint32_t *aperture) { const struct memwin *mw; if (is_t4(sc)) { KASSERT(win >= 0 && win < nitems(t4_memwin), ("%s: incorrect memwin# (%d)", __func__, win)); mw = &t4_memwin[win]; } else { KASSERT(win >= 0 && win < nitems(t5_memwin), ("%s: incorrect memwin# (%d)", __func__, win)); mw = &t5_memwin[win]; } if (base != NULL) *base = mw->base; if (aperture != NULL) *aperture = mw->aperture; } /* * Positions the memory window such that it can be used to access the specified * address in the chip's address space. The return value is the offset of addr * from the start of the window. */ static uint32_t position_memwin(struct adapter *sc, int n, uint32_t addr) { uint32_t start, pf; uint32_t reg; KASSERT(n >= 0 && n <= 3, ("%s: invalid window %d.", __func__, n)); KASSERT((addr & 3) == 0, ("%s: addr (0x%x) is not at a 4B boundary.", __func__, addr)); if (is_t4(sc)) { pf = 0; start = addr & ~0xf; /* start must be 16B aligned */ } else { pf = V_PFNUM(sc->pf); start = addr & ~0x7f; /* start must be 128B aligned */ } reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, n); t4_write_reg(sc, reg, start | pf); t4_read_reg(sc, reg); return (addr - start); } static int cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g, struct intrs_and_queues *iaq) { int rc, itype, navail, nrxq10g, nrxq1g, n; int nofldrxq10g = 0, nofldrxq1g = 0; bzero(iaq, sizeof(*iaq)); iaq->ntxq10g = t4_ntxq10g; iaq->ntxq1g = t4_ntxq1g; iaq->nrxq10g = nrxq10g = t4_nrxq10g; iaq->nrxq1g = nrxq1g = t4_nrxq1g; #ifdef TCP_OFFLOAD if (is_offload(sc)) { iaq->nofldtxq10g = t4_nofldtxq10g; iaq->nofldtxq1g = t4_nofldtxq1g; iaq->nofldrxq10g = nofldrxq10g = t4_nofldrxq10g; iaq->nofldrxq1g = nofldrxq1g = t4_nofldrxq1g; } #endif for (itype = INTR_MSIX; itype; itype >>= 1) { if ((itype & t4_intr_types) == 0) continue; /* not allowed */ if (itype == INTR_MSIX) navail = pci_msix_count(sc->dev); else if (itype == INTR_MSI) navail = pci_msi_count(sc->dev); else navail = 1; restart: if (navail == 0) continue; iaq->intr_type = itype; iaq->intr_flags = 0; /* * Best option: an interrupt vector for errors, one for the * firmware event queue, and one each for each rxq (NIC as well * as offload). */ iaq->nirq = T4_EXTRA_INTR; iaq->nirq += n10g * (nrxq10g + nofldrxq10g); iaq->nirq += n1g * (nrxq1g + nofldrxq1g); if (iaq->nirq <= navail && (itype != INTR_MSI || powerof2(iaq->nirq))) { iaq->intr_flags |= INTR_DIRECT; goto allocate; } /* * Second best option: an interrupt vector for errors, one for * the firmware event queue, and one each for either NIC or * offload rxq's. */ iaq->nirq = T4_EXTRA_INTR; iaq->nirq += n10g * max(nrxq10g, nofldrxq10g); iaq->nirq += n1g * max(nrxq1g, nofldrxq1g); if (iaq->nirq <= navail && (itype != INTR_MSI || powerof2(iaq->nirq))) goto allocate; /* * Next best option: an interrupt vector for errors, one for the * firmware event queue, and at least one per port. At this * point we know we'll have to downsize nrxq or nofldrxq to fit * what's available to us. */ iaq->nirq = T4_EXTRA_INTR; iaq->nirq += n10g + n1g; if (iaq->nirq <= navail) { int leftover = navail - iaq->nirq; if (n10g > 0) { int target = max(nrxq10g, nofldrxq10g); n = 1; while (n < target && leftover >= n10g) { leftover -= n10g; iaq->nirq += n10g; n++; } iaq->nrxq10g = min(n, nrxq10g); #ifdef TCP_OFFLOAD if (is_offload(sc)) iaq->nofldrxq10g = min(n, nofldrxq10g); #endif } if (n1g > 0) { int target = max(nrxq1g, nofldrxq1g); n = 1; while (n < target && leftover >= n1g) { leftover -= n1g; iaq->nirq += n1g; n++; } iaq->nrxq1g = min(n, nrxq1g); #ifdef TCP_OFFLOAD if (is_offload(sc)) iaq->nofldrxq1g = min(n, nofldrxq1g); #endif } if (itype != INTR_MSI || powerof2(iaq->nirq)) goto allocate; } /* * Least desirable option: one interrupt vector for everything. */ iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1; #ifdef TCP_OFFLOAD if (is_offload(sc)) iaq->nofldrxq10g = iaq->nofldrxq1g = 1; #endif allocate: navail = iaq->nirq; rc = 0; if (itype == INTR_MSIX) rc = pci_alloc_msix(sc->dev, &navail); else if (itype == INTR_MSI) rc = pci_alloc_msi(sc->dev, &navail); if (rc == 0) { if (navail == iaq->nirq) return (0); /* * Didn't get the number requested. Use whatever number * the kernel is willing to allocate (it's in navail). */ device_printf(sc->dev, "fewer vectors than requested, " "type=%d, req=%d, rcvd=%d; will downshift req.\n", itype, iaq->nirq, navail); pci_release_msi(sc->dev); goto restart; } device_printf(sc->dev, "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", itype, rc, iaq->nirq, navail); } device_printf(sc->dev, "failed to find a usable interrupt type. " "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, pci_msix_count(sc->dev), pci_msi_count(sc->dev)); return (ENXIO); } #define FW_VERSION(chip) ( \ V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) struct fw_info { uint8_t chip; char *kld_name; char *fw_mod_name; struct fw_hdr fw_hdr; /* XXX: waste of space, need a sparse struct */ } fw_info[] = { { .chip = CHELSIO_T4, .kld_name = "t4fw_cfg", .fw_mod_name = "t4fw", .fw_hdr = { .chip = FW_HDR_CHIP_T4, .fw_ver = htobe32_const(FW_VERSION(T4)), .intfver_nic = FW_INTFVER(T4, NIC), .intfver_vnic = FW_INTFVER(T4, VNIC), .intfver_ofld = FW_INTFVER(T4, OFLD), .intfver_ri = FW_INTFVER(T4, RI), .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), .intfver_iscsi = FW_INTFVER(T4, ISCSI), .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), .intfver_fcoe = FW_INTFVER(T4, FCOE), }, }, { .chip = CHELSIO_T5, .kld_name = "t5fw_cfg", .fw_mod_name = "t5fw", .fw_hdr = { .chip = FW_HDR_CHIP_T5, .fw_ver = htobe32_const(FW_VERSION(T5)), .intfver_nic = FW_INTFVER(T5, NIC), .intfver_vnic = FW_INTFVER(T5, VNIC), .intfver_ofld = FW_INTFVER(T5, OFLD), .intfver_ri = FW_INTFVER(T5, RI), .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), .intfver_iscsi = FW_INTFVER(T5, ISCSI), .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), .intfver_fcoe = FW_INTFVER(T5, FCOE), }, } }; static struct fw_info * find_fw_info(int chip) { int i; for (i = 0; i < nitems(fw_info); i++) { if (fw_info[i].chip == chip) return (&fw_info[i]); } return (NULL); } /* * Is the given firmware API compatible with the one the driver was compiled * with? */ static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) { /* short circuit if it's the exact same firmware version */ if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) return (1); /* * XXX: Is this too conservative? Perhaps I should limit this to the * features that are supported in the driver. */ #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) return (1); #undef SAME_INTF return (0); } /* * The firmware in the KLD is usable, but should it be installed? This routine * explains itself in detail if it indicates the KLD firmware should be * installed. */ static int should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c) { const char *reason; if (!card_fw_usable) { reason = "incompatible or unusable"; goto install; } if (k > c) { reason = "older than the version bundled with this driver"; goto install; } if (t4_fw_install == 2 && k != c) { reason = "different than the version bundled with this driver"; goto install; } return (0); install: if (t4_fw_install == 0) { device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " "but the driver is prohibited from installing a different " "firmware on the card.\n", G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); return (0); } device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " "installing firmware %u.%u.%u.%u on card.\n", G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k)); return (1); } /* * Establish contact with the firmware and determine if we are the master driver * or not, and whether we are responsible for chip initialization. */ static int prep_firmware(struct adapter *sc) { const struct firmware *fw = NULL, *default_cfg; int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1; enum dev_state state; struct fw_info *fw_info; struct fw_hdr *card_fw; /* fw on the card */ const struct fw_hdr *kld_fw; /* fw in the KLD */ const struct fw_hdr *drv_fw; /* fw header the driver was compiled against */ /* Contact firmware. */ rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); if (rc < 0 || state == DEV_STATE_ERR) { rc = -rc; device_printf(sc->dev, "failed to connect to the firmware: %d, %d.\n", rc, state); return (rc); } pf = rc; if (pf == sc->mbox) sc->flags |= MASTER_PF; else if (state == DEV_STATE_UNINIT) { /* * We didn't get to be the master so we definitely won't be * configuring the chip. It's a bug if someone else hasn't * configured it already. */ device_printf(sc->dev, "couldn't be master(%d), " "device not already initialized either(%d).\n", rc, state); return (EDOOFUS); } /* This is the firmware whose headers the driver was compiled against */ fw_info = find_fw_info(chip_id(sc)); if (fw_info == NULL) { device_printf(sc->dev, "unable to look up firmware information for chip %d.\n", chip_id(sc)); return (EINVAL); } drv_fw = &fw_info->fw_hdr; /* * The firmware KLD contains many modules. The KLD name is also the * name of the module that contains the default config file. */ default_cfg = firmware_get(fw_info->kld_name); /* Read the header of the firmware on the card */ card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); rc = -t4_read_flash(sc, FLASH_FW_START, sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1); if (rc == 0) card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw); else { device_printf(sc->dev, "Unable to read card's firmware header: %d\n", rc); card_fw_usable = 0; } /* This is the firmware in the KLD */ fw = firmware_get(fw_info->fw_mod_name); if (fw != NULL) { kld_fw = (const void *)fw->data; kld_fw_usable = fw_compatible(drv_fw, kld_fw); } else { kld_fw = NULL; kld_fw_usable = 0; } if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) { /* * Common case: the firmware on the card is an exact match and * the KLD is an exact match too, or the KLD is * absent/incompatible. Note that t4_fw_install = 2 is ignored * here -- use cxgbetool loadfw if you want to reinstall the * same firmware as the one on the card. */ } else if (kld_fw_usable && state == DEV_STATE_UNINIT && should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver), be32toh(card_fw->fw_ver))) { rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); if (rc != 0) { device_printf(sc->dev, "failed to install firmware: %d\n", rc); goto done; } /* Installed successfully, update the cached header too. */ memcpy(card_fw, kld_fw, sizeof(*card_fw)); card_fw_usable = 1; need_fw_reset = 0; /* already reset as part of load_fw */ } if (!card_fw_usable) { uint32_t d, c, k; d = ntohl(drv_fw->fw_ver); c = ntohl(card_fw->fw_ver); k = kld_fw ? ntohl(kld_fw->fw_ver) : 0; device_printf(sc->dev, "Cannot find a usable firmware: " "fw_install %d, chip state %d, " "driver compiled with %d.%d.%d.%d, " "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n", t4_fw_install, state, G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d), G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k)); rc = EINVAL; goto done; } /* We're using whatever's on the card and it's known to be good. */ sc->params.fw_vers = ntohl(card_fw->fw_ver); snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); t4_get_tp_version(sc, &sc->params.tp_vers); /* Reset device */ if (need_fw_reset && (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) { device_printf(sc->dev, "firmware reset failed: %d.\n", rc); if (rc != ETIMEDOUT && rc != EIO) t4_fw_bye(sc, sc->mbox); goto done; } sc->flags |= FW_OK; rc = get_params__pre_init(sc); if (rc != 0) goto done; /* error message displayed already */ /* Partition adapter resources as specified in the config file. */ if (state == DEV_STATE_UNINIT) { KASSERT(sc->flags & MASTER_PF, ("%s: trying to change chip settings when not master.", __func__)); rc = partition_resources(sc, default_cfg, fw_info->kld_name); if (rc != 0) goto done; /* error message displayed already */ t4_tweak_chip_settings(sc); /* get basic stuff going */ rc = -t4_fw_initialize(sc, sc->mbox); if (rc != 0) { device_printf(sc->dev, "fw init failed: %d.\n", rc); goto done; } } else { snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf); sc->cfcsum = 0; } done: free(card_fw, M_CXGBE); if (fw != NULL) firmware_put(fw, FIRMWARE_UNLOAD); if (default_cfg != NULL) firmware_put(default_cfg, FIRMWARE_UNLOAD); return (rc); } #define FW_PARAM_DEV(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) #define FW_PARAM_PFVF(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) /* * Partition chip resources for use between various PFs, VFs, etc. */ static int partition_resources(struct adapter *sc, const struct firmware *default_cfg, const char *name_prefix) { const struct firmware *cfg = NULL; int rc = 0; struct fw_caps_config_cmd caps; uint32_t mtype, moff, finicsum, cfcsum; /* * Figure out what configuration file to use. Pick the default config * file for the card if the user hasn't specified one explicitly. */ snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file); if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { /* Card specific overrides go here. */ if (pci_get_device(sc->dev) == 0x440a) snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF); if (is_fpga(sc)) snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF); } /* * We need to load another module if the profile is anything except * "default" or "flash". */ if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 && strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) { char s[32]; snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file); cfg = firmware_get(s); if (cfg == NULL) { if (default_cfg != NULL) { device_printf(sc->dev, "unable to load module \"%s\" for " "configuration profile \"%s\", will use " "the default config file instead.\n", s, sc->cfg_file); snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", DEFAULT_CF); } else { device_printf(sc->dev, "unable to load module \"%s\" for " "configuration profile \"%s\", will use " "the config file on the card's flash " "instead.\n", s, sc->cfg_file); snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF); } } } if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 && default_cfg == NULL) { device_printf(sc->dev, "default config file not available, will use the config " "file on the card's flash instead.\n"); snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF); } if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) { u_int cflen, i, n; const uint32_t *cfdata; uint32_t param, val, addr, off, mw_base, mw_aperture; KASSERT(cfg != NULL || default_cfg != NULL, ("%s: no config to upload", __func__)); /* * Ask the firmware where it wants us to upload the config file. */ param = FW_PARAM_DEV(CF); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc != 0) { /* No support for config file? Shouldn't happen. */ device_printf(sc->dev, "failed to query config file location: %d.