/*- * Copyright (c) 2009 The FreeBSD Foundation * All rights reserved. * * This software was developed by Rui Paulo under sponsorship from the * FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #ifdef __FreeBSD__ __FBSDID("$FreeBSD$"); #endif /* * IEEE 802.11s Mesh Point (MBSS) support. * * Based on March 2009, D3.0 802.11s draft spec. */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #include #include static void mesh_rt_flush_invalid(struct ieee80211vap *); static int mesh_select_proto_path(struct ieee80211vap *, const char *); static int mesh_select_proto_metric(struct ieee80211vap *, const char *); static void mesh_vattach(struct ieee80211vap *); static int mesh_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void mesh_rt_cleanup_cb(void *); static void mesh_gatemode_setup(struct ieee80211vap *); static void mesh_gatemode_cb(void *); static void mesh_linkchange(struct ieee80211_node *, enum ieee80211_mesh_mlstate); static void mesh_checkid(void *, struct ieee80211_node *); static uint32_t mesh_generateid(struct ieee80211vap *); static int mesh_checkpseq(struct ieee80211vap *, const uint8_t [IEEE80211_ADDR_LEN], uint32_t); static void mesh_transmit_to_gate(struct ieee80211vap *, struct mbuf *, struct ieee80211_mesh_route *); static void mesh_forward(struct ieee80211vap *, struct mbuf *, const struct ieee80211_meshcntl *); static int mesh_input(struct ieee80211_node *, struct mbuf *, int, int); static void mesh_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, int, int); static void mesh_recv_ctl(struct ieee80211_node *, struct mbuf *, int); static void mesh_peer_timeout_setup(struct ieee80211_node *); static void mesh_peer_timeout_backoff(struct ieee80211_node *); static void mesh_peer_timeout_cb(void *); static __inline void mesh_peer_timeout_stop(struct ieee80211_node *); static int mesh_verify_meshid(struct ieee80211vap *, const uint8_t *); static int mesh_verify_meshconf(struct ieee80211vap *, const uint8_t *); static int mesh_verify_meshpeer(struct ieee80211vap *, uint8_t, const uint8_t *); uint32_t mesh_airtime_calc(struct ieee80211_node *); /* * Timeout values come from the specification and are in milliseconds. */ static SYSCTL_NODE(_net_wlan, OID_AUTO, mesh, CTLFLAG_RD, 0, "IEEE 802.11s parameters"); static int ieee80211_mesh_gateint = -1; SYSCTL_PROC(_net_wlan_mesh, OID_AUTO, gateint, CTLTYPE_INT | CTLFLAG_RW, &ieee80211_mesh_gateint, 0, ieee80211_sysctl_msecs_ticks, "I", "mesh gate interval (ms)"); static int ieee80211_mesh_retrytimeout = -1; SYSCTL_PROC(_net_wlan_mesh, OID_AUTO, retrytimeout, CTLTYPE_INT | CTLFLAG_RW, &ieee80211_mesh_retrytimeout, 0, ieee80211_sysctl_msecs_ticks, "I", "Retry timeout (msec)"); static int ieee80211_mesh_holdingtimeout = -1; SYSCTL_PROC(_net_wlan_mesh, OID_AUTO, holdingtimeout, CTLTYPE_INT | CTLFLAG_RW, &ieee80211_mesh_holdingtimeout, 0, ieee80211_sysctl_msecs_ticks, "I", "Holding state timeout (msec)"); static int ieee80211_mesh_confirmtimeout = -1; SYSCTL_PROC(_net_wlan_mesh, OID_AUTO, confirmtimeout, CTLTYPE_INT | CTLFLAG_RW, &ieee80211_mesh_confirmtimeout, 0, ieee80211_sysctl_msecs_ticks, "I", "Confirm state timeout (msec)"); static int ieee80211_mesh_backofftimeout = -1; SYSCTL_PROC(_net_wlan_mesh, OID_AUTO, backofftimeout, CTLTYPE_INT | CTLFLAG_RW, &ieee80211_mesh_backofftimeout, 0, ieee80211_sysctl_msecs_ticks, "I", "Backoff timeout (msec). This is to throutles peering forever when " "not receving answer or is rejected by a neighbor"); static int ieee80211_mesh_maxretries = 2; SYSCTL_INT(_net_wlan_mesh, OID_AUTO, maxretries, CTLTYPE_INT | CTLFLAG_RW, &ieee80211_mesh_maxretries, 0, "Maximum retries during peer link establishment"); static int ieee80211_mesh_maxholding = 2; SYSCTL_INT(_net_wlan_mesh, OID_AUTO, maxholding, CTLTYPE_INT | CTLFLAG_RW, &ieee80211_mesh_maxholding, 0, "Maximum times we are allowed to transition to HOLDING state before " "backinoff during peer link establishment"); static const uint8_t broadcastaddr[IEEE80211_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static ieee80211_recv_action_func mesh_recv_action_meshpeering_open; static ieee80211_recv_action_func mesh_recv_action_meshpeering_confirm; static ieee80211_recv_action_func mesh_recv_action_meshpeering_close; static ieee80211_recv_action_func mesh_recv_action_meshlmetric; static ieee80211_recv_action_func mesh_recv_action_meshgate; static ieee80211_send_action_func mesh_send_action_meshpeering_open; static ieee80211_send_action_func mesh_send_action_meshpeering_confirm; static ieee80211_send_action_func mesh_send_action_meshpeering_close; static ieee80211_send_action_func mesh_send_action_meshlmetric; static ieee80211_send_action_func mesh_send_action_meshgate; static const struct ieee80211_mesh_proto_metric mesh_metric_airtime = { .mpm_descr = "AIRTIME", .mpm_ie = IEEE80211_MESHCONF_METRIC_AIRTIME, .mpm_metric = mesh_airtime_calc, }; static struct ieee80211_mesh_proto_path mesh_proto_paths[4]; static struct ieee80211_mesh_proto_metric mesh_proto_metrics[4]; #define RT_ENTRY_LOCK(rt) mtx_lock(&(rt)->rt_lock) #define RT_ENTRY_LOCK_ASSERT(rt) mtx_assert(&(rt)->rt_lock, MA_OWNED) #define RT_ENTRY_UNLOCK(rt) mtx_unlock(&(rt)->rt_lock) #define MESH_RT_LOCK(ms) mtx_lock(&(ms)->ms_rt_lock) #define MESH_RT_LOCK_ASSERT(ms) mtx_assert(&(ms)->ms_rt_lock, MA_OWNED) #define MESH_RT_UNLOCK(ms) mtx_unlock(&(ms)->ms_rt_lock) MALLOC_DEFINE(M_80211_MESH_PREQ, "80211preq", "802.11 MESH Path Request frame"); MALLOC_DEFINE(M_80211_MESH_PREP, "80211prep", "802.11 MESH Path Reply frame"); MALLOC_DEFINE(M_80211_MESH_PERR, "80211perr", "802.11 MESH Path Error frame"); /* The longer one of the lifetime should be stored as new lifetime */ #define MESH_ROUTE_LIFETIME_MAX(a, b) (a > b ? a : b) MALLOC_DEFINE(M_80211_MESH_RT, "80211mesh_rt", "802.11s routing table"); MALLOC_DEFINE(M_80211_MESH_GT_RT, "80211mesh_gt", "802.11s known gates table"); /* * Helper functions to manipulate the Mesh routing table. */ static struct ieee80211_mesh_route * mesh_rt_find_locked(struct ieee80211_mesh_state *ms, const uint8_t dest[IEEE80211_ADDR_LEN]) { struct ieee80211_mesh_route *rt; MESH_RT_LOCK_ASSERT(ms); TAILQ_FOREACH(rt, &ms->ms_routes, rt_next) { if (IEEE80211_ADDR_EQ(dest, rt->rt_dest)) return rt; } return NULL; } static struct ieee80211_mesh_route * mesh_rt_add_locked(struct ieee80211vap *vap, const uint8_t dest[IEEE80211_ADDR_LEN]) { struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt; KASSERT(!IEEE80211_ADDR_EQ(broadcastaddr, dest), ("%s: adding broadcast to the routing table", __func__)); MESH_RT_LOCK_ASSERT(ms); rt = malloc(ALIGN(sizeof(struct ieee80211_mesh_route)) + ms->ms_ppath->mpp_privlen, M_80211_MESH_RT, M_NOWAIT | M_ZERO); if (rt != NULL) { rt->rt_vap = vap; IEEE80211_ADDR_COPY(rt->rt_dest, dest); rt->rt_priv = (void *)ALIGN(&rt[1]); mtx_init(&rt->rt_lock, "MBSS_RT", "802.11s route entry", MTX_DEF); callout_init(&rt->rt_discovery, CALLOUT_MPSAFE); rt->rt_updtime = ticks; /* create time */ TAILQ_INSERT_TAIL(&ms->ms_routes, rt, rt_next); } return rt; } struct ieee80211_mesh_route * ieee80211_mesh_rt_find(struct ieee80211vap *vap, const uint8_t dest[IEEE80211_ADDR_LEN]) { struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt; MESH_RT_LOCK(ms); rt = mesh_rt_find_locked(ms, dest); MESH_RT_UNLOCK(ms); return rt; } struct ieee80211_mesh_route * ieee80211_mesh_rt_add(struct ieee80211vap *vap, const uint8_t dest[IEEE80211_ADDR_LEN]) { struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt; KASSERT(ieee80211_mesh_rt_find(vap, dest) == NULL, ("%s: duplicate entry in the routing table", __func__)); KASSERT(!IEEE80211_ADDR_EQ(vap->iv_myaddr, dest), ("%s: adding self to the routing table", __func__)); MESH_RT_LOCK(ms); rt = mesh_rt_add_locked(vap, dest); MESH_RT_UNLOCK(ms); return rt; } /* * Update the route lifetime and returns the updated lifetime. * If new_lifetime is zero and route is timedout it will be invalidated. * new_lifetime is in msec */ int ieee80211_mesh_rt_update(struct ieee80211_mesh_route *rt, int new_lifetime) { int timesince, now; uint32_t lifetime = 0; KASSERT(rt != NULL, ("route is NULL")); now = ticks; RT_ENTRY_LOCK(rt); /* dont clobber a proxy entry gated by us */ if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY && rt->rt_nhops == 0) { RT_ENTRY_UNLOCK(rt); return rt->rt_lifetime; } timesince = ticks_to_msecs(now - rt->rt_updtime); rt->rt_updtime = now; if (timesince >= rt->rt_lifetime) { if (new_lifetime != 0) { rt->rt_lifetime = new_lifetime; } else { rt->rt_flags &= ~IEEE80211_MESHRT_FLAGS_VALID; rt->rt_lifetime = 0; } } else { /* update what is left of lifetime */ rt->rt_lifetime = rt->rt_lifetime - timesince; rt->rt_lifetime = MESH_ROUTE_LIFETIME_MAX( new_lifetime, rt->rt_lifetime); } lifetime = rt->rt_lifetime; RT_ENTRY_UNLOCK(rt); return lifetime; } /* * Add a proxy route (as needed) for the specified destination. */ void ieee80211_mesh_proxy_check(struct ieee80211vap *vap, const uint8_t dest[IEEE80211_ADDR_LEN]) { struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt; MESH_RT_LOCK(ms); rt = mesh_rt_find_locked(ms, dest); if (rt == NULL) { rt = mesh_rt_add_locked(vap, dest); if (rt == NULL) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, dest, "%s", "unable to add proxy entry"); vap->iv_stats.is_mesh_rtaddfailed++; } else { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, dest, "%s", "add proxy entry"); IEEE80211_ADDR_COPY(rt->rt_mesh_gate, vap->iv_myaddr); IEEE80211_ADDR_COPY(rt->rt_nexthop, vap->iv_myaddr); rt->rt_flags |= IEEE80211_MESHRT_FLAGS_VALID | IEEE80211_MESHRT_FLAGS_PROXY; } } else if ((rt->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) == 0) { KASSERT(rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY, ("no proxy flag for poxy entry")); struct ieee80211com *ic = vap->iv_ic; /* * Fix existing entry created by received frames from * stations that have some memory of dest. We also * flush any frames held on the staging queue; delivering * them is too much trouble right now. */ IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, dest, "%s", "fix proxy entry"); IEEE80211_ADDR_COPY(rt->rt_nexthop, vap->iv_myaddr); rt->rt_flags |= IEEE80211_MESHRT_FLAGS_VALID | IEEE80211_MESHRT_FLAGS_PROXY; /* XXX belongs in hwmp */ ieee80211_ageq_drain_node(&ic->ic_stageq, (void *)(uintptr_t) ieee80211_mac_hash(ic, dest)); /* XXX stat? */ } MESH_RT_UNLOCK(ms); } static __inline void mesh_rt_del(struct ieee80211_mesh_state *ms, struct ieee80211_mesh_route *rt) { TAILQ_REMOVE(&ms->ms_routes, rt, rt_next); /* * Grab the lock before destroying it, to be sure no one else * is holding the route. */ RT_ENTRY_LOCK(rt); callout_drain(&rt->rt_discovery); mtx_destroy(&rt->rt_lock); free(rt, M_80211_MESH_RT); } void ieee80211_mesh_rt_del(struct ieee80211vap *vap, const uint8_t dest[IEEE80211_ADDR_LEN]) { struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt, *next; MESH_RT_LOCK(ms); TAILQ_FOREACH_SAFE(rt, &ms->ms_routes, rt_next, next) { if (IEEE80211_ADDR_EQ(rt->rt_dest, dest)) { if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { ms->ms_ppath->mpp_senderror(vap, dest, rt, IEEE80211_REASON_MESH_PERR_NO_PROXY); } else { ms->ms_ppath->mpp_senderror(vap, dest, rt, IEEE80211_REASON_MESH_PERR_DEST_UNREACH); } mesh_rt_del(ms, rt); MESH_RT_UNLOCK(ms); return; } } MESH_RT_UNLOCK(ms); } void ieee80211_mesh_rt_flush(struct ieee80211vap *vap) { struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt, *next; if (ms == NULL) return; MESH_RT_LOCK(ms); TAILQ_FOREACH_SAFE(rt, &ms->ms_routes, rt_next, next) mesh_rt_del(ms, rt); MESH_RT_UNLOCK(ms); } void ieee80211_mesh_rt_flush_peer(struct ieee80211vap *vap, const uint8_t peer[IEEE80211_ADDR_LEN]) { struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt, *next; MESH_RT_LOCK(ms); TAILQ_FOREACH_SAFE(rt, &ms->ms_routes, rt_next, next) { if (IEEE80211_ADDR_EQ(rt->rt_nexthop, peer)) mesh_rt_del(ms, rt); } MESH_RT_UNLOCK(ms); } /* * Flush expired routing entries, i.e. those in invalid state for * some time. */ static void mesh_rt_flush_invalid(struct ieee80211vap *vap) { struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt, *next; if (ms == NULL) return; MESH_RT_LOCK(ms); TAILQ_FOREACH_SAFE(rt, &ms->ms_routes, rt_next, next) { /* Discover paths will be deleted by their own callout */ if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_DISCOVER) continue; ieee80211_mesh_rt_update(rt, 0); if ((rt->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) == 0) mesh_rt_del(ms, rt); } MESH_RT_UNLOCK(ms); } #define N(a) (sizeof(a) / sizeof(a[0])) int ieee80211_mesh_register_proto_path(const struct ieee80211_mesh_proto_path *mpp) { int i, firstempty = -1; for (i = 0; i < N(mesh_proto_paths); i++) { if (strncmp(mpp->mpp_descr, mesh_proto_paths[i].mpp_descr, IEEE80211_MESH_PROTO_DSZ) == 0) return EEXIST; if (!mesh_proto_paths[i].mpp_active && firstempty == -1) firstempty = i; } if (firstempty < 0) return ENOSPC; memcpy(&mesh_proto_paths[firstempty], mpp, sizeof(*mpp)); mesh_proto_paths[firstempty].mpp_active = 1; return 0; } int ieee80211_mesh_register_proto_metric(const struct ieee80211_mesh_proto_metric *mpm) { int i, firstempty = -1; for (i = 0; i < N(mesh_proto_metrics); i++) { if (strncmp(mpm->mpm_descr, mesh_proto_metrics[i].mpm_descr, IEEE80211_MESH_PROTO_DSZ) == 0) return EEXIST; if (!mesh_proto_metrics[i].mpm_active && firstempty == -1) firstempty = i; } if (firstempty < 0) return