\n", rc); goto done; } mtype = G_FW_PARAMS_PARAM_Y(val); moff = G_FW_PARAMS_PARAM_Z(val) << 16; /* * XXX: sheer laziness. We deliberately added 4 bytes of * useless stuffing/comments at the end of the config file so * it's ok to simply throw away the last remaining bytes when * the config file is not an exact multiple of 4. This also * helps with the validate_mt_off_len check. */ if (cfg != NULL) { cflen = cfg->datasize & ~3; cfdata = cfg->data; } else { cflen = default_cfg->datasize & ~3; cfdata = default_cfg->data; } if (cflen > FLASH_CFG_MAX_SIZE) { device_printf(sc->dev, "config file too long (%d, max allowed is %d). " "Will try to use the config on the card, if any.\n", cflen, FLASH_CFG_MAX_SIZE); goto use_config_on_flash; } rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); if (rc != 0) { device_printf(sc->dev, "%s: addr (%d/0x%x) or len %d is not valid: %d. " "Will try to use the config on the card, if any.\n", __func__, mtype, moff, cflen, rc); goto use_config_on_flash; } memwin_info(sc, 2, &mw_base, &mw_aperture); while (cflen) { off = position_memwin(sc, 2, addr); n = min(cflen, mw_aperture - off); for (i = 0; i < n; i += 4) t4_write_reg(sc, mw_base + off + i, *cfdata++); cflen -= n; addr += n; } } else { use_config_on_flash: mtype = FW_MEMTYPE_CF_FLASH; moff = t4_flash_cfg_addr(sc); } bzero(&caps, sizeof(caps)); caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps)); rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); if (rc != 0) { device_printf(sc->dev, "failed to pre-process config file: %d " "(mtype %d, moff 0x%x).\n", rc, mtype, moff); goto done; } finicsum = be32toh(caps.finicsum); cfcsum = be32toh(caps.cfcsum); if (finicsum != cfcsum) { device_printf(sc->dev, "WARNING: config file checksum mismatch: %08x %08x\n", finicsum, cfcsum); } sc->cfcsum = cfcsum; #define LIMIT_CAPS(x) do { \ caps.x &= htobe16(t4_##x##_allowed); \ sc->x = htobe16(caps.x); \ } while (0) /* * Let the firmware know what features will (not) be used so it can tune * things accordingly. */ LIMIT_CAPS(linkcaps); LIMIT_CAPS(niccaps); LIMIT_CAPS(toecaps); LIMIT_CAPS(rdmacaps); LIMIT_CAPS(iscsicaps); LIMIT_CAPS(fcoecaps); #undef LIMIT_CAPS caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); if (rc != 0) { device_printf(sc->dev, "failed to process config file: %d.\n", rc); } done: if (cfg != NULL) firmware_put(cfg, FIRMWARE_UNLOAD); return (rc); } /* * Retrieve parameters that are needed (or nice to have) very early. */ static int get_params__pre_init(struct adapter *sc) { int rc; uint32_t param[2], val[2]; struct fw_devlog_cmd cmd; struct devlog_params *dlog = &sc->params.devlog; param[0] = FW_PARAM_DEV(PORTVEC); param[1] = FW_PARAM_DEV(CCLK); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query parameters (pre_init): %d.\n", rc); return (rc); } sc->params.portvec = val[0]; sc->params.nports = bitcount32(val[0]); sc->params.vpd.cclk = val[1]; /* Read device log parameters. */ bzero(&cmd, sizeof(cmd)); cmd.op_to_write = htobe32(V_FW_CMD_OP(FW_DEVLOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); cmd.retval_len16 = htobe32(FW_LEN16(cmd)); rc = -t4_wr_mbox(sc, sc->mbox, &cmd, sizeof(cmd), &cmd); if (rc != 0) { device_printf(sc->dev, "failed to get devlog parameters: %d.\n", rc); bzero(dlog, sizeof (*dlog)); rc = 0; /* devlog isn't critical for device operation */ } else { val[0] = be32toh(cmd.memtype_devlog_memaddr16_devlog); dlog->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(val[0]); dlog->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(val[0]) << 4; dlog->size = be32toh(cmd.memsize_devlog); } return (rc); } /* * Retrieve various parameters that are of interest to the driver. The device * has been initialized by the firmware at this point. */ static int get_params__post_init(struct adapter *sc) { int rc; uint32_t param[7], val[7]; struct fw_caps_config_cmd caps; param[0] = FW_PARAM_PFVF(IQFLINT_START); param[1] = FW_PARAM_PFVF(EQ_START); param[2] = FW_PARAM_PFVF(FILTER_START); param[3] = FW_PARAM_PFVF(FILTER_END); param[4] = FW_PARAM_PFVF(L2T_START); param[5] = FW_PARAM_PFVF(L2T_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query parameters (post_init): %d.\n", rc); return (rc); } sc->sge.iq_start = val[0]; sc->sge.eq_start = val[1]; sc->tids.ftid_base = val[2]; sc->tids.nftids = val[3] - val[2] + 1; sc->vres.l2t.start = val[4]; sc->vres.l2t.size = val[5] - val[4] + 1; KASSERT(sc->vres.l2t.size <= L2T_SIZE, ("%s: L2 table size (%u) larger than expected (%u)", __func__, sc->vres.l2t.size, L2T_SIZE)); /* get capabilites */ bzero(&caps, sizeof(caps)); caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); if (rc != 0) { device_printf(sc->dev, "failed to get card capabilities: %d.\n", rc); return (rc); } if (caps.toecaps) { /* query offload-related parameters */ param[0] = FW_PARAM_DEV(NTID); param[1] = FW_PARAM_PFVF(SERVER_START); param[2] = FW_PARAM_PFVF(SERVER_END); param[3] = FW_PARAM_PFVF(TDDP_START); param[4] = FW_PARAM_PFVF(TDDP_END); param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query TOE parameters: %d.\n", rc); return (rc); } sc->tids.ntids = val[0]; sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); sc->tids.stid_base = val[1]; sc->tids.nstids = val[2] - val[1] + 1; sc->vres.ddp.start = val[3]; sc->vres.ddp.size = val[4] - val[3] + 1; sc->params.ofldq_wr_cred = val[5]; sc->params.offload = 1; } if (caps.rdmacaps) { param[0] = FW_PARAM_PFVF(STAG_START); param[1] = FW_PARAM_PFVF(STAG_END); param[2] = FW_PARAM_PFVF(RQ_START); param[3] = FW_PARAM_PFVF(RQ_END); param[4] = FW_PARAM_PFVF(PBL_START); param[5] = FW_PARAM_PFVF(PBL_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters(1): %d.\n", rc); return (rc); } sc->vres.stag.start = val[0]; sc->vres.stag.size = val[1] - val[0] + 1; sc->vres.rq.start = val[2]; sc->vres.rq.size = val[3] - val[2] + 1; sc->vres.pbl.start = val[4]; sc->vres.pbl.size = val[5] - val[4] + 1; param[0] = FW_PARAM_PFVF(SQRQ_START); param[1] = FW_PARAM_PFVF(SQRQ_END); param[2] = FW_PARAM_PFVF(CQ_START); param[3] = FW_PARAM_PFVF(CQ_END); param[4] = FW_PARAM_PFVF(OCQ_START); param[5] = FW_PARAM_PFVF(OCQ_END); rc = -t4_query_params(sc, 0, 0, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters(2): %d.\n", rc); return (rc); } sc->vres.qp.start = val[0]; sc->vres.qp.size = val[1] - val[0] + 1; sc->vres.cq.start = val[2]; sc->vres.cq.size = val[3] - val[2] + 1; sc->vres.ocq.start = val[4]; sc->vres.ocq.size = val[5] - val[4] + 1; } if (caps.iscsicaps) { param[0] = FW_PARAM_PFVF(ISCSI_START); param[1] = FW_PARAM_PFVF(ISCSI_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query iSCSI parameters: %d.\n", rc); return (rc); } sc->vres.iscsi.start = val[0]; sc->vres.iscsi.size = val[1] - val[0] + 1; } /* * We've got the params we wanted to query via the firmware. Now grab * some others directly from the chip. */ rc = t4_read_chip_settings(sc); return (rc); } static int set_params__post_init(struct adapter *sc) { uint32_t param, val; /* ask for encapsulated CPLs */ param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); val = 1; (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); return (0); } #undef FW_PARAM_PFVF #undef FW_PARAM_DEV static void t4_set_desc(struct adapter *sc) { char buf[128]; struct adapter_params *p = &sc->params; snprintf(buf, sizeof(buf), "Chelsio %s %sNIC (rev %d), S/N:%s, E/C:%s", p->vpd.id, is_offload(sc) ? "R" : "", chip_rev(sc), p->vpd.sn, p->vpd.ec); device_set_desc_copy(sc->dev, buf); } static void build_medialist(struct port_info *pi) { struct ifmedia *media = &pi->media; int data, m; PORT_LOCK(pi); ifmedia_removeall(media); m = IFM_ETHER | IFM_FDX; data = (pi->port_type << 8) | pi->mod_type; switch(pi->port_type) { case FW_PORT_TYPE_BT_XFI: ifmedia_add(media, m | IFM_10G_T, data, NULL); break; case FW_PORT_TYPE_BT_XAUI: ifmedia_add(media, m | IFM_10G_T, data, NULL); /* fall through */ case FW_PORT_TYPE_BT_SGMII: ifmedia_add(media, m | IFM_1000_T, data, NULL); ifmedia_add(media, m | IFM_100_TX, data, NULL); ifmedia_add(media, IFM_ETHER | IFM_AUTO, data, NULL); ifmedia_set(media, IFM_ETHER | IFM_AUTO); break; case FW_PORT_TYPE_CX4: ifmedia_add(media, m | IFM_10G_CX4, data, NULL); ifmedia_set(media, m | IFM_10G_CX4); break; case FW_PORT_TYPE_SFP: case FW_PORT_TYPE_FIBER_XFI: case FW_PORT_TYPE_FIBER_XAUI: switch (pi->mod_type) { case FW_PORT_MOD_TYPE_LR: ifmedia_add(media, m | IFM_10G_LR, data, NULL); ifmedia_set(media, m | IFM_10G_LR); break; case FW_PORT_MOD_TYPE_SR: ifmedia_add(media, m | IFM_10G_SR, data, NULL); ifmedia_set(media, m | IFM_10G_SR); break; case FW_PORT_MOD_TYPE_LRM: ifmedia_add(media, m | IFM_10G_LRM, data, NULL); ifmedia_set(media, m | IFM_10G_LRM); break; case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: ifmedia_add(media, m | IFM_10G_TWINAX, data, NULL); ifmedia_set(media, m | IFM_10G_TWINAX); break; case FW_PORT_MOD_TYPE_NONE: m &= ~IFM_FDX; ifmedia_add(media, m | IFM_NONE, data, NULL); ifmedia_set(media, m | IFM_NONE); break; case FW_PORT_MOD_TYPE_NA: case FW_PORT_MOD_TYPE_ER: default: device_printf(pi->dev, "unknown port_type (%d), mod_type (%d)\n", pi->port_type, pi->mod_type); ifmedia_add(media, m | IFM_UNKNOWN, data, NULL); ifmedia_set(media, m | IFM_UNKNOWN); break; } break; case FW_PORT_TYPE_QSFP: switch (pi->mod_type) { case FW_PORT_MOD_TYPE_LR: ifmedia_add(media, m | IFM_40G_LR4, data, NULL); ifmedia_set(media, m | IFM_40G_LR4); break; case FW_PORT_MOD_TYPE_SR: ifmedia_add(media, m | IFM_40G_SR4, data, NULL); ifmedia_set(media, m | IFM_40G_SR4); break; case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: ifmedia_add(media, m | IFM_40G_CR4, data, NULL); ifmedia_set(media, m | IFM_40G_CR4); break; case FW_PORT_MOD_TYPE_NONE: m &= ~IFM_FDX; ifmedia_add(media, m | IFM_NONE, data, NULL); ifmedia_set(media, m | IFM_NONE); break; default: device_printf(pi->dev, "unknown port_type (%d), mod_type (%d)\n", pi->port_type, pi->mod_type); ifmedia_add(media, m | IFM_UNKNOWN, data, NULL); ifmedia_set(media, m | IFM_UNKNOWN); break; } break; default: device_printf(pi->dev, "unknown port_type (%d), mod_type (%d)\n", pi->port_type, pi->mod_type); ifmedia_add(media, m | IFM_UNKNOWN, data, NULL); ifmedia_set(media, m | IFM_UNKNOWN); break; } PORT_UNLOCK(pi); } #define FW_MAC_EXACT_CHUNK 7 /* * Program the port's XGMAC based on parameters in ifnet. The caller also * indicates which parameters should be programmed (the rest are left alone). */ static int update_mac_settings(struct port_info *pi, int flags) { int rc; struct ifnet *ifp = pi->ifp; struct adapter *sc = pi->adapter; int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; ASSERT_SYNCHRONIZED_OP(sc); KASSERT(flags, ("%s: not told what to update.", __func__)); if (flags & XGMAC_MTU) mtu = ifp->if_mtu; if (flags & XGMAC_PROMISC) promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; if (flags & XGMAC_ALLMULTI) allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; if (flags & XGMAC_VLANEX) vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; rc = -t4_set_rxmode(sc, sc->mbox, pi->viid, mtu, promisc, allmulti, 1, vlanex, false); if (rc) { if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, rc); return (rc); } if (flags & XGMAC_UCADDR) { uint8_t ucaddr[ETHER_ADDR_LEN]; bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); rc = t4_change_mac(sc, sc->mbox, pi->viid, pi->xact_addr_filt, ucaddr, true, true); if (rc < 0) { rc = -rc; if_printf(ifp, "change_mac failed: %d\n", rc); return (rc); } else { pi->xact_addr_filt = rc; rc = 0; } } if (flags & XGMAC_MCADDRS) { const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; int del = 1; uint64_t hash = 0; struct ifmultiaddr *ifma; int i = 0, j; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mcaddr[i++] = LLADDR((struct sockaddr_dl *)ifma->ifma_addr); if (i == FW_MAC_EXACT_CHUNK) { rc = t4_alloc_mac_filt(sc, sc->mbox, pi->viid, del, i, mcaddr, NULL, &hash, 0); if (rc < 0) { rc = -rc; for (j = 0; j < i; j++) { if_printf(ifp, "failed to add mc address" " %02x:%02x:%02x:" "%02x:%02x:%02x rc=%d\n", mcaddr[j][0], mcaddr[j][1], mcaddr[j][2], mcaddr[j][3], mcaddr[j][4], mcaddr[j][5], rc); } goto mcfail; } del = 0; i = 0; } } if (i > 0) { rc = t4_alloc_mac_filt(sc, sc->mbox, pi->viid, del, i, mcaddr, NULL, &hash, 0); if (rc < 0) { rc = -rc; for (j = 0; j < i; j++) { if_printf(ifp, "failed to add mc address" " %02x:%02x:%02x:" "%02x:%02x:%02x rc=%d\n", mcaddr[j][0], mcaddr[j][1], mcaddr[j][2], mcaddr[j][3], mcaddr[j][4], mcaddr[j][5], rc); } goto mcfail; } } rc = -t4_set_addr_hash(sc, sc->mbox, pi->viid, 0, hash, 0); if (rc != 0) if_printf(ifp, "failed to set mc address hash: %d", rc); mcfail: if_maddr_runlock(ifp); } return (rc); } int begin_synchronized_op(struct adapter *sc, struct port_info *pi, int flags, char *wmesg) { int rc, pri; #ifdef WITNESS /* the caller thinks it's ok to sleep, but is it really? */ if (flags & SLEEP_OK) pause("t4slptst", 1); #endif if (INTR_OK) pri = PCATCH; else pri = 0; ADAPTER_LOCK(sc); for (;;) { if (pi && IS_DOOMED(pi)) { rc = ENXIO; goto done; } if (!IS_BUSY(sc)) { rc = 0; break; } if (!(flags & SLEEP_OK)) { rc = EBUSY; goto done; } if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { rc = EINTR; goto done; } } KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); SET_BUSY(sc); #ifdef INVARIANTS sc->last_op = wmesg; sc->last_op_thr = curthread; #endif done: if (!(flags & HOLD_LOCK) || rc) ADAPTER_UNLOCK(sc); return (rc); } void end_synchronized_op(struct adapter *sc, int flags) { if (flags & LOCK_HELD) ADAPTER_LOCK_ASSERT_OWNED(sc); else ADAPTER_LOCK(sc); KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); CLR_BUSY(sc); wakeup(&sc->flags); ADAPTER_UNLOCK(sc); } static int cxgbe_init_synchronized(struct port_info *pi) { struct adapter *sc = pi->adapter; struct ifnet *ifp = pi->ifp; int rc = 0; ASSERT_SYNCHRONIZED_OP(sc); if (isset(&sc->open_device_map, pi->port_id)) { KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("mismatch between open_device_map and if_drv_flags")); return (0); /* already running */ } if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_full_init(sc)) != 0)) return (rc); /* error message displayed already */ if (!