ENOSPC; memcpy(&mesh_proto_metrics[firstempty], mpm, sizeof(*mpm)); mesh_proto_metrics[firstempty].mpm_active = 1; return 0; } static int mesh_select_proto_path(struct ieee80211vap *vap, const char *name) { struct ieee80211_mesh_state *ms = vap->iv_mesh; int i; for (i = 0; i < N(mesh_proto_paths); i++) { if (strcasecmp(mesh_proto_paths[i].mpp_descr, name) == 0) { ms->ms_ppath = &mesh_proto_paths[i]; return 0; } } return ENOENT; } static int mesh_select_proto_metric(struct ieee80211vap *vap, const char *name) { struct ieee80211_mesh_state *ms = vap->iv_mesh; int i; for (i = 0; i < N(mesh_proto_metrics); i++) { if (strcasecmp(mesh_proto_metrics[i].mpm_descr, name) == 0) { ms->ms_pmetric = &mesh_proto_metrics[i]; return 0; } } return ENOENT; } #undef N static void mesh_gatemode_setup(struct ieee80211vap *vap) { struct ieee80211_mesh_state *ms = vap->iv_mesh; /* * NB: When a mesh gate is running as a ROOT it shall * not send out periodic GANNs but instead mark the * mesh gate flag for the corresponding proactive PREQ * and RANN frames. */ if (ms->ms_flags & IEEE80211_MESHFLAGS_ROOT || (ms->ms_flags & IEEE80211_MESHFLAGS_GATE) == 0) { callout_drain(&ms->ms_gatetimer); return ; } callout_reset(&ms->ms_gatetimer, ieee80211_mesh_gateint, mesh_gatemode_cb, vap); } static void mesh_gatemode_cb(void *arg) { struct ieee80211vap *vap = (struct ieee80211vap *)arg; struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_meshgann_ie gann; gann.gann_flags = 0; /* Reserved */ gann.gann_hopcount = 0; gann.gann_ttl = ms->ms_ttl; IEEE80211_ADDR_COPY(gann.gann_addr, vap->iv_myaddr); gann.gann_seq = ms->ms_gateseq++; gann.gann_interval = ieee80211_mesh_gateint; IEEE80211_NOTE(vap, IEEE80211_MSG_MESH, vap->iv_bss, "send broadcast GANN (seq %u)", gann.gann_seq); ieee80211_send_action(vap->iv_bss, IEEE80211_ACTION_CAT_MESH, IEEE80211_ACTION_MESH_GANN, &gann); mesh_gatemode_setup(vap); } static void ieee80211_mesh_init(void) { memset(mesh_proto_paths, 0, sizeof(mesh_proto_paths)); memset(mesh_proto_metrics, 0, sizeof(mesh_proto_metrics)); /* * Setup mesh parameters that depends on the clock frequency. */ ieee80211_mesh_gateint = msecs_to_ticks(10000); ieee80211_mesh_retrytimeout = msecs_to_ticks(40); ieee80211_mesh_holdingtimeout = msecs_to_ticks(40); ieee80211_mesh_confirmtimeout = msecs_to_ticks(40); ieee80211_mesh_backofftimeout = msecs_to_ticks(5000); /* * Register action frame handlers. */ ieee80211_recv_action_register(IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_OPEN, mesh_recv_action_meshpeering_open); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CONFIRM, mesh_recv_action_meshpeering_confirm); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, mesh_recv_action_meshpeering_close); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_MESH, IEEE80211_ACTION_MESH_LMETRIC, mesh_recv_action_meshlmetric); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_MESH, IEEE80211_ACTION_MESH_GANN, mesh_recv_action_meshgate); ieee80211_send_action_register(IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_OPEN, mesh_send_action_meshpeering_open); ieee80211_send_action_register(IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CONFIRM, mesh_send_action_meshpeering_confirm); ieee80211_send_action_register(IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, mesh_send_action_meshpeering_close); ieee80211_send_action_register(IEEE80211_ACTION_CAT_MESH, IEEE80211_ACTION_MESH_LMETRIC, mesh_send_action_meshlmetric); ieee80211_send_action_register(IEEE80211_ACTION_CAT_MESH, IEEE80211_ACTION_MESH_GANN, mesh_send_action_meshgate); /* * Register Airtime Link Metric. */ ieee80211_mesh_register_proto_metric(&mesh_metric_airtime); } SYSINIT(wlan_mesh, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_mesh_init, NULL); void ieee80211_mesh_attach(struct ieee80211com *ic) { ic->ic_vattach[IEEE80211_M_MBSS] = mesh_vattach; } void ieee80211_mesh_detach(struct ieee80211com *ic) { } static void mesh_vdetach_peers(void *arg, struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; uint16_t args[3]; if (ni->ni_mlstate == IEEE80211_NODE_MESH_ESTABLISHED) { args[0] = ni->ni_mlpid; args[1] = ni->ni_mllid; args[2] = IEEE80211_REASON_PEER_LINK_CANCELED; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); } callout_drain(&ni->ni_mltimer); /* XXX belongs in hwmp */ ieee80211_ageq_drain_node(&ic->ic_stageq, (void *)(uintptr_t) ieee80211_mac_hash(ic, ni->ni_macaddr)); } static void mesh_vdetach(struct ieee80211vap *vap) { struct ieee80211_mesh_state *ms = vap->iv_mesh; callout_drain(&ms->ms_cleantimer); ieee80211_iterate_nodes(&vap->iv_ic->ic_sta, mesh_vdetach_peers, NULL); ieee80211_mesh_rt_flush(vap); mtx_destroy(&ms->ms_rt_lock); ms->ms_ppath->mpp_vdetach(vap); free(vap->iv_mesh, M_80211_VAP); vap->iv_mesh = NULL; } static void mesh_vattach(struct ieee80211vap *vap) { struct ieee80211_mesh_state *ms; vap->iv_newstate = mesh_newstate; vap->iv_input = mesh_input; vap->iv_opdetach = mesh_vdetach; vap->iv_recv_mgmt = mesh_recv_mgmt; vap->iv_recv_ctl = mesh_recv_ctl; ms = malloc(sizeof(struct ieee80211_mesh_state), M_80211_VAP, M_NOWAIT | M_ZERO); if (ms == NULL) { printf("%s: couldn't alloc MBSS state\n", __func__); return; } vap->iv_mesh = ms; ms->ms_seq = 0; ms->ms_flags = (IEEE80211_MESHFLAGS_AP | IEEE80211_MESHFLAGS_FWD); ms->ms_ttl = IEEE80211_MESH_DEFAULT_TTL; TAILQ_INIT(&ms->ms_known_gates); TAILQ_INIT(&ms->ms_routes); mtx_init(&ms->ms_rt_lock, "MBSS", "802.11s routing table", MTX_DEF); callout_init(&ms->ms_cleantimer, CALLOUT_MPSAFE); callout_init(&ms->ms_gatetimer, CALLOUT_MPSAFE); ms->ms_gateseq = 0; mesh_select_proto_metric(vap, "AIRTIME"); KASSERT(ms->ms_pmetric, ("ms_pmetric == NULL")); mesh_select_proto_path(vap, "HWMP"); KASSERT(ms->ms_ppath, ("ms_ppath == NULL")); ms->ms_ppath->mpp_vattach(vap); } /* * IEEE80211_M_MBSS vap state machine handler. */ static int mesh_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; enum ieee80211_state ostate; IEEE80211_LOCK_ASSERT(ic); ostate = vap->iv_state; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s (%d)\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); vap->iv_state = nstate; /* state transition */ if (ostate != IEEE80211_S_SCAN) ieee80211_cancel_scan(vap); /* background scan */ ni = vap->iv_bss; /* NB: no reference held */ if (nstate != IEEE80211_S_RUN && ostate == IEEE80211_S_RUN) { callout_drain(&ms->ms_cleantimer); callout_drain(&ms->ms_gatetimer); } switch (nstate) { case IEEE80211_S_INIT: switch (ostate) { case IEEE80211_S_SCAN: ieee80211_cancel_scan(vap); break; case IEEE80211_S_CAC: ieee80211_dfs_cac_stop(vap); break; case IEEE80211_S_RUN: ieee80211_iterate_nodes(&ic->ic_sta, mesh_vdetach_peers, NULL); break; default: break; } if (ostate != IEEE80211_S_INIT) { /* NB: optimize INIT -> INIT case */ ieee80211_reset_bss(vap); ieee80211_mesh_rt_flush(vap); } break; case IEEE80211_S_SCAN: switch (ostate) { case IEEE80211_S_INIT: if (vap->iv_des_chan != IEEE80211_CHAN_ANYC && !IEEE80211_IS_CHAN_RADAR(vap->iv_des_chan) && ms->ms_idlen != 0) { /* * Already have a channel and a mesh ID; bypass * the scan and startup immediately. */ ieee80211_create_ibss(vap, vap->iv_des_chan); break; } /* * Initiate a scan. We can come here as a result * of an IEEE80211_IOC_SCAN_REQ too in which case * the vap will be marked with IEEE80211_FEXT_SCANREQ * and the scan request parameters will be present * in iv_scanreq. Otherwise we do the default. */ if (vap->iv_flags_ext & IEEE80211_FEXT_SCANREQ) { ieee80211_check_scan(vap, vap->iv_scanreq_flags, vap->iv_scanreq_duration, vap->iv_scanreq_mindwell, vap->iv_scanreq_maxdwell, vap->iv_scanreq_nssid, vap->iv_scanreq_ssid); vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANREQ; } else ieee80211_check_scan_current(vap); break; default: break; } break; case IEEE80211_S_CAC: /* * Start CAC on a DFS channel. We come here when starting * a bss on a DFS channel (see ieee80211_create_ibss). */ ieee80211_dfs_cac_start(vap); break; case IEEE80211_S_RUN: switch (ostate) { case IEEE80211_S_INIT: /* * Already have a channel; bypass the * scan and startup immediately. * Note that ieee80211_create_ibss will call * back to do a RUN->RUN state change. */ ieee80211_create_ibss(vap, ieee80211_ht_adjust_channel(ic, ic->ic_curchan, vap->iv_flags_ht)); /* NB: iv_bss is changed on return */ break; case IEEE80211_S_CAC: /* * NB: This is the normal state change when CAC * expires and no radar was detected; no need to * clear the CAC timer as it's already expired. */ /* fall thru... */ case IEEE80211_S_CSA: #if 0 /* * Shorten inactivity timer of associated stations * to weed out sta's that don't follow a CSA. */ ieee80211_iterate_nodes(&ic->ic_sta, sta_csa, vap); #endif /* * Update bss node channel to reflect where * we landed after CSA. */ ieee80211_node_set_chan(vap->iv_bss, ieee80211_ht_adjust_channel(ic, ic->ic_curchan, ieee80211_htchanflags(vap->iv_bss->ni_chan))); /* XXX bypass debug msgs */ break; case IEEE80211_S_SCAN: case IEEE80211_S_RUN: #ifdef IEEE80211_DEBUG if (ieee80211_msg_debug(vap)) { struct ieee80211_node *ni = vap->iv_bss; ieee80211_note(vap, "synchronized with %s meshid ", ether_sprintf(ni->ni_meshid)); ieee80211_print_essid(ni->ni_meshid, ni->ni_meshidlen); /* XXX MCS/HT */ printf(" channel %d\n", ieee80211_chan2ieee(ic, ic->ic_curchan)); } #endif break; default: break; } ieee80211_node_authorize(vap->iv_bss); callout_reset(&ms->ms_cleantimer, ms->ms_ppath->mpp_inact, mesh_rt_cleanup_cb, vap); mesh_gatemode_setup(vap); break; default: break; } /* NB: ostate not nstate */ ms->ms_ppath->mpp_newstate(vap, ostate, arg); return 0; } static void mesh_rt_cleanup_cb(void *arg) { struct ieee80211vap *vap = arg; struct ieee80211_mesh_state *ms = vap->iv_mesh; mesh_rt_flush_invalid(vap); callout_reset(&ms->ms_cleantimer, ms->ms_ppath->mpp_inact, mesh_rt_cleanup_cb, vap); } /* * Mark a mesh STA as gate and return a pointer to it. * If this is first time, we create a new gate route. * Always update the path route to this mesh gate. */ struct ieee80211_mesh_gate_route * ieee80211_mesh_mark_gate(struct ieee80211vap *vap, const uint8_t *addr, struct ieee80211_mesh_route *rt) { struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_gate_route *gr = NULL, *next; int found = 0; MESH_RT_LOCK(ms); TAILQ_FOREACH_SAFE(gr, &ms->ms_known_gates, gr_next, next) { if (IEEE80211_ADDR_EQ(gr->gr_addr, addr)) { found = 1; break; } } if (!found) { /* New mesh gate add it to known table. */ IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, addr, "%s", "stored new gate information from pro-PREQ."); gr = malloc(ALIGN(sizeof(struct ieee80211_mesh_gate_route)), M_80211_MESH_GT_RT, M_NOWAIT | M_ZERO); IEEE80211_ADDR_COPY(gr->gr_addr, addr); TAILQ_INSERT_TAIL(&ms->ms_known_gates, gr, gr_next); } gr->gr_route = rt; /* TODO: link from path route to gate route */ MESH_RT_UNLOCK(ms); return gr; } /* * Helper function to note the Mesh Peer Link FSM change. */ static void mesh_linkchange(struct ieee80211_node *ni, enum ieee80211_mesh_mlstate state) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_mesh_state *ms = vap->iv_mesh; #ifdef IEEE80211_DEBUG static const char *meshlinkstates[] = { [IEEE80211_NODE_MESH_IDLE] = "IDLE", [IEEE80211_NODE_MESH_OPENSNT] = "OPEN SENT", [IEEE80211_NODE_MESH_OPENRCV] = "OPEN RECEIVED", [IEEE80211_NODE_MESH_CONFIRMRCV] = "CONFIRM RECEIVED", [IEEE80211_NODE_MESH_ESTABLISHED] = "ESTABLISHED", [IEEE80211_NODE_MESH_HOLDING] = "HOLDING" }; #endif IEEE80211_NOTE(vap, IEEE80211_MSG_MESH, ni, "peer link: %s -> %s", meshlinkstates[ni->ni_mlstate], meshlinkstates[state]); /* track neighbor count */ if (state == IEEE80211_NODE_MESH_ESTABLISHED && ni->ni_mlstate != IEEE80211_NODE_MESH_ESTABLISHED) { KASSERT(ms->ms_neighbors < 65535, ("neighbor count overflow")); ms->ms_neighbors++; ieee80211_beacon_notify(vap, IEEE80211_BEACON_MESHCONF); } else if (ni->ni_mlstate == IEEE80211_NODE_MESH_ESTABLISHED && state != IEEE80211_NODE_MESH_ESTABLISHED) { KASSERT(ms->ms_neighbors > 0, ("neighbor count 0")); ms->ms_neighbors--; ieee80211_beacon_notify(vap, IEEE80211_BEACON_MESHCONF); } ni->ni_mlstate = state; switch (state) { case IEEE80211_NODE_MESH_HOLDING: ms->ms_ppath->mpp_peerdown(ni); break; case IEEE80211_NODE_MESH_ESTABLISHED: ieee80211_mesh_discover(vap, ni->ni_macaddr, NULL); break; default: break; } } /* * Helper function to generate a unique local ID required for mesh * peer establishment. */ static void mesh_checkid(void *arg, struct ieee80211_node *ni) { uint16_t *r = arg; if (*r == ni->ni_mllid) *(uint16_t *)arg = 0; } static uint32_t mesh_generateid(struct ieee80211vap *vap) { int maxiter = 4; uint16_t r; do { get_random_bytes(&r, 2); ieee80211_iterate_nodes(&vap->iv_ic->ic_sta, mesh_checkid, &r); maxiter--; } while (r == 0 && maxiter > 0); return r; } /* * Verifies if we already received this packet by checking its * sequence number. * Returns 0 if the frame is to be accepted, 1 otherwise. */ static int mesh_checkpseq(struct ieee80211vap *vap, const uint8_t source[IEEE80211_ADDR_LEN], uint32_t seq) { struct ieee80211_mesh_route *rt; rt = ieee80211_mesh_rt_find(vap, source); if (rt == NULL) { rt = ieee80211_mesh_rt_add(vap, source); if (rt == NULL) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, source, "%s", "add mcast route failed"); vap->iv_stats.is_mesh_rtaddfailed++; return 1; } IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, source, "add