(pi->flags & PORT_INIT_DONE) && ((rc = port_full_init(pi)) != 0)) return (rc); /* error message displayed already */ rc = update_mac_settings(pi, XGMAC_ALL); if (rc) goto done; /* error message displayed already */ rc = -t4_link_start(sc, sc->mbox, pi->tx_chan, &pi->link_cfg); if (rc != 0) { if_printf(ifp, "start_link failed: %d\n", rc); goto done; } rc = -t4_enable_vi(sc, sc->mbox, pi->viid, true, true); if (rc != 0) { if_printf(ifp, "enable_vi failed: %d\n", rc); goto done; } /* * The first iq of the first port to come up is used for tracing. */ if (sc->traceq < 0) { sc->traceq = sc->sge.rxq[pi->first_rxq].iq.abs_id; t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | V_QUEUENUMBER(sc->traceq)); pi->flags |= HAS_TRACEQ; } /* all ok */ setbit(&sc->open_device_map, pi->port_id); PORT_LOCK(pi); ifp->if_drv_flags |= IFF_DRV_RUNNING; PORT_UNLOCK(pi); callout_reset(&pi->tick, hz, cxgbe_tick, pi); done: if (rc != 0) cxgbe_uninit_synchronized(pi); return (rc); } /* * Idempotent. */ static int cxgbe_uninit_synchronized(struct port_info *pi) { struct adapter *sc = pi->adapter; struct ifnet *ifp = pi->ifp; int rc; ASSERT_SYNCHRONIZED_OP(sc); /* * Disable the VI so that all its data in either direction is discarded * by the MPS. Leave everything else (the queues, interrupts, and 1Hz * tick) intact as the TP can deliver negative advice or data that it's * holding in its RAM (for an offloaded connection) even after the VI is * disabled. */ rc = -t4_enable_vi(sc, sc->mbox, pi->viid, false, false); if (rc) { if_printf(ifp, "disable_vi failed: %d\n", rc); return (rc); } clrbit(&sc->open_device_map, pi->port_id); PORT_LOCK(pi); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; PORT_UNLOCK(pi); pi->link_cfg.link_ok = 0; pi->link_cfg.speed = 0; pi->linkdnrc = -1; t4_os_link_changed(sc, pi->port_id, 0, -1); return (0); } /* * It is ok for this function to fail midway and return right away. t4_detach * will walk the entire sc->irq list and clean up whatever is valid. */ static int setup_intr_handlers(struct adapter *sc) { int rc, rid, p, q; char s[8]; struct irq *irq; struct port_info *pi; struct sge_rxq *rxq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif /* * Setup interrupts. */ irq = &sc->irq[0]; rid = sc->intr_type == INTR_INTX ? 0 : 1; if (sc->intr_count == 1) { KASSERT(!(sc->flags & INTR_DIRECT), ("%s: single interrupt && INTR_DIRECT?", __func__)); rc = t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"); if (rc != 0) return (rc); } else { /* Multiple interrupts. */ KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, ("%s: too few intr.", __func__)); /* The first one is always error intr */ rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); if (rc != 0) return (rc); irq++; rid++; /* The second one is always the firmware event queue */ rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sc->sge.fwq, "evt"); if (rc != 0) return (rc); irq++; rid++; /* * Note that if INTR_DIRECT is not set then either the NIC rx * queues or (exclusive or) the TOE rx queueus will be taking * direct interrupts. * * There is no need to check for is_offload(sc) as nofldrxq * will be 0 if offload is disabled. */ for_each_port(sc, p) { pi = sc->port[p]; #ifdef TCP_OFFLOAD /* * Skip over the NIC queues if they aren't taking direct * interrupts. */ if (!(sc->flags & INTR_DIRECT) && pi->nofldrxq > pi->nrxq) goto ofld_queues; #endif rxq = &sc->sge.rxq[pi->first_rxq]; for (q = 0; q < pi->nrxq; q++, rxq++) { snprintf(s, sizeof(s), "%d.%d", p, q); rc = t4_alloc_irq(sc, irq, rid, t4_intr, rxq, s); if (rc != 0) return (rc); irq++; rid++; } #ifdef TCP_OFFLOAD /* * Skip over the offload queues if they aren't taking * direct interrupts. */ if (!(sc->flags & INTR_DIRECT)) continue; ofld_queues: ofld_rxq = &sc->sge.ofld_rxq[pi->first_ofld_rxq]; for (q = 0; q < pi->nofldrxq; q++, ofld_rxq++) { snprintf(s, sizeof(s), "%d,%d", p, q); rc = t4_alloc_irq(sc, irq, rid, t4_intr, ofld_rxq, s); if (rc != 0) return (rc); irq++; rid++; } #endif } } return (0); } static int adapter_full_init(struct adapter *sc) { int rc, i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); KASSERT((sc->flags & FULL_INIT_DONE) == 0, ("%s: FULL_INIT_DONE already", __func__)); /* * queues that belong to the adapter (not any particular port). */ rc = t4_setup_adapter_queues(sc); if (rc != 0) goto done; for (i = 0; i < nitems(sc->tq); i++) { sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->tq[i]); if (sc->tq[i] == NULL) { device_printf(sc->dev, "failed to allocate task queue %d\n", i); rc = ENOMEM; goto done; } taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", device_get_nameunit(sc->dev), i); } t4_intr_enable(sc); sc->flags |= FULL_INIT_DONE; done: if (rc != 0) adapter_full_uninit(sc); return (rc); } static int adapter_full_uninit(struct adapter *sc) { int i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); t4_teardown_adapter_queues(sc); for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { taskqueue_free(sc->tq[i]); sc->tq[i] = NULL; } sc->flags &= ~FULL_INIT_DONE; return (0); } static int port_full_init(struct port_info *pi) { struct adapter *sc = pi->adapter; struct ifnet *ifp = pi->ifp; uint16_t *rss; struct sge_rxq *rxq; int rc, i; ASSERT_SYNCHRONIZED_OP(sc); KASSERT((pi->flags & PORT_INIT_DONE) == 0, ("%s: PORT_INIT_DONE already", __func__)); sysctl_ctx_init(&pi->ctx); pi->flags |= PORT_SYSCTL_CTX; /* * Allocate tx/rx/fl queues for this port. */ rc = t4_setup_port_queues(pi); if (rc != 0) goto done; /* error message displayed already */ /* * Setup RSS for this port. */ rss = malloc(pi->nrxq * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); for_each_rxq(pi, i, rxq) { rss[i] = rxq->iq.abs_id; } rc = -t4_config_rss_range(sc, sc->mbox, pi->viid, 0, pi->rss_size, rss, pi->nrxq); free(rss, M_CXGBE); if (rc != 0) { if_printf(ifp, "rss_config failed: %d\n", rc); goto done; } pi->flags |= PORT_INIT_DONE; done: if (rc != 0) port_full_uninit(pi); return (rc); } /* * Idempotent. */ static int port_full_uninit(struct port_info *pi) { struct adapter *sc = pi->adapter; int i; struct sge_rxq *rxq; struct sge_txq *txq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; struct sge_wrq *ofld_txq; #endif if (pi->flags & PORT_INIT_DONE) { /* Need to quiesce queues. XXX: ctrl queues? */ for_each_txq(pi, i, txq) { quiesce_eq(sc, &txq->eq); } #ifdef TCP_OFFLOAD for_each_ofld_txq(pi, i, ofld_txq) { quiesce_eq(sc, &ofld_txq->eq); } #endif for_each_rxq(pi, i, rxq) { quiesce_iq(sc, &rxq->iq); quiesce_fl(sc, &rxq->fl); } #ifdef TCP_OFFLOAD for_each_ofld_rxq(pi, i, ofld_rxq) { quiesce_iq(sc, &ofld_rxq->iq); quiesce_fl(sc, &ofld_rxq->fl); } #endif } t4_teardown_port_queues(pi); pi->flags &= ~PORT_INIT_DONE; return (0); } static void quiesce_eq(struct adapter *sc, struct sge_eq *eq) { EQ_LOCK(eq); eq->flags |= EQ_DOOMED; /* * Wait for the response to a credit flush if one's * pending. */ while (eq->flags & EQ_CRFLUSHED) mtx_sleep(eq, &eq->eq_lock, 0, "crflush", 0); EQ_UNLOCK(eq); callout_drain(&eq->tx_callout); /* XXX: iffy */ pause("callout", 10); /* Still iffy */ taskqueue_drain(sc->tq[eq->tx_chan], &eq->tx_task); } static void quiesce_iq(struct adapter *sc, struct sge_iq *iq) { (void) sc; /* unused */ /* Synchronize with the interrupt handler */ while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) pause("iqfree", 1); } static void quiesce_fl(struct adapter *sc, struct sge_fl *fl) { mtx_lock(&sc->sfl_lock); FL_LOCK(fl); fl->flags |= FL_DOOMED; FL_UNLOCK(fl); mtx_unlock(&sc->sfl_lock); callout_drain(&sc->sfl_callout); KASSERT((fl->flags & FL_STARVING) == 0, ("%s: still starving", __func__)); } static int t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, driver_intr_t *handler, void *arg, char *name) { int rc; irq->rid = rid; irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, RF_SHAREABLE | RF_ACTIVE); if (irq->res == NULL) { device_printf(sc->dev, "failed to allocate IRQ for rid %d, name %s.\n", rid, name); return (ENOMEM); } rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, NULL, handler, arg, &irq->tag); if (rc != 0) { device_printf(sc->dev, "failed to setup interrupt for rid %d, name %s: %d\n", rid, name, rc); } else if (name) bus_describe_intr(sc->dev, irq->res, irq->tag, name); return (rc); } static int t4_free_irq(struct adapter *sc, struct irq *irq) { if (irq->tag) bus_teardown_intr(sc->dev, irq->res, irq->tag); if (irq->res) bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); bzero(irq, sizeof(*irq)); return (0); } static void reg_block_dump(struct adapter *sc, uint8_t *buf, unsigned int start, unsigned int end) { uint32_t *p = (uint32_t *)(buf + start); for ( ; start <= end; start += sizeof(uint32_t)) *p++ = t4_read_reg(sc, start); } static void t4_get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) { int i, n; const unsigned int *reg_ranges; static const unsigned int t4_reg_ranges[] = { 0x1008, 0x1108, 0x1180, 0x11b4, 0x11fc, 0x123c, 0x1300, 0x173c, 0x1800, 0x18fc, 0x3000, 0x30d8, 0x30e0, 0x5924, 0x5960, 0x59d4, 0x5a00, 0x5af8, 0x6000, 0x6098, 0x6100, 0x6150, 0x6200, 0x6208, 0x6240, 0x6248, 0x6280, 0x6338, 0x6370, 0x638c, 0x6400, 0x643c, 0x6500, 0x6524, 0x6a00, 0x6a38, 0x6a60, 0x6a78, 0x6b00, 0x6b84, 0x6bf0, 0x6c84, 0x6cf0, 0x6d84, 0x6df0, 0x6e84, 0x6ef0, 0x6f84, 0x6ff0, 0x7084, 0x70f0, 0x7184, 0x71f0, 0x7284, 0x72f0, 0x7384, 0x73f0, 0x7450, 0x7500, 0x7530, 0x7600, 0x761c, 0x7680, 0x76cc, 0x7700, 0x7798, 0x77c0, 0x77fc, 0x7900, 0x79fc, 0x7b00, 0x7c38, 0x7d00, 0x7efc, 0x8dc0, 0x8e1c, 0x8e30, 0x8e78, 0x8ea0, 0x8f6c, 0x8fc0, 0x9074, 0x90fc, 0x90fc, 0x9400, 0x9458, 0x9600, 0x96bc, 0x9800, 0x9808, 0x9820, 0x983c, 0x9850, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0x9fec, 0xd004, 0xd03c, 0xdfc0, 0xdfe0, 0xe000, 0xea7c, 0xf000, 0x11190, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x19124, 0x19150, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x1924c, 0x193f8, 0x19474, 0x19490, 0x194f8, 0x19800, 0x19f30, 0x1a000, 0x1a06c, 0x1a0b0, 0x1a120, 0x1a128, 0x1a138, 0x1a190, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e040, 0x1e04c, 0x1e284, 0x1e28c, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e440, 0x1e44c, 0x1e684, 0x1e68c, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e840, 0x1e84c, 0x1ea84, 0x1ea8c, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec40, 0x1ec4c, 0x1ee84, 0x1ee8c, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f040, 0x1f04c, 0x1f284, 0x1f28c, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f440, 0x1f44c, 0x1f684, 0x1f68c, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f840, 0x1f84c, 0x1fa84, 0x1fa8c, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc40, 0x1fc4c, 0x1fe84, 0x1fe8c, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x20000, 0x2002c, 0x20100, 0x2013c, 0x20190, 0x201c8, 0x20200, 0x20318, 0x20400, 0x20528, 0x20540, 0x20614, 0x21000, 0x21040, 0x2104c, 0x21060, 0x210c0, 0x210ec, 0x21200, 0x21268, 0x21270, 0x21284, 0x212fc, 0x21388, 0x21400, 0x21404, 0x21500, 0x21518, 0x2152c, 0x2153c, 0x21550, 0x21554, 0x21600, 0x21600, 0x21608, 0x21628, 0x21630, 0x2163c, 0x21700, 0x2171c, 0x21780, 0x2178c, 0x21800, 0x21c38, 0x21c80, 0x21d7c, 0x21e00, 0x21e04, 0x22000, 0x2202c, 0x22100, 0x2213c, 0x22190, 0x221c8, 0x22200, 0x22318, 0x22400, 0x22528, 0x22540, 0x22614, 0x23000, 0x23040, 0x2304c, 0x23060, 0x230c0, 0x230ec, 0x23200, 0x23268, 0x23270, 0x23284, 0x232fc, 0x23388, 0x23400, 0x23404, 0x23500, 0x23518, 0x2352c, 0x2353c, 0x23550, 0x23554, 0x23600, 0x23600, 0x23608, 0x23628, 0x23630, 0x2363c, 0x23700, 0x2371c, 0x23780, 0x2378c, 0x23800, 0x23c38, 0x23c80, 0x23d7c, 0x23e00, 0x23e04, 0x24000, 0x2402c, 0x24100, 0x2413c, 0x24190, 0x241c8, 0x24200, 0x24318, 0x24400, 0x24528, 0x24540, 0x24614, 0x25000, 0x25040, 0x2504c, 0x25060, 0x250c0, 0x250ec, 0x25200, 0x25268, 0x25270, 0x25284, 0x252fc, 0x25388, 0x25400, 0x25404, 0x25500, 0x25518, 0x2552c, 0x2553c, 0x25550, 0x25554, 0x25600, 0x25600, 0x25608, 0x25628, 0x25630, 0x2563c, 0x25700, 0x2571c, 0x25780, 0x2578c, 0x25800, 0x25c38, 0x25c80, 0x25d7c, 0x25e00, 0x25e04, 0x26000, 0x2602c, 0x26100, 0x2613c, 0x26190, 0x261c8, 0x26200, 0x26318, 0x26400, 0x26528, 0x26540, 0x26614, 0x27000, 0x27040, 0x2704c, 0x27060, 0x270c0, 0x270ec, 0x27200, 0x27268, 0x27270, 0x27284, 0x272fc, 0x27388, 0x27400, 0x27404, 0x27500, 0x27518, 0x2752c, 0x2753c, 0x27550, 0x27554, 0x27600, 0x27600, 0x27608, 0x27628, 0x27630, 0x2763c, 0x27700, 0x2771c, 0x27780, 0x2778c, 0x27800, 0x27c38, 0x27c80, 0x27d7c, 0x27e00, 0x27e04 }; static const unsigned int t5_reg_ranges[] = { 0x1008, 0x1148, 0x1180, 0x11b4, 0x11fc, 0x123c, 0x1280, 0x173c, 0x1800, 0x18fc, 0x3000, 0x3028, 0x3060, 0x30d8, 0x30e0, 0x30fc, 0x3140, 0x357c, 0x35a8, 0x35cc, 0x35ec, 0x35ec, 0x3600, 0x5624, 0x56cc, 0x575c, 0x580c, 0x5814, 0x5890, 0x58bc, 0x5940, 0x59dc, 0x59fc, 0x5a18, 0x5a60, 0x5a9c, 0x5b94, 0x5bfc, 0x6000, 0x6040, 0x6058, 0x614c, 0x7700, 0x7798, 0x77c0, 0x78fc, 0x7b00, 0x7c54, 0x7d00, 0x7efc, 0x8dc0, 0x8de0, 0x8df8, 0x8e84, 0x8ea0, 0x8f84, 0x8fc0, 0x90f8, 0x9400, 0x9470, 0x9600, 0x96f4, 0x9800, 0x9808, 0x9820, 0x983c, 0x9850, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0xa020, 0xd004, 0xd03c, 0xdfc0, 0xdfe0, 0xe000, 0x11088, 0x1109c, 0x1117c, 0x11190, 0x11204, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x19124, 0x19150, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x19290, 0x193f8, 0x19474, 0x19490, 0x194cc, 0x194f0, 0x194f8, 0x19c00, 0x19c60, 0x19c94, 0x19e10, 0x19e50, 0x19f34, 0x19f40, 0x19f50, 0x19f90, 0x19fe4, 0x1a000, 0x1a06c, 0x1a0b0, 0x1a120, 0x1a128, 0x1a138, 0x1a190, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e008, 0x1e00c, 0x1e040, 0x1e04c, 0x1e284, 0x1e290, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e408, 0x1e40c, 0x1e440, 0x1e44c, 0x1e684, 0x1e690, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e808, 0x1e80c, 0x1e840, 0x1e84c, 0x1ea84, 0x1ea90, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec08, 0x1ec0c, 0x1ec40, 0x1ec4c, 0x1ee84, 0x1ee90, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f008, 0x1f00c, 0x1f040, 0x1f04c, 0x1f284, 0x1f290, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f408, 0x1f40c, 0x1f440, 0x1f44c, 0x1f684, 0x1f690, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f808, 0x1f80c, 0x1f840, 0x1f84c, 0x1fa84, 0x1fa90, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc08, 0x1fc0c, 0x1fc40, 0x1fc4c, 0x1fe84, 0x1fe90, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x30000, 0x30030, 0x30100, 0x30144, 0x30190, 0x301d0, 0x30200, 0x30318, 0x30400, 0x3052c, 0x30540, 0x3061c, 0x30800, 0x30834, 0x308c0, 0x30908, 0x30910, 0x309ac, 0x30a00, 0x30a2c, 0x30a44, 0x30a50, 0x30a74, 0x30c24, 0x30d00, 0x30d00, 0x30d08, 0x30d14, 0x30d1c, 0x30d20, 0x30d3c, 0x30d50, 0x31200, 0x3120c, 0x31220, 0x31220, 0x31240, 0x31240, 0x31600, 0x3160c, 0x31a00, 0x31a1c, 0x31e00, 0x31e20, 0x31e38, 0x31e3c, 0x31e80, 0x31e80, 0x31e88, 0x31ea8, 0x31eb0, 0x31eb4, 0x31ec8, 0x31ed4, 0x31fb8, 0x32004, 0x32200, 0x32200, 0x32208, 0x32240, 0x32248, 0x32280, 0x32288, 0x322c0, 0x322c8, 0x322fc, 0x32600, 0x32630, 0x32a00, 0x32abc, 0x32b00, 0x32b70, 0x33000, 0x33048, 0x33060, 0x3309c, 0x330f0, 0x33148, 0x33160, 0x3319c, 0x331f0, 0x332e4, 0x332f8, 0x333e4, 0x333f8, 0x33448, 0x33460, 0x3349c, 0x334f0, 0x33548, 0x33560, 0x3359c, 0x335f0, 0x336e4, 0x336f8, 0x337e4, 0x337f8, 0x337fc, 0x33814, 