mcast route, mesh seqno %d", seq); rt->rt_lastmseq = seq; return 0; } if (IEEE80211_MESH_SEQ_GEQ(rt->rt_lastmseq, seq)) { return 1; } else { rt->rt_lastmseq = seq; return 0; } } /* * Iterate the routing table and locate the next hop. */ struct ieee80211_node * ieee80211_mesh_find_txnode(struct ieee80211vap *vap, const uint8_t dest[IEEE80211_ADDR_LEN]) { struct ieee80211_mesh_route *rt; rt = ieee80211_mesh_rt_find(vap, dest); if (rt == NULL) return NULL; if ((rt->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) == 0) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, dest, "%s: !valid, flags 0x%x", __func__, rt->rt_flags); /* XXX stat */ return NULL; } if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { rt = ieee80211_mesh_rt_find(vap, rt->rt_mesh_gate); if (rt == NULL) return NULL; if ((rt->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) == 0) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, dest, "%s: meshgate !valid, flags 0x%x", __func__, rt->rt_flags); /* XXX stat */ return NULL; } } return ieee80211_find_txnode(vap, rt->rt_nexthop); } static void mesh_transmit_to_gate(struct ieee80211vap *vap, struct mbuf *m, struct ieee80211_mesh_route *rt_gate) { struct ifnet *ifp = vap->iv_ifp; struct ieee80211_node *ni; IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); ni = ieee80211_mesh_find_txnode(vap, rt_gate->rt_dest); if (ni == NULL) { ifp->if_oerrors++; m_freem(m); return; } /* * Send through the VAP packet transmit path. * This consumes the node ref grabbed above and * the mbuf, regardless of whether there's a problem * or not. */ (void) ieee80211_vap_pkt_send_dest(vap, m, ni); } /* * Forward the queued frames to known valid mesh gates. * Assume destination to be outside the MBSS (i.e. proxy entry), * If no valid mesh gates are known silently discard queued frames. * After transmitting frames to all known valid mesh gates, this route * will be marked invalid, and a new path discovery will happen in the hopes * that (at least) one of the mesh gates have a new proxy entry for us to use. */ void ieee80211_mesh_forward_to_gates(struct ieee80211vap *vap, struct ieee80211_mesh_route *rt_dest) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt_gate; struct ieee80211_mesh_gate_route *gr = NULL, *gr_next; struct mbuf *m, *mcopy, *next; IEEE80211_TX_UNLOCK_ASSERT(ic); KASSERT( rt_dest->rt_flags == IEEE80211_MESHRT_FLAGS_DISCOVER, ("Route is not marked with IEEE80211_MESHRT_FLAGS_DISCOVER")); /* XXX: send to more than one valid mash gate */ MESH_RT_LOCK(ms); m = ieee80211_ageq_remove(&ic->ic_stageq, (struct ieee80211_node *)(uintptr_t) ieee80211_mac_hash(ic, rt_dest->rt_dest)); TAILQ_FOREACH_SAFE(gr, &ms->ms_known_gates, gr_next, gr_next) { rt_gate = gr->gr_route; if (rt_gate == NULL) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_HWMP, rt_dest->rt_dest, "mesh gate with no path %6D", gr->gr_addr, ":"); continue; } if ((rt_gate->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) == 0) continue; KASSERT(rt_gate->rt_flags & IEEE80211_MESHRT_FLAGS_GATE, ("route not marked as a mesh gate")); KASSERT((rt_gate->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) == 0, ("found mesh gate that is also marked porxy")); /* * convert route to a proxy route gated by the current * mesh gate, this is needed so encap can built data * frame with correct address. */ rt_dest->rt_flags = IEEE80211_MESHRT_FLAGS_PROXY | IEEE80211_MESHRT_FLAGS_VALID; rt_dest->rt_ext_seq = 1; /* random value */ IEEE80211_ADDR_COPY(rt_dest->rt_mesh_gate, rt_gate->rt_dest); IEEE80211_ADDR_COPY(rt_dest->rt_nexthop, rt_gate->rt_nexthop); rt_dest->rt_metric = rt_gate->rt_metric; rt_dest->rt_nhops = rt_gate->rt_nhops; ieee80211_mesh_rt_update(rt_dest, ms->ms_ppath->mpp_inact); MESH_RT_UNLOCK(ms); /* XXX: lock?? */ mcopy = m_dup(m, M_NOWAIT); for (; mcopy != NULL; mcopy = next) { next = mcopy->m_nextpkt; mcopy->m_nextpkt = NULL; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_HWMP, rt_dest->rt_dest, "flush queued frame %p len %d", mcopy, mcopy->m_pkthdr.len); mesh_transmit_to_gate(vap, mcopy, rt_gate); } MESH_RT_LOCK(ms); } rt_dest->rt_flags = 0; /* Mark invalid */ m_freem(m); MESH_RT_UNLOCK(ms); } /* * Forward the specified frame. * Decrement the TTL and set TA to our MAC address. */ static void mesh_forward(struct ieee80211vap *vap, struct mbuf *m, const struct ieee80211_meshcntl *mc) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ifnet *ifp = vap->iv_ifp; const struct ieee80211_frame *wh = mtod(m, const struct ieee80211_frame *); struct mbuf *mcopy; struct ieee80211_meshcntl *mccopy; struct ieee80211_frame *whcopy; struct ieee80211_node *ni; int err; /* This is called from the RX path - don't hold this lock */ IEEE80211_TX_UNLOCK_ASSERT(ic); /* * mesh ttl of 1 means we are the last one receving it, * according to amendment we decrement and then check if * 0, if so we dont forward. */ if (mc->mc_ttl < 1) { IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_MESH, wh, "%s", "frame not fwd'd, ttl 1"); vap->iv_stats.is_mesh_fwd_ttl++; return; } if (!(ms->ms_flags & IEEE80211_MESHFLAGS_FWD)) { IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_MESH, wh, "%s", "frame not fwd'd, fwding disabled"); vap->iv_stats.is_mesh_fwd_disabled++; return; } mcopy = m_dup(m, M_NOWAIT); if (mcopy == NULL) { IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_MESH, wh, "%s", "frame not fwd'd, cannot dup"); vap->iv_stats.is_mesh_fwd_nobuf++; ifp->if_oerrors++; return; } mcopy = m_pullup(mcopy, ieee80211_hdrspace(ic, wh) + sizeof(struct ieee80211_meshcntl)); if (mcopy == NULL) { IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_MESH, wh, "%s", "frame not fwd'd, too short"); vap->iv_stats.is_mesh_fwd_tooshort++; ifp->if_oerrors++; m_freem(mcopy); return; } whcopy = mtod(mcopy, struct ieee80211_frame *); mccopy = (struct ieee80211_meshcntl *) (mtod(mcopy, uint8_t *) + ieee80211_hdrspace(ic, wh)); /* XXX clear other bits? */ whcopy->i_fc[1] &= ~IEEE80211_FC1_RETRY; IEEE80211_ADDR_COPY(whcopy->i_addr2, vap->iv_myaddr); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { ni = ieee80211_ref_node(vap->iv_bss); mcopy->m_flags |= M_MCAST; } else { ni = ieee80211_mesh_find_txnode(vap, whcopy->i_addr3); if (ni == NULL) { /* * [Optional] any of the following three actions: * o silently discard * o trigger a path discovery * o inform TA that meshDA is unknown. */ IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_MESH, wh, "%s", "frame not fwd'd, no path"); ms->ms_ppath->mpp_senderror(vap, whcopy->i_addr3, NULL, IEEE80211_REASON_MESH_PERR_NO_FI); vap->iv_stats.is_mesh_fwd_nopath++; m_freem(mcopy); return; } IEEE80211_ADDR_COPY(whcopy->i_addr1, ni->ni_macaddr); } KASSERT(mccopy->mc_ttl > 0, ("%s called with wrong ttl", __func__)); mccopy->mc_ttl--; /* XXX calculate priority so drivers can find the tx queue */ M_WME_SETAC(mcopy, WME_AC_BE); /* XXX do we know m_nextpkt is NULL? */ mcopy->m_pkthdr.rcvif = (void *) ni; /* * XXX this bypasses all of the VAP TX handling; it passes frames * directly to the parent interface. * * Because of this, there's no TX lock being held as there's no * encaps state being used. * * Doing a direct parent transmit may not be the correct thing * to do here; we'll have to re-think this soon. */ IEEE80211_TX_LOCK(ic); err = ieee80211_parent_xmitpkt(ic, mcopy); IEEE80211_TX_UNLOCK(ic); if (err != 0) { /* NB: IFQ_HANDOFF reclaims mbuf */ ieee80211_free_node(ni); } else { ifp->if_opackets++; } } static struct mbuf * mesh_decap(struct ieee80211vap *vap, struct mbuf *m, int hdrlen, int meshdrlen) { #define WHDIR(wh) ((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) #define MC01(mc) ((const struct ieee80211_meshcntl_ae01 *)mc) uint8_t b[sizeof(struct ieee80211_qosframe_addr4) + sizeof(struct ieee80211_meshcntl_ae10)]; const struct ieee80211_qosframe_addr4 *wh; const struct ieee80211_meshcntl_ae10 *mc; struct ether_header *eh; struct llc *llc; int ae; if (m->m_len < hdrlen + sizeof(*llc) && (m = m_pullup(m, hdrlen + sizeof(*llc))) == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, "discard data frame: %s", "m_pullup failed"); vap->iv_stats.is_rx_tooshort++; return NULL; } memcpy(b, mtod(m, caddr_t), hdrlen); wh = (const struct ieee80211_qosframe_addr4 *)&b[0]; mc = (const struct ieee80211_meshcntl_ae10 *)&b[hdrlen - meshdrlen]; KASSERT(WHDIR(wh) == IEEE80211_FC1_DIR_FROMDS || WHDIR(wh) == IEEE80211_FC1_DIR_DSTODS, ("bogus dir, fc 0x%x:0x%x", wh->i_fc[0], wh->i_fc[1])); llc = (struct llc *)(mtod(m, caddr_t) + hdrlen); if (llc->llc_dsap == LLC_SNAP_LSAP && llc->llc_ssap == LLC_SNAP_LSAP && llc->llc_control == LLC_UI && llc->llc_snap.org_code[0] == 0 && llc->llc_snap.org_code[1] == 0 && llc->llc_snap.org_code[2] == 0 && /* NB: preserve AppleTalk frames that have a native SNAP hdr */ !(llc->llc_snap.ether_type == htons(ETHERTYPE_AARP) || llc->llc_snap.ether_type == htons(ETHERTYPE_IPX))) { m_adj(m, hdrlen + sizeof(struct llc) - sizeof(*eh)); llc = NULL; } else { m_adj(m, hdrlen - sizeof(*eh)); } eh = mtod(m, struct ether_header *); ae = mc->mc_flags & IEEE80211_MESH_AE_MASK; if (WHDIR(wh) == IEEE80211_FC1_DIR_FROMDS) { IEEE80211_ADDR_COPY(eh->ether_dhost, wh->i_addr1); if (ae == IEEE80211_MESH_AE_00) { IEEE80211_ADDR_COPY(eh->ether_shost, wh->i_addr3); } else if (ae == IEEE80211_MESH_AE_01) { IEEE80211_ADDR_COPY(eh->ether_shost, MC01(mc)->mc_addr4); } else { IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, (const struct ieee80211_frame *)wh, NULL, "bad AE %d", ae); vap->iv_stats.is_mesh_badae++; m_freem(m); return NULL; } } else { if (ae == IEEE80211_MESH_AE_00) { IEEE80211_ADDR_COPY(eh->ether_dhost, wh->i_addr3); IEEE80211_ADDR_COPY(eh->ether_shost, wh->i_addr4); } else if (ae == IEEE80211_MESH_AE_10) { IEEE80211_ADDR_COPY(eh->ether_dhost, mc->mc_addr5); IEEE80211_ADDR_COPY(eh->ether_shost, mc->mc_addr6); } else { IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, (const struct ieee80211_frame *)wh, NULL, "bad AE %d", ae); vap->iv_stats.is_mesh_badae++; m_freem(m); return NULL; } } #ifndef __NO_STRICT_ALIGNMENT if (!ALIGNED_POINTER(mtod(m, caddr_t) + sizeof(*eh), uint32_t)) { m = ieee80211_realign(vap, m, sizeof(*eh)); if (m == NULL) return NULL; } #endif /* !__NO_STRICT_ALIGNMENT */ if (llc != NULL) { eh = mtod(m, struct ether_header *); eh->ether_type = htons(m->m_pkthdr.len - sizeof(*eh)); } return m; #undef WDIR #undef MC01 } /* * Return non-zero if the unicast mesh data frame should be processed * locally. Frames that are not proxy'd have our address, otherwise * we need to consult the routing table to look for a proxy entry. */ static __inline int mesh_isucastforme(struct ieee80211vap *vap, const struct ieee80211_frame *wh, const struct ieee80211_meshcntl *mc) { int ae = mc->mc_flags & 3; KASSERT((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS, ("bad dir 0x%x:0x%x", wh->i_fc[0], wh->i_fc[1])); KASSERT(ae == IEEE80211_MESH_AE_00 || ae == IEEE80211_MESH_AE_10, ("bad AE %d", ae)); if (ae == IEEE80211_MESH_AE_10) { /* ucast w/ proxy */ const struct ieee80211_meshcntl_ae10 *mc10 = (const struct ieee80211_meshcntl_ae10 *) mc; struct ieee80211_mesh_route *rt = ieee80211_mesh_rt_find(vap, mc10->mc_addr5); /* check for proxy route to ourself */ return (rt != NULL && (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY)); } else /* ucast w/o proxy */ return IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_myaddr); } /* * Verifies transmitter, updates lifetime, precursor list and forwards data. * > 0 means we have forwarded data and no need to process locally * == 0 means we want to process locally (and we may have forwarded data * < 0 means there was an error and data should be discarded */ static int mesh_recv_indiv_data_to_fwrd(struct ieee80211vap *vap, struct mbuf *m, struct ieee80211_frame *wh, const struct ieee80211_meshcntl *mc) { struct ieee80211_qosframe_addr4 *qwh; struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt_meshda, *rt_meshsa; /* This is called from the RX path - don't hold this lock */ IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); qwh = (struct ieee80211_qosframe_addr4 *)wh; /* * TODO: * o verify addr2 is a legitimate transmitter * o lifetime of precursor of addr3 (addr2) is max(init, curr) * o lifetime of precursor of addr4 (nexthop) is max(init, curr) */ /* set lifetime of addr3 (meshDA) to initial value */ rt_meshda = ieee80211_mesh_rt_find(vap, qwh->i_addr3); if (rt_meshda == NULL) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, qwh->i_addr2, "no route to meshDA(%6D)", qwh->i_addr3, ":"); /* * [Optional] any of the following three actions: * o silently discard [X] * o trigger a path discovery [ ] * o inform TA that meshDA is unknown. [ ] */ /* XXX: stats */ return (-1); } ieee80211_mesh_rt_update(rt_meshda, ticks_to_msecs( ms->ms_ppath->mpp_inact)); /* set lifetime of addr4 (meshSA) to initial value */ rt_meshsa = ieee80211_mesh_rt_find(vap, qwh->i_addr4); KASSERT(rt_meshsa != NULL, ("no route")); ieee80211_mesh_rt_update(rt_meshsa, ticks_to_msecs( ms->ms_ppath->mpp_inact)); mesh_forward(vap, m, mc); return (1); /* dont process locally */ } /* * Verifies transmitter, updates lifetime, precursor list and process data * locally, if data is proxy with AE = 10 it could mean data should go * on another mesh path or data should be forwarded to the DS. * * > 0 means we have forwarded data and no need to process locally * == 0 means we want to process locally (and we may have forwarded data * < 0 means there was an error and data should be discarded */ static int mesh_recv_indiv_data_to_me(struct ieee80211vap *vap, struct mbuf *m, struct ieee80211_frame *wh, const struct ieee80211_meshcntl *mc) { struct ieee80211_qosframe_addr4 *qwh; const struct ieee80211_meshcntl_ae10 *mc10; struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_route *rt; int ae; /* This is called from the RX path - don't hold this lock */ IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); qwh = (struct ieee80211_qosframe_addr4 *)wh; mc10 = (const struct ieee80211_meshcntl_ae10 *)mc; /* * TODO: * o verify addr2 is a legitimate transmitter * o lifetime of precursor entry is max(init, curr) */ /* set lifetime of addr4 (meshSA) to initial value */ rt = ieee80211_mesh_rt_find(vap, qwh->i_addr4); KASSERT(rt != NULL, ("no route")); ieee80211_mesh_rt_update(rt, ticks_to_msecs(ms->ms_ppath->mpp_inact)); rt = NULL; ae = mc10->mc_flags & IEEE80211_MESH_AE_MASK; KASSERT(ae == IEEE80211_MESH_AE_00 || ae == IEEE80211_MESH_AE_10, ("bad AE %d", ae)); if (ae == IEEE80211_MESH_AE_10) { if (IEEE80211_ADDR_EQ(mc10->mc_addr5, qwh->i_addr3)) { return (0); /* process locally */ } rt = ieee80211_mesh_rt_find(vap, mc10->mc_addr5); if (rt != NULL && (rt->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) && (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) == 0) { /* * Forward on another mesh-path, according to * amendment as specified in 9.32.4.1 */ IEEE80211_ADDR_COPY(qwh->i_addr3, mc10->mc_addr5); mesh_forward(vap, m, (const struct ieee80211_meshcntl *)mc10); return (1); /* dont process locally */ } /* * All other cases: forward of MSDUs from the MBSS to DS indiv. * addressed according to 13.11.3.2. */ IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, qwh->i_addr2, "forward frame to DS, SA(%6D) DA(%6D)", mc10->mc_addr6, ":", mc10->mc_addr5, ":"); } return (0); /* process locally */ } /* * Try to forward the group addressed data on to other mesh STAs, and * also to the DS. * * > 0 means we have forwarded data and no need to process locally * == 0 means we want to process locally (and we may have forwarded data * < 0 means there was an error and data should be discarded */ static int mesh_recv_group_data(struct ieee80211vap *vap, struct mbuf *m, struct ieee80211_frame *wh, const struct ieee80211_meshcntl *mc) { #define MC01(mc) ((const struct ieee80211_meshcntl_ae01 *)mc) struct ieee80211_mesh_state *ms = vap->iv_mesh; /* This is called from the RX path - don't hold this lock */ IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); mesh_forward(vap, m, mc); if(mc->mc_ttl > 0) { if (mc->mc_flags & IEEE80211_MESH_AE_01) { /* * Forward of MSDUs from the MBSS to DS group addressed * (according to 13.11.3.2) * This happens by delivering the packet, and a bridge * will sent it on another port member. */ if (ms->ms_flags & IEEE80211_MESHFLAGS_GATE && ms->ms_flags & IEEE80211_MESHFLAGS_FWD) IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, MC01(mc)->mc_addr4, "%s", "forward from MBSS to the DS"); } } return (0); /* process locally */ #undef MC01 } static int mesh_input(struct ieee80211_node *ni, struct mbuf *m, int rssi, int nf) { #define HAS_SEQ(type) ((type & 0x4) == 0) #define MC01(mc) ((const struct ieee80211_meshcntl_ae01 *)mc) #define MC10(mc) ((const struct ieee80211_meshcntl_ae10 *)mc) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_frame *wh; const struct ieee80211_meshcntl *mc; int hdrspace, meshdrlen, need_tap, error; uint8_t dir, type, subtype, ae; uint32_t seq; const uint8_t *addr; uint8_t qos[2]; ieee80211_seq rxseq; KASSERT(ni != NULL, ("null node")); ni->ni_inact = ni->ni_inact_reload; need_tap = 1; /* mbuf need to be tapped. */ type = -1; /* undefined */ /* This is called from the RX path - don't hold this lock */ IEEE80211_TX_UNLOCK_ASSERT(ic); if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_min)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "too short (1): len %u", m->m_pkthdr.len); vap->iv_stats.is_rx_tooshort++; goto out; } /* * Bit of a cheat here, we use a pointer for a 3-address * frame format but don't reference fields past outside * ieee80211_frame_min w/o first validating the data is * present. */ wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != IEEE80211_FC0_VERSION_0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "wrong version %x", wh->i_fc[0]); vap->iv_stats.is_rx_badversion++; goto err; } dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { IEEE80211_RSSI_LPF(ni->ni_avgrssi, rssi); ni->ni_noise = nf; if (HAS_SEQ(type)) { uint8_t tid = ieee80211_gettid(wh); if (IEEE80211_QOS_HAS_SEQ(wh) && TID_TO_WME_AC(tid) >= WME_AC_VI) ic->ic_wme.wme_hipri_traffic++; rxseq = le16toh(*(uint16_t *)wh->i_seq); if (! ieee80211_check_rxseq(ni, wh)) { /* duplicate, discard */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, wh->i_addr1, "duplicate", "seqno <%u,%u> fragno <%u,%u> tid %u", rxseq >> IEEE80211_SEQ_SEQ_SHIFT, ni->ni_rxseqs[tid] >> IEEE80211_SEQ_SEQ_SHIFT, rxseq & IEEE80211_SEQ_FRAG_MASK, ni->ni_rxseqs[tid] & IEEE80211_SEQ_FRAG_MASK, tid); vap->iv_stats.is_rx_dup++; IEEE80211_NODE_STAT(ni, rx_dup); goto out; } ni->ni_rxseqs[tid] = rxseq; } } #ifdef IEEE80211_DEBUG /* * It's easier, but too expensive, to simulate different mesh * topologies by consulting the ACL policy very early, so do this * only under DEBUG. * * NB: this check is also done upon peering link initiation. */ if (vap->iv_acl != NULL && !vap->iv_acl->iac_check(vap, wh)) { IEEE80211_DISCARD(vap, IEEE80211_MSG_ACL, wh, NULL, "%s", "disallowed by ACL"); vap->iv_stats.is_rx_acl++; goto out; } #endif switch (type) { case IEEE80211_FC0_TYPE_DATA: if (ni == vap->iv_bss) goto out; if (ni->ni_mlstate != IEEE80211_NODE_MESH_ESTABLISHED) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_MESH, ni->ni_macaddr, NULL, "peer link not yet established (%d)", ni->ni_mlstate); vap->iv_stats.is_mesh_nolink++; goto out; } if (dir != IEEE80211_FC1_DIR_FROMDS && dir != IEEE80211_FC1_DIR_DSTODS) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "incorrect dir 0x%x", dir); vap->iv_stats.is_rx_wrongdir++; goto err; } /* All Mesh data frames are QoS subtype */ if (!HAS_SEQ(type)) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "incorrect subtype 0x%x", subtype); vap->iv_stats.is_rx_badsubtype++; goto err; } /* * Next up, any fragmentation. * XXX: we defrag before we even try to forward, * Mesh Control field is not present in sub-sequent * fragmented frames. This is in contrast to Draft 4.0. */ hdrspace = ieee80211_hdrspace(ic, wh); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { m = ieee80211_defrag(ni, m, hdrspace); if (m == NULL) { /* Fragment dropped or frame not complete yet */ goto out; } } wh = mtod(m, struct ieee80211_frame *); /* NB: after defrag */ /* * Now we have a complete Mesh Data frame. */ /* * Only fromDStoDS data frames use 4 address qos frames * as specified in amendment. Otherwise addr4 is located * in the Mesh Control field and a 3 address qos frame * is used. */ if (IEEE80211_IS_DSTODS(wh)) *(uint16_t *)qos = *(uint16_t *) ((struct ieee80211_qosframe_addr4 *)wh)->i_qos; else *(uint16_t *)qos = *(uint16_t *) ((struct ieee80211_qosframe *)wh)->i_qos; /* * NB: The mesh STA sets the Mesh Control Present * subfield to 1 in the Mesh Data frame containing * an unfragmented MSDU, an A-MSDU, or the first * fragment of an MSDU. * After defrag it should always be present. */ if (!