0x33814, 0x3382c, 0x3382c, 0x33880, 0x3388c, 0x338e8, 0x338ec, 0x33900, 0x33948, 0x33960, 0x3399c, 0x339f0, 0x33ae4, 0x33af8, 0x33b10, 0x33b28, 0x33b28, 0x33b3c, 0x33b50, 0x33bf0, 0x33c10, 0x33c28, 0x33c28, 0x33c3c, 0x33c50, 0x33cf0, 0x33cfc, 0x34000, 0x34030, 0x34100, 0x34144, 0x34190, 0x341d0, 0x34200, 0x34318, 0x34400, 0x3452c, 0x34540, 0x3461c, 0x34800, 0x34834, 0x348c0, 0x34908, 0x34910, 0x349ac, 0x34a00, 0x34a2c, 0x34a44, 0x34a50, 0x34a74, 0x34c24, 0x34d00, 0x34d00, 0x34d08, 0x34d14, 0x34d1c, 0x34d20, 0x34d3c, 0x34d50, 0x35200, 0x3520c, 0x35220, 0x35220, 0x35240, 0x35240, 0x35600, 0x3560c, 0x35a00, 0x35a1c, 0x35e00, 0x35e20, 0x35e38, 0x35e3c, 0x35e80, 0x35e80, 0x35e88, 0x35ea8, 0x35eb0, 0x35eb4, 0x35ec8, 0x35ed4, 0x35fb8, 0x36004, 0x36200, 0x36200, 0x36208, 0x36240, 0x36248, 0x36280, 0x36288, 0x362c0, 0x362c8, 0x362fc, 0x36600, 0x36630, 0x36a00, 0x36abc, 0x36b00, 0x36b70, 0x37000, 0x37048, 0x37060, 0x3709c, 0x370f0, 0x37148, 0x37160, 0x3719c, 0x371f0, 0x372e4, 0x372f8, 0x373e4, 0x373f8, 0x37448, 0x37460, 0x3749c, 0x374f0, 0x37548, 0x37560, 0x3759c, 0x375f0, 0x376e4, 0x376f8, 0x377e4, 0x377f8, 0x377fc, 0x37814, 0x37814, 0x3782c, 0x3782c, 0x37880, 0x3788c, 0x378e8, 0x378ec, 0x37900, 0x37948, 0x37960, 0x3799c, 0x379f0, 0x37ae4, 0x37af8, 0x37b10, 0x37b28, 0x37b28, 0x37b3c, 0x37b50, 0x37bf0, 0x37c10, 0x37c28, 0x37c28, 0x37c3c, 0x37c50, 0x37cf0, 0x37cfc, 0x38000, 0x38030, 0x38100, 0x38144, 0x38190, 0x381d0, 0x38200, 0x38318, 0x38400, 0x3852c, 0x38540, 0x3861c, 0x38800, 0x38834, 0x388c0, 0x38908, 0x38910, 0x389ac, 0x38a00, 0x38a2c, 0x38a44, 0x38a50, 0x38a74, 0x38c24, 0x38d00, 0x38d00, 0x38d08, 0x38d14, 0x38d1c, 0x38d20, 0x38d3c, 0x38d50, 0x39200, 0x3920c, 0x39220, 0x39220, 0x39240, 0x39240, 0x39600, 0x3960c, 0x39a00, 0x39a1c, 0x39e00, 0x39e20, 0x39e38, 0x39e3c, 0x39e80, 0x39e80, 0x39e88, 0x39ea8, 0x39eb0, 0x39eb4, 0x39ec8, 0x39ed4, 0x39fb8, 0x3a004, 0x3a200, 0x3a200, 0x3a208, 0x3a240, 0x3a248, 0x3a280, 0x3a288, 0x3a2c0, 0x3a2c8, 0x3a2fc, 0x3a600, 0x3a630, 0x3aa00, 0x3aabc, 0x3ab00, 0x3ab70, 0x3b000, 0x3b048, 0x3b060, 0x3b09c, 0x3b0f0, 0x3b148, 0x3b160, 0x3b19c, 0x3b1f0, 0x3b2e4, 0x3b2f8, 0x3b3e4, 0x3b3f8, 0x3b448, 0x3b460, 0x3b49c, 0x3b4f0, 0x3b548, 0x3b560, 0x3b59c, 0x3b5f0, 0x3b6e4, 0x3b6f8, 0x3b7e4, 0x3b7f8, 0x3b7fc, 0x3b814, 0x3b814, 0x3b82c, 0x3b82c, 0x3b880, 0x3b88c, 0x3b8e8, 0x3b8ec, 0x3b900, 0x3b948, 0x3b960, 0x3b99c, 0x3b9f0, 0x3bae4, 0x3baf8, 0x3bb10, 0x3bb28, 0x3bb28, 0x3bb3c, 0x3bb50, 0x3bbf0, 0x3bc10, 0x3bc28, 0x3bc28, 0x3bc3c, 0x3bc50, 0x3bcf0, 0x3bcfc, 0x3c000, 0x3c030, 0x3c100, 0x3c144, 0x3c190, 0x3c1d0, 0x3c200, 0x3c318, 0x3c400, 0x3c52c, 0x3c540, 0x3c61c, 0x3c800, 0x3c834, 0x3c8c0, 0x3c908, 0x3c910, 0x3c9ac, 0x3ca00, 0x3ca2c, 0x3ca44, 0x3ca50, 0x3ca74, 0x3cc24, 0x3cd00, 0x3cd00, 0x3cd08, 0x3cd14, 0x3cd1c, 0x3cd20, 0x3cd3c, 0x3cd50, 0x3d200, 0x3d20c, 0x3d220, 0x3d220, 0x3d240, 0x3d240, 0x3d600, 0x3d60c, 0x3da00, 0x3da1c, 0x3de00, 0x3de20, 0x3de38, 0x3de3c, 0x3de80, 0x3de80, 0x3de88, 0x3dea8, 0x3deb0, 0x3deb4, 0x3dec8, 0x3ded4, 0x3dfb8, 0x3e004, 0x3e200, 0x3e200, 0x3e208, 0x3e240, 0x3e248, 0x3e280, 0x3e288, 0x3e2c0, 0x3e2c8, 0x3e2fc, 0x3e600, 0x3e630, 0x3ea00, 0x3eabc, 0x3eb00, 0x3eb70, 0x3f000, 0x3f048, 0x3f060, 0x3f09c, 0x3f0f0, 0x3f148, 0x3f160, 0x3f19c, 0x3f1f0, 0x3f2e4, 0x3f2f8, 0x3f3e4, 0x3f3f8, 0x3f448, 0x3f460, 0x3f49c, 0x3f4f0, 0x3f548, 0x3f560, 0x3f59c, 0x3f5f0, 0x3f6e4, 0x3f6f8, 0x3f7e4, 0x3f7f8, 0x3f7fc, 0x3f814, 0x3f814, 0x3f82c, 0x3f82c, 0x3f880, 0x3f88c, 0x3f8e8, 0x3f8ec, 0x3f900, 0x3f948, 0x3f960, 0x3f99c, 0x3f9f0, 0x3fae4, 0x3faf8, 0x3fb10, 0x3fb28, 0x3fb28, 0x3fb3c, 0x3fb50, 0x3fbf0, 0x3fc10, 0x3fc28, 0x3fc28, 0x3fc3c, 0x3fc50, 0x3fcf0, 0x3fcfc, 0x40000, 0x4000c, 0x40040, 0x40068, 0x4007c, 0x40144, 0x40180, 0x4018c, 0x40200, 0x40298, 0x402ac, 0x4033c, 0x403f8, 0x403fc, 0x41304, 0x413c4, 0x41400, 0x4141c, 0x41480, 0x414d0, 0x44000, 0x44078, 0x440c0, 0x44278, 0x442c0, 0x44478, 0x444c0, 0x44678, 0x446c0, 0x44878, 0x448c0, 0x449fc, 0x45000, 0x45068, 0x45080, 0x45084, 0x450a0, 0x450b0, 0x45200, 0x45268, 0x45280, 0x45284, 0x452a0, 0x452b0, 0x460c0, 0x460e4, 0x47000, 0x4708c, 0x47200, 0x47250, 0x47400, 0x47420, 0x47600, 0x47618, 0x47800, 0x47814, 0x48000, 0x4800c, 0x48040, 0x48068, 0x4807c, 0x48144, 0x48180, 0x4818c, 0x48200, 0x48298, 0x482ac, 0x4833c, 0x483f8, 0x483fc, 0x49304, 0x493c4, 0x49400, 0x4941c, 0x49480, 0x494d0, 0x4c000, 0x4c078, 0x4c0c0, 0x4c278, 0x4c2c0, 0x4c478, 0x4c4c0, 0x4c678, 0x4c6c0, 0x4c878, 0x4c8c0, 0x4c9fc, 0x4d000, 0x4d068, 0x4d080, 0x4d084, 0x4d0a0, 0x4d0b0, 0x4d200, 0x4d268, 0x4d280, 0x4d284, 0x4d2a0, 0x4d2b0, 0x4e0c0, 0x4e0e4, 0x4f000, 0x4f08c, 0x4f200, 0x4f250, 0x4f400, 0x4f420, 0x4f600, 0x4f618, 0x4f800, 0x4f814, 0x50000, 0x500cc, 0x50400, 0x50400, 0x50800, 0x508cc, 0x50c00, 0x50c00, 0x51000, 0x5101c, 0x51300, 0x51308, }; if (is_t4(sc)) { reg_ranges = &t4_reg_ranges[0]; n = nitems(t4_reg_ranges); } else { reg_ranges = &t5_reg_ranges[0]; n = nitems(t5_reg_ranges); } regs->version = chip_id(sc) | chip_rev(sc) << 10; for (i = 0; i < n; i += 2) reg_block_dump(sc, buf, reg_ranges[i], reg_ranges[i + 1]); } static void cxgbe_tick(void *arg) { struct port_info *pi = arg; struct ifnet *ifp = pi->ifp; struct sge_txq *txq; int i, drops; struct port_stats *s = &pi->stats; PORT_LOCK(pi); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { PORT_UNLOCK(pi); return; /* without scheduling another callout */ } t4_get_port_stats(pi->adapter, pi->tx_chan, s); ifp->if_opackets = s->tx_frames - s->tx_pause; ifp->if_ipackets = s->rx_frames - s->rx_pause; ifp->if_obytes = s->tx_octets - s->tx_pause * 64; ifp->if_ibytes = s->rx_octets - s->rx_pause * 64; ifp->if_omcasts = s->tx_mcast_frames - s->tx_pause; ifp->if_imcasts = s->rx_mcast_frames - s->rx_pause; ifp->if_iqdrops = s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + s->rx_trunc3; drops = s->tx_drop; for_each_txq(pi, i, txq) drops += txq->br->br_drops; ifp->if_snd.ifq_drops = drops; ifp->if_oerrors = s->tx_error_frames; ifp->if_ierrors = s->rx_jabber + s->rx_runt + s->rx_too_long + s->rx_fcs_err + s->rx_len_err; callout_schedule(&pi->tick, hz); PORT_UNLOCK(pi); } static void cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid) { struct ifnet *vlan; if (arg != ifp || ifp->if_type != IFT_ETHER) return; vlan = VLAN_DEVAT(ifp, vid); VLAN_SETCOOKIE(vlan, ifp); } static int cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { #ifdef INVARIANTS panic("%s: opcode 0x%02x on iq %p with payload %p", __func__, rss->opcode, iq, m); #else log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n", __func__, rss->opcode, iq, m); m_freem(m); #endif return (EDOOFUS); } int t4_register_cpl_handler(struct adapter *sc, int opcode, cpl_handler_t h) { uintptr_t *loc, new; if (opcode >= nitems(sc->cpl_handler)) return (EINVAL); new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled; loc = (uintptr_t *) &sc->cpl_handler[opcode]; atomic_store_rel_ptr(loc, new); return (0); } static int an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl) { #ifdef INVARIANTS panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl); #else log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n", __func__, iq, ctrl); #endif return (EDOOFUS); } int t4_register_an_handler(struct adapter *sc, an_handler_t h) { uintptr_t *loc, new; new = h ? (uintptr_t)h : (uintptr_t)an_not_handled; loc = (uintptr_t *) &sc->an_handler; atomic_store_rel_ptr(loc, new); return (0); } static int fw_msg_not_handled(struct adapter *sc, const __be64 *rpl) { const struct cpl_fw6_msg *cpl = __containerof(rpl, struct cpl_fw6_msg, data[0]); #ifdef INVARIANTS panic("%s: fw_msg type %d", __func__, cpl->type); #else log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type); #endif return (EDOOFUS); } int t4_register_fw_msg_handler(struct adapter *sc, int type, fw_msg_handler_t h) { uintptr_t *loc, new; if (type >= nitems(sc->fw_msg_handler)) return (EINVAL); /* * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL * handler dispatch table. Reject any attempt to install a handler for * this subtype. */ if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL) return (EINVAL); new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled; loc = (uintptr_t *) &sc->fw_msg_handler[type]; atomic_store_rel_ptr(loc, new); return (0); } static int t4_sysctls(struct adapter *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children, *c0; static char *caps[] = { "\20\1PPP\2QFC\3DCBX", /* caps[0] linkcaps */ "\20\1NIC\2VM\3IDS\4UM\5UM_ISGL", /* caps[1] niccaps */ "\20\1TOE", /* caps[2] toecaps */ "\20\1RDDP\2RDMAC", /* caps[3] rdmacaps */ "\20\1INITIATOR_PDU\2TARGET_PDU" /* caps[4] iscsicaps */ "\3INITIATOR_CNXOFLD\4TARGET_CNXOFLD" "\5INITIATOR_SSNOFLD\6TARGET_SSNOFLD", "\20\1INITIATOR\2TARGET\3CTRL_OFLD" /* caps[5] fcoecaps */ }; static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; ctx = device_get_sysctl_ctx(sc->dev); /* * dev.t4nex.X. */ oid = device_get_sysctl_tree(sc->dev); c0 = children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, sc->params.nports, "# of ports"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, NULL, chip_rev(sc), "chip hardware revision"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", CTLFLAG_RD, &sc->fw_version, 0, "firmware version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", CTLFLAG_RD, &sc->cfg_file, 0, "configuration file"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, sc->cfcsum, "config file checksum"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells, sysctl_bitfield, "A", "available doorbells"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkcaps", CTLTYPE_STRING | CTLFLAG_RD, caps[0], sc->linkcaps, sysctl_bitfield, "A", "available link capabilities"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "niccaps", CTLTYPE_STRING | CTLFLAG_RD, caps[1], sc->niccaps, sysctl_bitfield, "A", "available NIC capabilities"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "toecaps", CTLTYPE_STRING | CTLFLAG_RD, caps[2], sc->toecaps, sysctl_bitfield, "A", "available TCP offload capabilities"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdmacaps", CTLTYPE_STRING | CTLFLAG_RD, caps[3], sc->rdmacaps, sysctl_bitfield, "A", "available RDMA capabilities"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "iscsicaps", CTLTYPE_STRING | CTLFLAG_RD, caps[4], sc->iscsicaps, sysctl_bitfield, "A", "available iSCSI capabilities"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoecaps", CTLTYPE_STRING | CTLFLAG_RD, caps[5], sc->fcoecaps, sysctl_bitfield, "A", "available FCoE capabilities"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, sc->params.vpd.cclk, "core clock frequency (in KHz)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", CTLTYPE_STRING | CTLFLAG_RD, sc->sge.timer_val, sizeof(sc->sge.timer_val), sysctl_int_array, "A", "interrupt holdoff timer values (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", CTLTYPE_STRING | CTLFLAG_RD, sc->sge.counter_val, sizeof(sc->sge.counter_val), sysctl_int_array, "A", "interrupt holdoff packet counter values"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, NULL, sc->tids.nftids, "number of filters"); t4_sge_sysctls(sc, ctx, children); #ifdef SBUF_DRAIN /* * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. */ oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", CTLFLAG_RD | CTLFLAG_SKIP, NULL, "logs and miscellaneous information"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cctrl, "A", "congestion control"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", CTLTYPE_STRING | CTLFLAG_RD, sc, 3, sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", CTLTYPE_STRING | CTLFLAG_RD, sc, 4, sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", CTLTYPE_STRING | CTLFLAG_RD, sc, 5, sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_la, "A", "CIM logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); if (is_t5(sc)) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)"); } SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_qcfg, "A", "CIM queue configuration"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cpl_stats, "A", "CPL statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_ddp_stats, "A", "DDP statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_devlog, "A", "firmware's device log"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_fcoe_stats, "A", "FCoE statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_hw_sched, "A", "hardware scheduler "); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_l2t, "A", "hardware L2 table"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_lb_stats, "A", "loopback statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_meminfo, "A", "memory regions"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_mps_tcam, "A", "MPS TCAM entries"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_path_mtus, "A", "path MTUs"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_pm_stats, "A", "PM statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_rdma_stats, "A", "RDMA statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tcp_stats, "A", "TCP statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tids, "A", "TID information"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_err_stats, "A", "TP error statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_la, "A", "TP logic analyzer"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tx_rate, "A", "Tx rate"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_ulprx_la, "A", "ULPRX logic analyzer"); if (is_t5(sc)) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_wcwr_stats, "A", "write combined work requests"); } #endif #ifdef TCP_OFFLOAD if (is_offload(sc)) { /* * dev.t4nex.X.toe. */ oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD, NULL, "TOE parameters"); children = SYSCTL_CHILDREN(oid); sc->tt.sndbuf = 256 * 1024; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, &sc->tt.sndbuf, 0, "max hardware send buffer size"); sc->tt.ddp = 0; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW, &sc->tt.ddp, 0, "DDP allowed"); sc->tt.indsz = G_INDICATESIZE(t4_read_reg(sc, A_TP_PARA_REG5)); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "indsz", CTLFLAG_RW, &sc->tt.indsz, 0, "DDP max indicate size allowed"); sc->tt.ddp_thres = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp_thres", CTLFLAG_RW, &sc->tt.ddp_thres, 0, "DDP threshold"); sc->tt.rx_coalesce = 1; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); } #endif return (0); } static int cxgbe_sysctls(struct port_info *pi) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children; ctx = device_get_sysctl_ctx(pi->dev); /* * dev.cxgbe.X. */ oid = device_get_sysctl_tree(pi->dev); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING | CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down"); if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I", "PHY temperature (in Celsius)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I", "PHY firmware version"); } SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, &pi->nrxq, 0, "# of rx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, &pi->ntxq, 0, "# of tx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, &pi->first_rxq, 0, "index of first rx queue"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, &pi->first_txq, 0, "index of first tx queue"); #ifdef TCP_OFFLOAD if (is_offload(pi->adapter)) { SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, &pi->nofldrxq, 0, "# of rx queues for offloaded TCP connections"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, &pi->nofldtxq, 0, "# of tx queues for offloaded TCP connections"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", CTLFLAG_RD, &pi->first_ofld_rxq, 0, "index of first TOE rx queue"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", CTLFLAG_RD, &pi->first_ofld_txq, 0, "index of first TOE tx queue"); } #endif SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_rxq, "I", "rx queue size"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_txq, "I", "tx queue size"); /* * dev.cxgbe.X.stats. */ oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, NULL, "port statistics"); children = SYSCTL_CHILDREN(oid); #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ CTLTYPE_U64 | CTLFLAG_RD, pi->adapter, reg, \ sysctl_handle_t4_reg64, "QU", desc) SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", "# of frames received with bad FCS", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_len_err", "# of frames received with length error", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); #undef SYSCTL_ADD_T4_REG64 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ &pi->stats.name, desc) /* We get these from port_stats and they may be stale by upto 1s */ SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); #undef SYSCTL_ADD_T4_PORTSTAT return (0); } static int sysctl_int_array(SYSCTL_HANDLER_ARGS) { int rc, *i; struct sbuf sb; sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); for (i = arg1; arg2; arg2 -= sizeof(int), i++) sbuf_printf(&sb, "%d ", *i); sbuf_trim(&sb); sbuf_finish(&sb); rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (rc); } static int sysctl_bitfield(SYSCTL_HANDLER_ARGS) { int rc; struct sbuf *sb; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "%b", (int)arg2, (char *)arg1); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_btphy(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; int op = arg2; struct adapter *sc = pi->adapter; u_int v; int rc; rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4btt"); if (rc) return (rc); /* XXX: magic numbers */ rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820, &v); end_synchronized_op(sc, 0); if (rc) return (rc); if (op == 0) v /= 256; rc = sysctl_handle_int(oidp, &v, 0, req); return (rc); } static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int idx, rc, i; struct sge_rxq *rxq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif uint8_t v; idx = pi->tmr_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < 0 || idx >= SGE_NTIMERS) return (EINVAL); rc = begin_synchronized_op(sc, pi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4tmr"); if (rc) return (rc); v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(pi->pktc_idx != -1); for_each_rxq(pi, i, rxq) { #ifdef atomic_store_rel_8 atomic_store_rel_8(&rxq->iq.intr_params, v); #else rxq->iq.intr_params = v; #endif } #ifdef TCP_OFFLOAD for_each_ofld_rxq(pi, i, ofld_rxq) { #ifdef atomic_store_rel_8 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); #else ofld_rxq->iq.intr_params = v; #endif } #endif pi->tmr_idx = idx; end_synchronized_op(sc, LOCK_HELD); return (0); } static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int idx, rc; idx = pi->pktc_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < -1 || idx >= SGE_NCOUNTERS) return (EINVAL); rc = begin_synchronized_op(sc, pi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4pktc"); if (rc) return (rc); if (pi->flags & PORT_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else pi->pktc_idx = idx; end_synchronized_op(sc, LOCK_HELD); return (rc); } static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int qsize, rc; qsize = pi->qsize_rxq; rc = sysctl_handle_int(oidp, &qsize, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (qsize < 128 || (qsize & 7)) return (EINVAL); rc = begin_synchronized_op(sc, pi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4rxqs"); if (rc) return (rc); if (pi->flags & PORT_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else pi->qsize_rxq = qsize; end_synchronized_op(sc, LOCK_HELD); return (rc); } static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int qsize, rc; qsize = pi->qsize_txq; rc = sysctl_handle_int(oidp, &qsize, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); /* bufring size must be powerof2 */ if (qsize < 128 || !powerof2(qsize)) return (EINVAL); rc = begin_synchronized_op(sc, pi, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4txqs"); if (rc) return (rc); if (pi->flags & PORT_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ else pi->qsize_txq = qsize; end_synchronized_op(sc, LOCK_HELD); return (rc); } static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int reg = arg2; uint64_t val; val = t4_read_reg64(sc, reg); return (sysctl_handle_64(oidp, &val, 0, req)); } #ifdef SBUF_DRAIN static int sysctl_cctrl(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint16_t incr[NMTUS][NCCTRL_WIN]; static const char *dec_fac[] = { "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", "0.9375" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); t4_read_cong_tbl(sc, incr); for (i = 0; i < NCCTRL_WIN; ++i) { sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], incr[5][i], incr[6][i], incr[7][i]); sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", incr[8][i], incr[9][i], incr[10][i], incr[11][i], incr[12][i], incr[13][i], incr[14][i], incr[15][i], sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ }; static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, n, qid = arg2; uint32_t *buf, *p; char *qtype; u_int cim_num_obq = is_t4(sc) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5; KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, ("%s: bad qid %d\n", __func__, qid)); if (qid < CIM_NUM_IBQ) { /* inbound queue */ qtype = "IBQ"; n = 4 * CIM_IBQ_SIZE; buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); rc = t4_read_cim_ibq(sc, qid, buf, n); } else { /* outbound queue */ qtype = "OBQ"; qid -= CIM_NUM_IBQ; n = 4 * cim_num_obq * CIM_OBQ_SIZE; buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); rc = t4_read_cim_obq(sc, qid, buf, n); } if (rc < 0) { rc = -rc; goto done; } n = rc * sizeof(uint32_t); /* rc has # of words actually read */ rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) goto done; sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); if (sb == NULL) { rc = ENOMEM; goto done; } sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); for (i = 0, p = buf; i < n; i += 16, p += 4) sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], p[2], p[3]); rc = sbuf_finish(sb); sbuf_delete(sb); done: free(buf, M_CXGBE); return (rc); } static int sysctl_cim_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; u_int cfg; struct sbuf *sb; uint32_t *buf, *p; int rc; rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); if (rc != 0) return (rc); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); rc = -t4_cim_read_la(sc, buf, NULL); if (rc != 0) goto done; sbuf_printf(sb, "Status Data PC%s", cfg & F_UPDBGLACAPTPCONLY ? "" : " LS0Stat LS0Addr LS0Data"); KASSERT((sc->params.cim_la_size & 7) == 0, ("%s: p will walk off the end of buf", __func__)); for (p = buf; p < &buf[sc->params.cim_la_size]; p += 8) { if (cfg & F_UPDBGLACAPTPCONLY) { sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, p[6], p[7]); sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, p[4] & 0xff, p[5] >> 8); sbuf_printf(sb, "\n %02x %x%07x %x%07x", (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4); } else { sbuf_printf(sb, "\n %02x %x%07x %x%07x %08x %08x " "%08x%08x%08x%08x", (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], p[6], p[7]); } } rc = sbuf_finish(sb); sbuf_delete(sb); done: free(buf, M_CXGBE); return (rc); } static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; u_int i; struct sbuf *sb; uint32_t *buf, *p; int rc; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); p = buf; for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], p[1], p[0]); } sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, (p[1] >> 2) | ((p[2] & 3) << 30), (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, p[0] & 1); } rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; u_int i; struct sbuf *sb; uint32_t *buf, *p; int rc; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); p = buf; sbuf_printf(sb, "Cntl ID DataBE Addr Data"); for (i = 0; i < CIM_MALA_SIZE; i++, p += 6) { sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]); } sbuf_printf(sb, "\n\nCntl ID Data"); for (i = 0; i < CIM_MALA_SIZE; i++, p += 6) { sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); } rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; uint16_t thres[CIM_NUM_IBQ]; uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; if (is_t4(sc)) { cim_num_obq = CIM_NUM_OBQ; ibq_rdaddr = A_UP_IBQ_0_RDADDR; obq_rdaddr = A_UP_OBQ_0_REALADDR; } else { cim_num_obq = CIM_NUM_OBQ_T5; ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; } nq = CIM_NUM_IBQ + cim_num_obq; rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); if (rc == 0) rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr); if (rc != 0) return (rc); t4_read_cimq_cfg(sc, base, size, thres); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), G_QUEREMFLITS(p[2]) * 16); for ( ; i < nq; i++, p += 4, wr += 2) sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), G_QUEREMFLITS(p[2]) * 16); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_cpl_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_tp_get_cpl_stats(sc, &stats); sbuf_printf(sb, " channel 0 channel 1 channel 2 " "channel 3\n"); sbuf_printf(sb, "CPL requests: %10u %10u %10u %10u\n", stats.req[0], stats.req[1], stats.req[2], stats.req[3]); sbuf_printf(sb, "CPL responses: %10u %10u %10u %10u", stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_usm_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_get_usm_stats(sc, &stats); sbuf_printf(sb, "Frames: %u\n", stats.frames); sbuf_printf(sb, "Octets: %ju\n", stats.octets); sbuf_printf(sb, "Drops: %u", stats.drops); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } const char *devlog_level_strings[] = { [FW_DEVLOG_LEVEL_EMERG] = "EMERG", [FW_DEVLOG_LEVEL_CRIT] = "CRIT", [FW_DEVLOG_LEVEL_ERR] = "ERR", [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", [FW_DEVLOG_LEVEL_INFO] = "INFO", [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" }; const char *devlog_facility_strings[] = { [FW_DEVLOG_FACILITY_CORE] = "CORE", [FW_DEVLOG_FACILITY_SCHED] = "SCHED", [FW_DEVLOG_FACILITY_TIMER] = "TIMER", [FW_DEVLOG_FACILITY_RES] = "RES", [FW_DEVLOG_FACILITY_HW] = "HW", [FW_DEVLOG_FACILITY_FLR] = "FLR", [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", [FW_DEVLOG_FACILITY_PHY] = "PHY", [FW_DEVLOG_FACILITY_MAC] = "MAC", [FW_DEVLOG_FACILITY_PORT] = "PORT", [FW_DEVLOG_FACILITY_VI] = "VI", [FW_DEVLOG_FACILITY_FILTER] = "FILTER", [FW_DEVLOG_FACILITY_ACL] = "ACL", [FW_DEVLOG_FACILITY_TM] = "TM", [FW_DEVLOG_FACILITY_QFC] = "QFC", [FW_DEVLOG_FACILITY_DCB] = "DCB", [FW_DEVLOG_FACILITY_ETH] = "ETH", [FW_DEVLOG_FACILITY_OFLD] = "OFLD", [FW_DEVLOG_FACILITY_RI] = "RI", [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", [FW_DEVLOG_FACILITY_FCOE] = "FCOE", [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE" }; static int sysctl_devlog(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct devlog_params *dparams = &sc->params.devlog; struct fw_devlog_e *buf, *e; int i, j, rc, nentries, first = 0; struct sbuf *sb; uint64_t ftstamp = UINT64_MAX; if (dparams->start == 0) { dparams->memtype = 0; dparams->start = 0x84000; dparams->size = 32768; } nentries = dparams->size / sizeof(struct fw_devlog_e); buf = malloc(dparams->size, M_CXGBE, M_NOWAIT); if (buf == NULL) return (ENOMEM); rc = -t4_mem_read(sc, dparams->memtype, dparams->start, dparams->size, (void *)buf); if (rc != 0) goto done; for (i = 0; i < nentries; i++) { e = &buf[i]; if (e->timestamp == 0) break; /* end */ e->timestamp = be64toh(e->timestamp); e->seqno = be32toh(e->seqno); for (j = 0; j < 8; j++) e->params[j] = be32toh(e->params[j]); if (e->timestamp < ftstamp) { ftstamp = e->timestamp; first = i; } } if (buf[first].timestamp == 0) goto done; /* nothing in the log */ rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) goto done; sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) { rc = ENOMEM; goto done; } sbuf_printf(sb, "%10s %15s %8s %8s %s\n", "Seq#", "Tstamp", "Level", "Facility", "Message"); i = first; do { e = &buf[i]; if (e->timestamp == 0) break; /* end */ sbuf_printf(sb, "%10d %15ju %8s %8s ", e->seqno, e->timestamp, (e->level < nitems(devlog_level_strings) ? devlog_level_strings[e->level] : "UNKNOWN"), (e->facility < nitems(devlog_facility_strings) ? devlog_facility_strings[e->facility] : "UNKNOWN")); sbuf_printf(sb, e->fmt, e->params[0], e->params[1], e->params[2], e->params[3], e->params[4], e->params[5], e->params[6], e->params[7]); if (++i == nentries) i = 0; } while (i != first); rc = sbuf_finish(sb); sbuf_delete(sb); done: free(buf, M_CXGBE); return (rc); } static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_fcoe_stats stats[4]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_get_fcoe_stats(sc, 0, &stats[0]); t4_get_fcoe_stats(sc, 1, &stats[1]); t4_get_fcoe_stats(sc, 2, &stats[2]); t4_get_fcoe_stats(sc, 3, &stats[3]); sbuf_printf(sb, " channel 0 channel 1 " "channel 2 channel 3\n"); sbuf_printf(sb, "octetsDDP: %16ju %16ju %16ju %16ju\n", stats[0].octetsDDP, stats[1].octetsDDP, stats[2].octetsDDP, stats[3].octetsDDP); sbuf_printf(sb, "framesDDP: %16u %16u %16u %16u\n", stats[0].framesDDP, stats[1].framesDDP, stats[2].framesDDP, stats[3].framesDDP); sbuf_printf(sb, "framesDrop: %16u %16u %16u %16u", stats[0].framesDrop, stats[1].framesDrop, stats[2].framesDrop, stats[3].framesDrop); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; unsigned int map, kbps, ipg, mode; unsigned int pace_tab[NTX_SCHED]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); t4_read_pace_tbl(sc, pace_tab); sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " "Class IPG (0.1 ns) Flow IPG (us)"); for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { t4_get_tx_sched(sc, i, &kbps, &ipg); sbuf_printf(sb, "\n %u %-5s %u ", i, (mode & (1 << i)) ? "flow" : "class", map & 3); if (kbps) sbuf_printf(sb, "%9u ", kbps); else sbuf_printf(sb, " disabled "); if (ipg) sbuf_printf(sb, "%13u ", ipg); else sbuf_printf(sb, " disabled "); if (pace_tab[i]) sbuf_printf(sb, "%10u", pace_tab[i]); else sbuf_printf(sb, " disabled"); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, j; uint64_t *p0, *p1; struct lb_port_stats s[2]; static const char *stat_name[] = { "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", "Frames128To255:", "Frames256To511:", "Frames512To1023:", "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", "BG2FramesTrunc:", "BG3FramesTrunc:" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); memset(s, 0, sizeof(s)); for (i = 0; i < 4; i += 2) { t4_get_lb_stats(sc, i, &s[0]); t4_get_lb_stats(sc, i + 1, &s[1]); p0 = &s[0].octets; p1 = &s[1].octets; sbuf_printf(sb, "%s Loopback %u" " Loopback %u", i == 0 ? "" : "\n", i, i + 1); for (j = 0; j < nitems(stat_name); j++) sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], *p0++, *p1++); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) { int rc = 0; struct port_info *pi = arg1; struct sbuf *sb; static const char *linkdnreasons[] = { "non-specific", "remote fault", "autoneg failed", "reserved3", "PHY overheated", "unknown", "rx los", "reserved7" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); if (sb == NULL) return (ENOMEM); if (pi->linkdnrc < 0) sbuf_printf(sb, "n/a"); else if (pi->linkdnrc < nitems(linkdnreasons)) sbuf_printf(sb, "%s", linkdnreasons[pi->linkdnrc]); else sbuf_printf(sb, "%d", pi->linkdnrc); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } struct mem_desc { unsigned int base; unsigned int limit; unsigned int idx; }; static int mem_desc_cmp(const void *a, const void *b) { return ((const struct mem_desc *)a)->base - ((const struct mem_desc *)b)->base; } static void mem_region_show(struct sbuf *sb, const char *name, unsigned int from, unsigned int to) { unsigned int size; size = to - from + 1; if (size == 0) return; /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); } static int sysctl_meminfo(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, n; uint32_t lo, hi, used, alloc; static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; static const char *region[] = { "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", "TDDP region:", "TPT region:", "STAG region:", "RQ region:", "RQUDP region:", "PBL region:", "TXPBL region:", "DBVFIFO region:", "ULPRX state:", "ULPTX state:", "On-chip queues:" }; struct mem_desc avail[4]; struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ struct mem_desc *md = mem; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); for (i = 0; i < nitems(mem); i++) { mem[i].limit = 0; mem[i].idx = i; } /* Find and sort the populated memory ranges */ i = 0; lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); if (lo & F_EDRAM0_ENABLE) { hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); avail[i].base = G_EDRAM0_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); avail[i].idx = 0; i++; } if (lo & F_EDRAM1_ENABLE) { hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); avail[i].base = G_EDRAM1_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); avail[i].idx = 1; i++; } if (lo & F_EXT_MEM_ENABLE) { hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); avail[i].base = G_EXT_MEM_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); avail[i].idx = is_t4(sc) ? 2 : 3; /* Call it MC for T4 */ i++; } if (!is_t4(sc) && lo & F_EXT_MEM1_ENABLE) { hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); avail[i].base = G_EXT_MEM1_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); avail[i].idx = 4; i++; } if (!i) /* no memory available */ return 0; qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); /* the next few have explicit upper bounds */ md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); md->limit = md->base - 1 + t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); md++; md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); md->limit = md->base - 1 + t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); md++; if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { hi = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); md->limit = (sc->tids.ntids - hi) * 16 + md->base - 1; } else { md->base = 0; md->idx = nitems(region); /* hide it */ } md++; #define ulp_region(reg) \ md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) ulp_region(RX_ISCSI); ulp_region(RX_TDDP); ulp_region(TX_TPT); ulp_region(RX_STAG); ulp_region(RX_RQ); ulp_region(RX_RQUDP); ulp_region(RX_PBL); ulp_region(TX_PBL); #undef ulp_region md->base = 0; md->idx = nitems(region); if (!is_t4(sc) && t4_read_reg(sc, A_SGE_CONTROL2) & F_VFIFO_ENABLE) { md->base = G_BASEADDR(t4_read_reg(sc, A_SGE_DBVFIFO_BADDR)); md->limit = md->base + (G_DBVFIFO_SIZE((t4_read_reg(sc, A_SGE_DBVFIFO_SIZE))) << 2) - 1; } md++; md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); md->limit = md->base + sc->tids.ntids - 1; md++; md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); md->limit = md->base + sc->tids.ntids - 1; md++; md->base = sc->vres.ocq.start; if (sc->vres.ocq.size) md->limit = md->base + sc->vres.ocq.size - 1; else md->idx = nitems(region); /* hide it */ md++; /* add any address-space holes, there can be up to 3 */ for (n = 0; n < i - 1; n++) if (avail[n].limit < avail[n + 1].base) (md++)->base = avail[n].limit; if (avail[n].limit) (md++)->base = avail[n].limit; n = md - mem; qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); for (lo = 0; lo < i; lo++) mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, avail[lo].limit - 1); sbuf_printf(sb, "\n"); for (i = 0; i < n; i++) { if (mem[i].idx >= nitems(region)) continue; /* skip holes */ if (!mem[i].limit) mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; mem_region_show(sb, region[mem[i].idx], mem[i].base, mem[i].limit); } sbuf_printf(sb, "\n"); lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; mem_region_show(sb, "uP RAM:", lo, hi); lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; mem_region_show(sb, "uP Extmem2:", lo, hi); lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", G_PMRXMAXPAGE(lo), t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, (lo & F_PMRXNUMCHN) ? 2 : 1); lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", G_PMTXMAXPAGE(lo), hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); sbuf_printf(sb, "%u p-structs\n", t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); for (i = 0; i < 4; i++) { lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); if (is_t4(sc)) { used = G_USED(lo); alloc = G_ALLOC(lo); } else { used = G_T5_USED(lo); alloc = G_T5_ALLOC(lo); } sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", i, used, alloc); } for (i = 0; i < 4; i++) { lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); if (is_t4(sc)) { used = G_USED(lo); alloc = G_ALLOC(lo); } else { used = G_T5_USED(lo); alloc = G_T5_ALLOC(lo); } sbuf_printf(sb, "\nLoopback %d using %u pages out of %u allocated", i, used, alloc); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static inline void tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) { *mask = x | y; y = htobe64(y); memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); } static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, n; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "Idx Ethernet address Mask Vld Ports PF" " VF Replication P0 P1 P2 P3 ML"); n = is_t4(sc) ? NUM_MPS_CLS_SRAM_L_INSTANCES : NUM_MPS_T5_CLS_SRAM_L_INSTANCES; for (i = 0; i < n; i++) { uint64_t tcamx, tcamy, mask; uint32_t cls_lo, cls_hi; uint8_t addr[ETHER_ADDR_LEN]; tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); if (tcamx & tcamy) continue; tcamxy2valmask(tcamx, tcamy, addr, &mask); sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], (uintmax_t)mask, (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', G_PORTMAP(cls_hi), G_PF(cls_lo), (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); if (cls_lo & F_REPLICATE) { struct fw_ldst_cmd ldst_cmd; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_cmd.op_to_addrspace = htobe32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); ldst_cmd.u.mps.fid_ctl = htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | V_FW_LDST_CMD_CTL(i)); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mps"); if (rc) break; rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_cmd); end_synchronized_op(sc, 0); if (rc != 0) { sbuf_printf(sb, " ------------ error %3u ------------", rc); rc = 0; } else { sbuf_printf(sb, " %08x %08x %08x %08x", be32toh(ldst_cmd.u.mps.rplc127_96), be32toh(ldst_cmd.u.mps.rplc95_64), be32toh(ldst_cmd.u.mps.rplc63_32), be32toh(ldst_cmd.u.mps.rplc31_0)); } } else sbuf_printf(sb, "%36s", ""); sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); } if (rc) (void) sbuf_finish(sb); else rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; uint16_t mtus[NMTUS]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_read_mtu_tbl(sc, mtus, NULL); sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], mtus[14], mtus[15]); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint32_t tx_cnt[PM_NSTATS], rx_cnt[PM_NSTATS]; uint64_t tx_cyc[PM_NSTATS], rx_cyc[PM_NSTATS]; static const char *pm_stats[] = { "Read:", "Write bypass:", "Write mem:", "Flush:", "FIFO wait:" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); sbuf_printf(sb, " Tx count Tx cycles " "Rx count Rx cycles"); for (i = 0; i < PM_NSTATS; i++) sbuf_printf(sb, "\n%-13s %10u %20ju %10u %20ju", pm_stats[i], tx_cnt[i], tx_cyc[i], rx_cnt[i], rx_cyc[i]); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_rdma_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_tp_get_rdma_stats(sc, &stats); sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_tcp_stats v4, v6; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_tp_get_tcp_stats(sc, &v4, &v6); sbuf_printf(sb, " IP IPv6\n"); sbuf_printf(sb, "OutRsts: %20u %20u\n", v4.tcpOutRsts, v6.tcpOutRsts); sbuf_printf(sb, "InSegs: %20ju %20ju\n", v4.tcpInSegs, v6.tcpInSegs); sbuf_printf(sb, "OutSegs: %20ju %20ju\n", v4.tcpOutSegs, v6.tcpOutSegs); sbuf_printf(sb, "RetransSegs: %20ju %20ju", v4.tcpRetransSegs, v6.tcpRetransSegs); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tids(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tid_info *t = &sc->tids; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); if (t->natids) { sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, t->atids_in_use); } if (t->ntids) { if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { uint32_t b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; if (b) { sbuf_printf(sb, "TID range: 0-%u, %u-%u", b - 1, t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4, t->ntids - 1); } else { sbuf_printf(sb, "TID range: %u-%u", t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4, t->ntids - 1); } } else sbuf_printf(sb, "TID range: 0-%u", t->ntids - 1); sbuf_printf(sb, ", in use: %u\n", atomic_load_acq_int(&t->tids_in_use)); } if (t->nstids) { sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, t->stid_base + t->nstids - 1, t->stids_in_use); } if (t->nftids) { sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base, t->ftid_base + t->nftids - 1); } sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_err_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_tp_get_err_stats(sc, &stats); sbuf_printf(sb, " channel 0 channel 1 channel 2 " "channel 3\n"); sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", stats.macInErrs[0], stats.macInErrs[1], stats.macInErrs[2], stats.macInErrs[3]); sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", stats.hdrInErrs[0], stats.hdrInErrs[1], stats.hdrInErrs[2], stats.hdrInErrs[3]); sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", stats.tcpInErrs[0], stats.tcpInErrs[1], stats.tcpInErrs[2], stats.tcpInErrs[3]); sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", stats.tcp6InErrs[0], stats.tcp6InErrs[1], stats.tcp6InErrs[2], stats.tcp6InErrs[3]); sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", stats.tnlCongDrops[0], stats.tnlCongDrops[1], stats.tnlCongDrops[2], stats.tnlCongDrops[3]); sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", stats.tnlTxDrops[0], stats.tnlTxDrops[1], stats.tnlTxDrops[2], stats.tnlTxDrops[3]); sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", stats.ofldVlanDrops[0], stats.ofldVlanDrops[1], stats.ofldVlanDrops[2], stats.ofldVlanDrops[3]); sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", stats.ofldChanDrops[0], stats.ofldChanDrops[1], stats.ofldChanDrops[2], stats.ofldChanDrops[3]); sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", stats.ofldNoNeigh, stats.ofldCongDefer); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } struct field_desc { const char *name; u_int start; u_int width; }; static void field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) { char buf[32]; int line_size = 0; while (f->name) { uint64_t mask = (1ULL << f->width) - 1; int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, ((uintmax_t)v >> f->start) & mask); if (line_size + len >= 79) { line_size = 8; sbuf_printf(sb, "\n "); } sbuf_printf(sb, "%s ", buf); line_size += len + 1; f++; } sbuf_printf(sb, "\n"); } static struct field_desc tp_la0[] = { { "RcfOpCodeOut", 60, 4 }, { "State", 56, 4 }, { "WcfState", 52, 4 }, { "RcfOpcSrcOut", 50, 2 }, { "CRxError", 49, 1 }, { "ERxError", 48, 1 }, { "SanityFailed", 47, 1 }, { "SpuriousMsg", 46, 1 }, { "FlushInputMsg", 45, 1 }, { "FlushInputCpl", 44, 1 }, { "RssUpBit", 43, 1 }, { "RssFilterHit", 42, 1 }, { "Tid", 32, 10 }, { "InitTcb", 31, 1 }, { "LineNumber", 24, 7 }, { "Emsg", 23, 1 }, { "EdataOut", 22, 1 }, { "Cmsg", 21, 1 }, { "CdataOut", 20, 1 }, { "EreadPdu", 19, 1 }, { "CreadPdu", 18, 1 }, { "TunnelPkt", 17, 1 }, { "RcfPeerFin", 16, 1 }, { "RcfReasonOut", 12, 4 }, { "TxCchannel", 10, 2 }, { "RcfTxChannel", 8, 2 }, { "RxEchannel", 6, 2 }, { "RcfRxChannel", 5, 1 }, { "RcfDataOutSrdy", 4, 1 }, { "RxDvld", 3, 1 }, { "RxOoDvld", 2, 1 }, { "RxCongestion", 1, 1 }, { "TxCongestion", 0, 1 }, { NULL } }; static struct field_desc tp_la1[] = { { "CplCmdIn", 56, 8 }, { "CplCmdOut", 48, 8 }, { "ESynOut", 47, 1 }, { "EAckOut", 46, 1 }, { "EFinOut", 45, 1 }, { "ERstOut", 44, 1 }, { "SynIn", 43, 1 }, { "AckIn", 42, 1 }, { "FinIn", 41, 1 }, { "RstIn", 40, 1 }, { "DataIn", 39, 1 }, { "DataInVld", 38, 1 }, { "PadIn", 37, 1 }, { "RxBufEmpty", 36, 1 }, { "RxDdp", 35, 1 }, { "RxFbCongestion", 34, 1 }, { "TxFbCongestion", 33, 1 }, { "TxPktSumSrdy", 32, 1 }, { "RcfUlpType", 28, 4 }, { "Eread", 27, 1 }, { "Ebypass", 26, 1 }, { "Esave", 25, 1 }, { "Static0", 24, 1 }, { "Cread", 23, 1 }, { "Cbypass", 22, 1 }, { "Csave", 21, 1 }, { "CPktOut", 20, 1 }, { "RxPagePoolFull", 18, 2 }, { "RxLpbkPkt", 17, 1 }, { "TxLpbkPkt", 16, 1 }, { "RxVfValid", 15, 1 }, { "SynLearned", 14, 1 }, { "SetDelEntry", 13, 1 }, { "SetInvEntry", 12, 1 }, { "CpcmdDvld", 11, 1 }, { "CpcmdSave", 10, 1 }, { "RxPstructsFull", 8, 2 }, { "EpcmdDvld", 7, 1 }, { "EpcmdFlush", 6, 1 }, { "EpcmdTrimPrefix", 5, 1 }, { "EpcmdTrimPostfix", 4, 1 }, { "ERssIp4Pkt", 3, 1 }, { "ERssIp6Pkt", 2, 1 }, { "ERssTcpUdpPkt", 1, 1 }, { "ERssFceFipPkt", 0, 1 }, { NULL } }; static struct field_desc tp_la2[] = { { "CplCmdIn", 56, 8 }, { "MpsVfVld", 55, 1 }, { "MpsPf", 52, 3 }, { "MpsVf", 44, 8 }, { "SynIn", 43, 1 }, { "AckIn", 42, 1 }, { "FinIn", 41, 1 }, { "RstIn", 40, 1 }, { "DataIn", 39, 1 }, { "DataInVld", 38, 1 }, { "PadIn", 37, 1 }, { "RxBufEmpty", 36, 1 }, { "RxDdp", 35, 1 }, { "RxFbCongestion", 34, 1 }, { "TxFbCongestion", 33, 1 }, { "TxPktSumSrdy", 32, 1 }, { "RcfUlpType", 28, 4 }, { "Eread", 27, 1 }, { "Ebypass", 26, 1 }, { "Esave", 25, 1 }, { "Static0", 24, 1 }, { "Cread", 23, 1 }, { "Cbypass", 22, 1 }, { "Csave", 21, 1 }, { "CPktOut", 20, 1 }, { "RxPagePoolFull", 18, 2 }, { "RxLpbkPkt", 17, 1 }, { "TxLpbkPkt", 16, 1 }, { "RxVfValid", 15, 1 }, { "SynLearned", 14, 1 }, { "SetDelEntry", 13, 1 }, { "SetInvEntry", 12, 1 }, { "CpcmdDvld", 11, 1 }, { "CpcmdSave", 10, 1 }, { "RxPstructsFull", 8, 2 }, { "EpcmdDvld", 7, 1 }, { "EpcmdFlush", 6, 1 }, { "EpcmdTrimPrefix", 5, 1 }, { "EpcmdTrimPostfix", 4, 1 }, { "ERssIp4Pkt", 3, 1 }, { "ERssIp6Pkt", 2, 1 }, { "ERssTcpUdpPkt", 1, 1 }, { "ERssFceFipPkt", 0, 1 }, { NULL } }; static void tp_la_show(struct sbuf *sb, uint64_t *p, int idx) { field_desc_show(sb, *p, tp_la0); } static void tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) { if (idx) sbuf_printf(sb, "\n"); field_desc_show(sb, p[0], tp_la0); if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) field_desc_show(sb, p[1], tp_la0); } static void tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) { if (idx) sbuf_printf(sb, "\n"); field_desc_show(sb, p[0], tp_la0); if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); } static int sysctl_tp_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; uint64_t *buf, *p; int rc; u_int i, inc; void (*show_func)(struct sbuf *, uint64_t *, int); rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); t4_tp_read_la(sc, buf, NULL); p = buf; switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { case 2: inc = 2; show_func = tp_la_show2; break; case 3: inc = 2; show_func = tp_la_show3; break; default: inc = 1; show_func = tp_la_show; } for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) (*show_func)(sb, p, i); rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; u64 nrate[NCHAN], orate[NCHAN]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_get_chan_txrate(sc, nrate, orate); sbuf_printf(sb, " channel 0 channel 1 channel 2 " "channel 3\n"); sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", nrate[0], nrate[1], nrate[2], nrate[3]); sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", orate[0], orate[1], orate[2], orate[3]); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; uint32_t *buf, *p; int rc, i; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); t4_ulprx_read_la(sc, buf); p = buf; sbuf_printf(sb, " Pcmd Type Message" " Data"); for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); } rc = sbuf_finish(sb); sbuf_delete(sb); free(buf, M_CXGBE); return (rc); } static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, v; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); v = t4_read_reg(sc, A_SGE_STAT_CFG); if (G_STATSOURCE_T5(v) == 7) { if (G_STATMODE(v) == 0) { sbuf_printf(sb, "total %d, incomplete %d", t4_read_reg(sc, A_SGE_STAT_TOTAL), t4_read_reg(sc, A_SGE_STAT_MATCH)); } else if (G_STATMODE(v) == 1) { sbuf_printf(sb, "total %d, data overflow %d", t4_read_reg(sc, A_SGE_STAT_TOTAL), t4_read_reg(sc, A_SGE_STAT_MATCH)); } } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } #endif static inline void txq_start(struct ifnet *ifp, struct sge_txq *txq) { struct buf_ring *br; struct mbuf *m; TXQ_LOCK_ASSERT_OWNED(txq); br = txq->br; m = txq->m ? txq->m : drbr_dequeue(ifp, br); if (m) t4_eth_tx(ifp, txq, m); } void t4_tx_callout(void *arg) { struct sge_eq *eq = arg; struct adapter *sc; if (EQ_TRYLOCK(eq) == 0) goto reschedule; if (eq->flags & EQ_STALLED && !can_resume_tx(eq)) { EQ_UNLOCK(eq); reschedule: if (__predict_true(!(eq->flags && EQ_DOOMED))) callout_schedule(&eq->tx_callout, 1); return; } EQ_LOCK_ASSERT_OWNED(eq); if (__predict_true((eq->flags & EQ_DOOMED) == 0)) { if ((eq->flags & EQ_TYPEMASK) == EQ_ETH) { struct sge_txq *txq = arg; struct port_info *pi = txq->ifp->if_softc; sc = pi->adapter; } else { struct sge_wrq *wrq = arg; sc = wrq->adapter; } taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task); } EQ_UNLOCK(eq); } void t4_tx_task(void *arg, int count) { struct sge_eq *eq = arg; EQ_LOCK(eq); if ((eq->flags & EQ_TYPEMASK) == EQ_ETH) { struct sge_txq *txq = arg; txq_start(txq->ifp, txq); } else { struct sge_wrq *wrq = arg; t4_wrq_tx_locked(wrq->adapter, wrq, NULL); } EQ_UNLOCK(eq); } static uint32_t fconf_to_mode(uint32_t fconf) { uint32_t mode; mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR | T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT; if (fconf & F_FRAGMENTATION) mode |= T4_FILTER_IP_FRAGMENT; if (fconf & F_MPSHITTYPE) mode |= T4_FILTER_MPS_HIT_TYPE; if (fconf & F_MACMATCH) mode |= T4_FILTER_MAC_IDX; if (fconf & F_ETHERTYPE) mode |= T4_FILTER_ETH_TYPE; if (fconf & F_PROTOCOL) mode |= T4_FILTER_IP_PROTO; if (fconf & F_TOS) mode |= T4_FILTER_IP_TOS; if (fconf & F_VLAN) mode |= T4_FILTER_VLAN; if (fconf & F_VNIC_ID) mode |= T4_FILTER_VNIC; if (fconf & F_PORT) mode |= T4_FILTER_PORT; if (fconf & F_FCOE) mode |= T4_FILTER_FCoE; return (mode); } static uint32_t mode_to_fconf(uint32_t mode) { uint32_t fconf = 0; if (mode & T4_FILTER_IP_FRAGMENT) fconf |= F_FRAGMENTATION; if (mode & T4_FILTER_MPS_HIT_TYPE) fconf |= F_MPSHITTYPE; if (mode & T4_FILTER_MAC_IDX) fconf |= F_MACMATCH; if (mode & T4_FILTER_ETH_TYPE) fconf |= F_ETHERTYPE; if (mode & T4_FILTER_IP_PROTO) fconf |= F_PROTOCOL; if (mode & T4_FILTER_IP_TOS) fconf |= F_TOS; if (mode & T4_FILTER_VLAN) fconf |= F_VLAN; if (mode & T4_FILTER_VNIC) fconf |= F_VNIC_ID; if (mode & T4_FILTER_PORT) fconf |= F_PORT; if (mode & T4_FILTER_FCoE) fconf |= F_FCOE; return (fconf); } static uint32_t fspec_to_fconf(struct t4_filter_specification *fs) { uint32_t fconf = 0; if (fs->val.frag || fs->mask.frag) fconf |= F_FRAGMENTATION; if (fs->val.matchtype || fs->mask.matchtype) fconf |= F_MPSHITTYPE; if (fs->val.macidx || fs->mask.macidx) fconf |= F_MACMATCH; if (fs->val.ethtype || fs->mask.ethtype) fconf |= F_ETHERTYPE; if (fs->val.proto || fs->mask.proto) fconf |= F_PROTOCOL; if (fs->val.tos || fs->mask.tos) fconf |= F_TOS; if (fs->val.vlan_vld || fs->mask.vlan_vld) fconf |= F_VLAN; if (fs->val.vnic_vld || fs->mask.vnic_vld) fconf |= F_VNIC_ID; if (fs->val.iport || fs->mask.iport) fconf |= F_PORT; if (fs->val.fcoe || fs->mask.fcoe) fconf |= F_FCOE; return (fconf); } static int get_filter_mode(struct adapter *sc, uint32_t *mode) { int rc; uint32_t fconf; rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4getfm"); if (rc) return (rc); t4_read_indirect(sc, A_TP_PIO_ADDR, A_TP_PIO_DATA, &fconf, 1, A_TP_VLAN_PRI_MAP); if (sc->params.tp.vlan_pri_map != fconf) { log(LOG_WARNING, "%s: cached filter mode out of sync %x %x.\n", device_get_nameunit(sc->dev), sc->params.tp.vlan_pri_map, fconf); sc->params.tp.vlan_pri_map = fconf; } *mode = fconf_to_mode(sc->params.tp.vlan_pri_map); end_synchronized_op(sc, LOCK_HELD); return (0); } static int set_filter_mode(struct adapter *sc, uint32_t mode) { uint32_t fconf; int rc; fconf = mode_to_fconf(mode); rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4setfm"); if (rc) return (rc); if (sc->tids.ftids_in_use > 0) { rc = EBUSY; goto done; } #ifdef TCP_OFFLOAD if (sc->offload_map) { rc = EBUSY; goto done; } #endif #ifdef notyet rc = -t4_set_filter_mode(sc, fconf); if (rc == 0) sc->filter_mode = fconf; #else rc = ENOTSUP; #endif done: end_synchronized_op(sc, LOCK_HELD); return (rc); } static inline uint64_t get_filter_hits(struct adapter *sc, uint32_t fid) { uint32_t mw_base, off, tcb_base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); uint64_t hits; memwin_info(sc, 0, &mw_base, NULL); off = position_memwin(sc, 0, tcb_base + (fid + sc->tids.ftid_base) * TCB_SIZE); if (is_t4(sc)) { hits = t4_read_reg64(sc, mw_base + off + 16); hits = be64toh(hits); } else { hits = t4_read_reg(sc, mw_base + off + 24); hits = be32toh(hits); } return (hits); } static int get_filter(struct adapter *sc, struct t4_filter *t) { int i, rc, nfilters = sc->tids.nftids; struct filter_entry *f; rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, "t4getf"); if (rc) return (rc); if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL || t->idx >= nfilters) { t->idx = 0xffffffff; goto done; } f = &sc->tids.ftid_tab[t->idx]; for (i = t->idx; i < nfilters; i++, f++) { if (f->valid) { t->idx = i; t->l2tidx = f->l2t ? f->l2t->idx : 0; t->smtidx = f->smtidx; if (f->fs.hitcnts) t->hits = get_filter_hits(sc, t->idx); else t->hits = UINT64_MAX; t->fs = f->fs; goto done; } } t->idx = 0xffffffff; done: end_synchronized_op(sc, LOCK_HELD); return (0); } static int set_filter(struct adapter *sc, struct t4_filter *t) { unsigned int nfilters, nports; struct filter_entry *f; int i, rc; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf"); if (rc) return (rc); nfilters = sc->tids.nftids; nports = sc->params.nports; if (nfilters == 0) { rc = ENOTSUP; goto done; } if (!(sc->flags & FULL_INIT_DONE)) { rc = EAGAIN; goto done; } if (t->idx >= nfilters) { rc = EINVAL; goto done; } /* Validate against the global filter mode */ if ((sc->params.tp.vlan_pri_map | fspec_to_fconf(&t->fs)) != sc->params.tp.vlan_pri_map) { rc = E2BIG; goto done; } if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) { rc = EINVAL; goto done; } if (t->fs.val.iport >= nports) { rc = EINVAL; goto done; } /* Can't specify an iq if not steering to it */ if (!t->fs.dirsteer && t->fs.iq) { rc = EINVAL; goto done; } /* IPv6 filter idx must be 4 aligned */ if (t->fs.type == 1 && ((t->idx & 0x3) || t->idx + 4 >= nfilters)) { rc = EINVAL; goto done; } if (sc->tids.ftid_tab == NULL) { KASSERT(sc->tids.ftids_in_use == 0, ("%s: no memory allocated but filters_in_use > 0", __func__)); sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) * nfilters, M_CXGBE, M_NOWAIT | M_ZERO); if (sc->tids.ftid_tab == NULL) { rc = ENOMEM; goto done; } mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF); } for (i = 0; i < 4; i++) { f = &sc->tids.ftid_tab[t->idx + i]; if (f->pending || f->valid) { rc = EBUSY; goto done; } if (f->locked) { rc = EPERM; goto done; } if (t->fs.type == 0) break; } f = &sc->tids.ftid_tab[t->idx]; f->fs = t->fs; rc = set_filter_wr(sc, t->idx); done: end_synchronized_op(sc, 0); if (rc == 0) { mtx_lock(&sc->tids.ftid_lock); for (;;) { if (f->pending == 0) { rc = f->valid ? 0 : EIO; break; } if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock, PCATCH, "t4setfw", 0)) { rc = EINPROGRESS; break; } } mtx_unlock(&sc->tids.ftid_lock); } return (rc); } static int del_filter(struct adapter *sc, struct t4_filter *t) { unsigned int nfilters; struct filter_entry *f; int rc; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf"); if (rc) return (rc); nfilters = sc->tids.nftids; if (nfilters == 0) { rc = ENOTSUP; goto done; } if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 || t->idx >= nfilters) { rc = EINVAL; goto done; } if (!(sc->flags & FULL_INIT_DONE)) { rc = EAGAIN; goto done; } f = &sc->tids.ftid_tab[t->idx]; if (f->pending) { rc = EBUSY; goto done; } if (f->locked) { rc = EPERM; goto done; } if (f->valid) { t->fs = f->fs; /* extra info for the caller */ rc = del_filter_wr(sc, t->idx); } done: end_synchronized_op(sc, 0); if (rc == 0) { mtx_lock(&sc->tids.ftid_lock); for (;;) { if (f->pending == 0) { rc = f->valid ? EIO : 0; break; } if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock, PCATCH, "t4delfw", 0)) { rc = EINPROGRESS; break; } } mtx_unlock(&sc->tids.ftid_lock); } return (rc); } static void clear_filter(struct filter_entry *f) { if (f->l2t) t4_l2t_release(f->l2t); bzero(f, sizeof (*f)); } static int set_filter_wr(struct adapter *sc, int fidx) { struct filter_entry *f = &sc->tids.ftid_tab[fidx]; struct wrqe *wr; struct fw_filter_wr *fwr; unsigned int ftid; ASSERT_SYNCHRONIZED_OP(sc); if (f->fs.newdmac || f->fs.newvlan) { /* This filter needs an L2T entry; allocate one. */ f->l2t = t4_l2t_alloc_switching(sc->l2t); if (f->l2t == NULL) return (EAGAIN); if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport, f->fs.dmac)) { t4_l2t_release(f->l2t); f->l2t = NULL; return (ENOMEM); } } ftid = sc->tids.ftid_base + fidx; wr = alloc_wrqe(sizeof(*fwr), &sc->sge.mgmtq); if (wr == NULL) return (ENOMEM); fwr = wrtod(wr); bzero(fwr, sizeof (*fwr)); fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR)); fwr->len16_pkd = htobe32(FW_LEN16(*fwr)); fwr->tid_to_iq = htobe32(V_FW_FILTER_WR_TID(ftid) | V_FW_FILTER_WR_RQTYPE(f->fs.type) | V_FW_FILTER_WR_NOREPLY(0) | V_FW_FILTER_WR_IQ(f->fs.iq)); fwr->del_filter_to_l2tix = htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | V_FW_FILTER_WR_DMAC(f->fs.newdmac) | V_FW_FILTER_WR_SMAC(f->fs.newsmac) | V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || f->fs.newvlan == VLAN_REWRITE) | V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || f->fs.newvlan == VLAN_REWRITE) | V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | V_FW_FILTER_WR_TXCHAN(f->fs.eport) | V_FW_FILTER_WR_PRIO(f->fs.prio) | V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); fwr->ethtype = htobe16(f->fs.val.ethtype); fwr->ethtypem = htobe16(f->fs.mask.ethtype); fwr->frag_to_ovlan_vldm = (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) | V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.vnic_vld) | V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) | V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.vnic_vld)); fwr->smac_sel = 0; fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) | V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id)); fwr->maci_to_matchtypem = htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | V_FW_FILTER_WR_PORT(f->fs.val.iport) | V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); fwr->ptcl = f->fs.val.proto; fwr->ptclm = f->fs.mask.proto; fwr->ttyp = f->fs.val.tos; fwr->ttypm = f->fs.mask.tos; fwr->ivlan = htobe16(f->fs.val.vlan); fwr->ivlanm = htobe16(f->fs.mask.vlan); fwr->ovlan = htobe16(f->fs.val.vnic); fwr->ovlanm = htobe16(f->fs.mask.vnic); bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip)); bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm)); bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip)); bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm)); fwr->lp = htobe16(f->fs.val.dport); fwr->lpm = htobe16(f->fs.mask.dport); fwr->fp = htobe16(f->fs.val.sport); fwr->fpm = htobe16(f->fs.mask.sport); if (f->fs.newsmac) bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma)); f->pending = 1; sc->tids.ftids_in_use++; t4_wrq_tx(sc, wr); return (0); } static int del_filter_wr(struct adapter *sc, int fidx) { struct filter_entry *f = &sc->tids.ftid_tab[fidx]; struct wrqe *wr; struct fw_filter_wr *fwr; unsigned int ftid; ftid = sc->tids.ftid_base + fidx; wr = alloc_wrqe(sizeof(*fwr), &sc->sge.mgmtq); if (wr == NULL) return (ENOMEM); fwr = wrtod(wr); bzero(fwr, sizeof (*fwr)); t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id); f->pending = 1; t4_wrq_tx(sc, wr); return (0); } int t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1); unsigned int idx = GET_TID(rpl); KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, rss->opcode)); if (idx >= sc->tids.ftid_base && (idx -= sc->tids.ftid_base) < sc->tids.nftids) { unsigned int rc = G_COOKIE(rpl->cookie); struct filter_entry *f = &sc->tids.ftid_tab[idx]; mtx_lock(&sc->tids.ftid_lock); if (rc == FW_FILTER_WR_FLT_ADDED) { KASSERT(f->pending, ("%s: filter[%u] isn't pending.", __func__, idx)); f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff; f->pending = 0; /* asynchronous setup completed */ f->valid = 1; } else { if (rc != FW_FILTER_WR_FLT_DELETED) { /* Add or delete failed, display an error */ log(LOG_ERR, "filter %u setup failed with error %u\n", idx, rc); } clear_filter(f); sc->tids.ftids_in_use--; } wakeup(&sc->tids.ftid_tab); mtx_unlock(&sc->tids.ftid_lock); } return (0); } static int get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) { int rc; if (cntxt->cid > M_CTXTQID) return (EINVAL); if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) return (EINVAL); rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); if (rc) return (rc); if (sc->flags & FW_OK) { rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); if (rc == 0) goto done; } /* * Read via firmware failed or wasn't even attempted. Read directly via * the backdoor. */ rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); done: end_synchronized_op(sc, 0); return (rc); } static int load_fw(struct adapter *sc, struct t4_data *fw) { int rc; uint8_t *fw_data; rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); if (rc) return (rc); if (sc->flags & FULL_INIT_DONE) { rc = EBUSY; goto done; } fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); if (fw_data == NULL) { rc = ENOMEM; goto done; } rc = copyin(fw->data, fw_data, fw->len); if (rc == 0) rc = -t4_load_fw(sc, fw_data, fw->len); free(fw_data, M_CXGBE); done: end_synchronized_op(sc, 0); return (rc); } static int read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) { uint32_t addr, off, remaining, i, n; uint32_t *buf, *b; uint32_t mw_base, mw_aperture; int rc; uint8_t *dst; rc = validate_mem_range(sc, mr->addr, mr->len); if (rc != 0) return (rc); memwin_info(sc, win, &mw_base, &mw_aperture); buf = b = malloc(min(mr->len, mw_aperture), M_CXGBE, M_WAITOK); addr = mr->addr; remaining = mr->len; dst = (void *)mr->data; while (remaining) { off = position_memwin(sc, win, addr); /* number of bytes that we'll copy in the inner loop */ n = min(remaining, mw_aperture - off); for (i = 0; i < n; i += 4) *b++ = t4_read_reg(sc, mw_base + off + i); rc = copyout(buf, dst, n); if (rc != 0) break; b = buf; dst += n; remaining -= n; addr += n; } free(buf, M_CXGBE); return (rc); } static int read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) { int rc; if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) return (EINVAL); if (i2cd->len > 1) { /* XXX: need fw support for longer reads in one go */ return (ENOTSUP); } rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); if (rc) return (rc); rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, i2cd->offset, &i2cd->data[0]); end_synchronized_op(sc, 0); return (rc); } int t4_os_find_pci_capability(struct adapter *sc, int cap) { int i; return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); } int t4_os_pci_save_state(struct adapter *sc) { device_t dev; struct pci_devinfo *dinfo; dev = sc->dev; dinfo = device_get_ivars(dev); pci_cfg_save(dev, dinfo, 0); return (0); } int t4_os_pci_restore_state(struct adapter *sc) { device_t dev; struct pci_devinfo *dinfo; dev = sc->dev; dinfo = device_get_ivars(dev); pci_cfg_restore(dev, dinfo); return (0); } void t4_os_portmod_changed(const struct adapter *sc, int idx) { struct port_info *pi = sc->port[idx]; static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" }; if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) if_printf(pi->ifp, "transceiver unplugged.\n"); else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) if_printf(pi->ifp, "unknown transceiver inserted.\n"); else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) if_printf(pi->ifp, "unsupported transceiver inserted.\n"); else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { if_printf(pi->ifp, "%s transceiver inserted.\n", mod_str[pi->mod_type]); } else { if_printf(pi->ifp, "transceiver (type %d) inserted.\n", pi->mod_type); } } void t4_os_link_changed(struct adapter *sc, int idx, int link_stat, int reason) { struct port_info *pi = sc->port[idx]; struct ifnet *ifp = pi->ifp; if (link_stat) { pi->linkdnrc = -1; ifp->if_baudrate = IF_Mbps(pi->link_cfg.speed); if_link_state_change(ifp, LINK_STATE_UP); } else { if (reason >= 0) pi->linkdnrc = reason; if_link_state_change(ifp, LINK_STATE_DOWN); } } void t4_iterate(void (*func)(struct adapter *, void *), void *arg) { struct adapter *sc; mtx_lock(&t4_list_lock); SLIST_FOREACH(sc, &t4_list, link) { /* * func should not make any assumptions about what state sc is * in - the only guarantee is that sc->sc_lock is a valid lock. */ func(sc, arg); } mtx_unlock(&t4_list_lock); } static int t4_open(struct cdev *dev, int flags, int type, struct thread *td) { return (0); } static int t4_close(struct cdev *dev, int flags, int type, struct thread *td) { return (0); } static int t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, struct thread *td) { int rc; struct adapter *sc = dev->si_drv1; rc = priv_check(td, PRIV_DRIVER); if (rc != 0) return (rc); switch (cmd) { case CHELSIO_T4_GETREG: { struct t4_reg *edata = (struct t4_reg *)data; if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) return (EFAULT); if (edata->size == 4) edata->val = t4_read_reg(sc, edata->addr); else if (edata->size == 8) edata->val = t4_read_reg64(sc, edata->addr); else return (EINVAL); break; } case CHELSIO_T4_SETREG: { struct t4_reg *edata = (struct t4_reg *)data; if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) return (EFAULT); if (edata->size == 4) { if (edata->val & 0xffffffff00000000) return (EINVAL); t4_write_reg(sc, edata->addr, (uint32_t) edata->val); } else if (edata->size == 8) t4_write_reg64(sc, edata->addr, edata->val); else return (EINVAL); break; } case CHELSIO_T4_REGDUMP: { struct t4_regdump *regs = (struct t4_regdump *)data; int reglen = is_t4(sc) ? T4_REGDUMP_SIZE : T5_REGDUMP_SIZE; uint8_t *buf; if (regs->len < reglen) { regs->len = reglen; /* hint to the caller */ return (ENOBUFS); } regs->len = reglen; buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); t4_get_regs(sc, regs, buf); rc = copyout(buf, regs->data, reglen); free(buf, M_CXGBE); break; } case CHELSIO_T4_GET_FILTER_MODE: rc = get_filter_mode(sc, (uint32_t *)data); break; case CHELSIO_T4_SET_FILTER_MODE: rc = set_filter_mode(sc, *(uint32_t *)data); break; case CHELSIO_T4_GET_FILTER: rc = get_filter(sc, (struct t4_filter *)data); break; case CHELSIO_T4_SET_FILTER: rc = set_filter(sc, (struct t4_filter *)data); break; case CHELSIO_T4_DEL_FILTER: rc = del_filter(sc, (struct t4_filter *)data); break; case CHELSIO_T4_GET_SGE_CONTEXT: rc = get_sge_context(sc, (struct t4_sge_context *)data); break; case CHELSIO_T4_LOAD_FW: rc = load_fw(sc, (struct t4_data *)data); break; case CHELSIO_T4_GET_MEM: rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); break; case CHELSIO_T4_GET_I2C: rc = read_i2c(sc, (struct t4_i2c_data *)data); break; case CHELSIO_T4_CLEAR_STATS: { int i; u_int port_id = *(uint32_t *)data; struct port_info *pi; if (port_id >= sc->params.nports) return (EINVAL); /* MAC stats */ t4_clr_port_stats(sc, port_id); pi = sc->port[port_id]; if (pi->flags & PORT_INIT_DONE) { struct sge_rxq *rxq; struct sge_txq *txq; struct sge_wrq *wrq; for_each_rxq(pi, i, rxq) { #if defined(INET) || defined(INET6) rxq->lro.lro_queued = 0; rxq->lro.lro_flushed = 0; #endif rxq->rxcsum = 0; rxq->vlan_extraction = 0; } for_each_txq(pi, i, txq) { txq->txcsum = 0; txq->tso_wrs = 0; txq->vlan_insertion = 0; txq->imm_wrs = 0; txq->sgl_wrs = 0; txq->txpkt_wrs = 0; txq->txpkts_wrs = 0; txq->txpkts_pkts = 0; txq->br->br_drops = 0; txq->no_dmamap = 0; txq->no_desc = 0; } #ifdef TCP_OFFLOAD /* nothing to clear for each ofld_rxq */ for_each_ofld_txq(pi, i, wrq) { wrq->tx_wrs = 0; wrq->no_desc = 0; } #endif wrq = &sc->sge.ctrlq[pi->port_id]; wrq->tx_wrs = 0; wrq->no_desc = 0; } break; } case CHELSIO_T4_GET_TRACER: rc = t4_get_tracer(sc, (struct t4_tracer *)data); break; case CHELSIO_T4_SET_TRACER: rc = t4_set_tracer(sc, (struct t4_tracer *)data); break; default: rc = EINVAL; } return (rc); } #ifdef TCP_OFFLOAD static int toe_capability(struct port_info *pi, int enable) { int rc; struct adapter *sc = pi->adapter; ASSERT_SYNCHRONIZED_OP(sc); if (!is_offload(sc)) return (ENODEV); if (enable) { if (!(sc->flags & FULL_INIT_DONE)) { rc = cxgbe_init_synchronized(pi); if (rc) return (rc); } if (isset(&sc->offload_map, pi->port_id)) return (0); if (!(sc->flags & TOM_INIT_DONE)) { rc = t4_activate_uld(sc, ULD_TOM); if (rc == EAGAIN) { log(LOG_WARNING, "You must kldload t4_tom.ko before trying " "to enable TOE on a cxgbe interface.\n"); } if (rc != 0) return (rc); KASSERT(sc->tom_softc != NULL, ("%s: TOM activated but softc NULL", __func__)); KASSERT(sc->flags & TOM_INIT_DONE, ("%s: TOM activated but flag not set", __func__)); } setbit(&sc->offload_map, pi->port_id); } else { if (!isset(&sc->offload_map, pi->port_id)) return (0); KASSERT(sc->flags & TOM_INIT_DONE, ("%s: TOM never initialized?", __func__)); clrbit(&sc->offload_map, pi->port_id); } return (0); } /* * Add an upper layer driver to the global list. */ int t4_register_uld(struct uld_info *ui) { int rc = 0; struct uld_info *u; mtx_lock(&t4_uld_list_lock); SLIST_FOREACH(u, &t4_uld_list, link) { if (u->uld_id == ui->uld_id) { rc = EEXIST; goto done; } } SLIST_INSERT_HEAD(&t4_uld_list, ui, link); ui->refcount = 0; done: mtx_unlock(&t4_uld_list_lock); return (rc); } int t4_unregister_uld(struct uld_info *ui) { int rc = EINVAL; struct uld_info *u; mtx_lock(&t4_uld_list_lock); SLIST_FOREACH(u, &t4_uld_list, link) { if (u == ui) { if (ui->refcount > 0) { rc = EBUSY; goto done; } SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); rc = 0; goto done; } } done: mtx_unlock(&t4_uld_list_lock); return (rc); } int t4_activate_uld(struct adapter *sc, int id) { int rc = EAGAIN; struct uld_info *ui; ASSERT_SYNCHRONIZED_OP(sc); mtx_lock(&t4_uld_list_lock); SLIST_FOREACH(ui, &t4_uld_list, link) { if (ui->uld_id == id) { rc = ui->activate(sc); if (rc == 0) ui->refcount++; goto done; } } done: mtx_unlock(&t4_uld_list_lock); return (rc); } int t4_deactivate_uld(struct adapter *sc, int id) { int rc = EINVAL; struct uld_info *ui; ASSERT_SYNCHRONIZED_OP(sc); mtx_lock(&t4_uld_list_lock); SLIST_FOREACH(ui, &t4_uld_list, link) { if (ui->uld_id == id) { rc = ui->deactivate(sc); if (rc == 0) ui->refcount--; goto done; } } done: mtx_unlock(&t4_uld_list_lock); return (rc); } #endif /* * Come up with reasonable defaults for some of the tunables, provided they're * not set by the user (in which case we'll use the values as is). */ static void tweak_tunables(void) { int nc = mp_ncpus; /* our snapshot of the number of CPUs */ if (t4_ntxq10g < 1) t4_ntxq10g = min(nc, NTXQ_10G); if (t4_ntxq1g < 1) t4_ntxq1g = min(nc, NTXQ_1G); if (t4_nrxq10g < 1) t4_nrxq10g = min(nc, NRXQ_10G); if (t4_nrxq1g < 1) t4_nrxq1g = min(nc, NRXQ_1G); #ifdef TCP_OFFLOAD if (t4_nofldtxq10g < 1) t4_nofldtxq10g = min(nc, NOFLDTXQ_10G); if (t4_nofldtxq1g < 1) t4_nofldtxq1g = min(nc, NOFLDTXQ_1G); if (t4_nofldrxq10g < 1) t4_nofldrxq10g = min(nc, NOFLDRXQ_10G); if (t4_nofldrxq1g < 1) t4_nofldrxq1g = min(nc, NOFLDRXQ_1G); if (t4_toecaps_allowed == -1) t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; #else if (t4_toecaps_allowed == -1) t4_toecaps_allowed = 0; #endif if (t4_tmr_idx_10g < 0 || t4_tmr_idx_10g >= SGE_NTIMERS) t4_tmr_idx_10g = TMR_IDX_10G; if (t4_pktc_idx_10g < -1 || t4_pktc_idx_10g >= SGE_NCOUNTERS) t4_pktc_idx_10g = PKTC_IDX_10G; if (t4_tmr_idx_1g < 0 || t4_tmr_idx_1g >= SGE_NTIMERS) t4_tmr_idx_1g = TMR_IDX_1G; if (t4_pktc_idx_1g < -1 || t4_pktc_idx_1g >= SGE_NCOUNTERS) t4_pktc_idx_1g = PKTC_IDX_1G; if (t4_qsize_txq < 128) t4_qsize_txq = 128; if (t4_qsize_rxq < 128) t4_qsize_rxq = 128; while (t4_qsize_rxq & 7) t4_qsize_rxq++; t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; } static int mod_event(module_t mod, int cmd, void *arg) { int rc = 0; static int loaded = 0; switch (cmd) { case MOD_LOAD: if (atomic_fetchadd_int(&loaded, 1)) break; t4_sge_modload(); mtx_init(&t4_list_lock, "T4 adapters", 0, MTX_DEF); SLIST_INIT(&t4_list); #ifdef TCP_OFFLOAD mtx_init(&t4_uld_list_lock, "T4 ULDs", 0, MTX_DEF); SLIST_INIT(&t4_uld_list); #endif t4_tracer_modload(); tweak_tunables(); break; case MOD_UNLOAD: if (atomic_fetchadd_int(&loaded, -1) > 1) break; t4_tracer_modunload(); #ifdef TCP_OFFLOAD mtx_lock(&t4_uld_list_lock); if (!SLIST_EMPTY(&t4_uld_list)) { rc = EBUSY; mtx_unlock(&t4_uld_list_lock); break; } mtx_unlock(&t4_uld_list_lock); mtx_destroy(&t4_uld_list_lock); #endif mtx_lock(&t4_list_lock); if (!SLIST_EMPTY(&t4_list)) { rc = EBUSY; mtx_unlock(&t4_list_lock); break; } mtx_unlock(&t4_list_lock); mtx_destroy(&t4_list_lock); break; } return (rc); } static devclass_t t4_devclass, t5_devclass; static devclass_t cxgbe_devclass, cxl_devclass; DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); MODULE_VERSION(t4nex, 1); MODULE_DEPEND(t4nex, firmware, 1, 1, 1); DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); MODULE_VERSION(t5nex, 1); MODULE_DEPEND(t5nex, firmware, 1, 1, 1); DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); MODULE_VERSION(cxgbe, 1); DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); MODULE_VERSION(cxl, 1);