(qos[1] & IEEE80211_QOS_MC)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_MESH, ni->ni_macaddr, NULL, "%s", "Mesh control field not present"); vap->iv_stats.is_rx_elem_missing++; /* XXX: kinda */ goto err; } /* pull up enough to get to the mesh control */ if (m->m_len < hdrspace + sizeof(struct ieee80211_meshcntl) && (m = m_pullup(m, hdrspace + sizeof(struct ieee80211_meshcntl))) == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "data too short: expecting %u", hdrspace); vap->iv_stats.is_rx_tooshort++; goto out; /* XXX */ } /* * Now calculate the full extent of the headers. Note * mesh_decap will pull up anything we didn't get * above when it strips the 802.11 headers. */ mc = (const struct ieee80211_meshcntl *) (mtod(m, const uint8_t *) + hdrspace); ae = mc->mc_flags & IEEE80211_MESH_AE_MASK; meshdrlen = sizeof(struct ieee80211_meshcntl) + ae * IEEE80211_ADDR_LEN; hdrspace += meshdrlen; /* pull complete hdrspace = ieee80211_hdrspace + meshcontrol */ if ((meshdrlen > sizeof(struct ieee80211_meshcntl)) && (m->m_len < hdrspace) && ((m = m_pullup(m, hdrspace)) == NULL)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "data too short: expecting %u", hdrspace); vap->iv_stats.is_rx_tooshort++; goto out; /* XXX */ } /* XXX: are we sure there is no reallocating after m_pullup? */ seq = LE_READ_4(mc->mc_seq); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) addr = wh->i_addr3; else if (ae == IEEE80211_MESH_AE_01) addr = MC01(mc)->mc_addr4; else addr = ((struct ieee80211_qosframe_addr4 *)wh)->i_addr4; if (IEEE80211_ADDR_EQ(vap->iv_myaddr, addr)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, addr, "data", "%s", "not to me"); vap->iv_stats.is_rx_wrongbss++; /* XXX kinda */ goto out; } if (mesh_checkpseq(vap, addr, seq) != 0) { vap->iv_stats.is_rx_dup++; goto out; } /* This code "routes" the frame to the right control path */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { if (IEEE80211_ADDR_EQ(vap->iv_myaddr, wh->i_addr3)) error = mesh_recv_indiv_data_to_me(vap, m, wh, mc); else if (IEEE80211_IS_MULTICAST(wh->i_addr3)) error = mesh_recv_group_data(vap, m, wh, mc); else error = mesh_recv_indiv_data_to_fwrd(vap, m, wh, mc); } else error = mesh_recv_group_data(vap, m, wh, mc); if (error < 0) goto err; else if (error > 0) goto out; if (ieee80211_radiotap_active_vap(vap)) ieee80211_radiotap_rx(vap, m); need_tap = 0; /* * Finally, strip the 802.11 header. */ m = mesh_decap(vap, m, hdrspace, meshdrlen); if (m == NULL) { /* XXX mask bit to check for both */ /* don't count Null data frames as errors */ if (subtype == IEEE80211_FC0_SUBTYPE_NODATA || subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) goto out; IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, ni->ni_macaddr, "data", "%s", "decap error"); vap->iv_stats.is_rx_decap++; IEEE80211_NODE_STAT(ni, rx_decap); goto err; } if (qos[0] & IEEE80211_QOS_AMSDU) { m = ieee80211_decap_amsdu(ni, m); if (m == NULL) return IEEE80211_FC0_TYPE_DATA; } ieee80211_deliver_data(vap, ni, m); return type; case IEEE80211_FC0_TYPE_MGT: vap->iv_stats.is_rx_mgmt++; IEEE80211_NODE_STAT(ni, rx_mgmt); if (dir != IEEE80211_FC1_DIR_NODS) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "mgt", "incorrect dir 0x%x", dir); vap->iv_stats.is_rx_wrongdir++; goto err; } if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "mgt", "too short: len %u", m->m_pkthdr.len); vap->iv_stats.is_rx_tooshort++; goto out; } #ifdef IEEE80211_DEBUG if ((ieee80211_msg_debug(vap) && (vap->iv_ic->ic_flags & IEEE80211_F_SCAN)) || ieee80211_msg_dumppkts(vap)) { if_printf(ifp, "received %s from %s rssi %d\n", ieee80211_mgt_subtype_name[subtype >> IEEE80211_FC0_SUBTYPE_SHIFT], ether_sprintf(wh->i_addr2), rssi); } #endif if (wh->i_fc[1] & IEEE80211_FC1_WEP) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "WEP set but not permitted"); vap->iv_stats.is_rx_mgtdiscard++; /* XXX */ goto out; } vap->iv_recv_mgmt(ni, m, subtype, rssi, nf); goto out; case IEEE80211_FC0_TYPE_CTL: vap->iv_stats.is_rx_ctl++; IEEE80211_NODE_STAT(ni, rx_ctrl); goto out; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, "bad", "frame type 0x%x", type); /* should not come here */ break; } err: ifp->if_ierrors++; out: if (m != NULL) { if (need_tap && ieee80211_radiotap_active_vap(vap)) ieee80211_radiotap_rx(vap, m); m_freem(m); } return type; #undef HAS_SEQ #undef MC01 #undef MC10 } static void mesh_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m0, int subtype, int rssi, int nf) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; struct ieee80211_mesh_route *rt; uint8_t *frm, *efrm; wh = mtod(m0, struct ieee80211_frame *); frm = (uint8_t *)&wh[1]; efrm = mtod(m0, uint8_t *) + m0->m_len; switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: case IEEE80211_FC0_SUBTYPE_BEACON: { struct ieee80211_scanparams scan; /* * We process beacon/probe response * frames to discover neighbors. */ if (ieee80211_parse_beacon(ni, m0, &scan) != 0) return; /* * Count frame now that we know it's to be processed. */ if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) { vap->iv_stats.is_rx_beacon++; /* XXX remove */ IEEE80211_NODE_STAT(ni, rx_beacons); } else IEEE80211_NODE_STAT(ni, rx_proberesp); /* * If scanning, just pass information to the scan module. */ if (ic->ic_flags & IEEE80211_F_SCAN) { if (ic->ic_flags_ext & IEEE80211_FEXT_PROBECHAN) { /* * Actively scanning a channel marked passive; * send a probe request now that we know there * is 802.11 traffic present. * * XXX check if the beacon we recv'd gives * us what we need and suppress the probe req */ ieee80211_probe_curchan(vap, 1); ic->ic_flags_ext &= ~IEEE80211_FEXT_PROBECHAN; } ieee80211_add_scan(vap, &scan, wh, subtype, rssi, nf); return; } /* The rest of this code assumes we are running */ if (vap->iv_state != IEEE80211_S_RUN) return; /* * Ignore non-mesh STAs. */ if ((scan.capinfo & (IEEE80211_CAPINFO_ESS|IEEE80211_CAPINFO_IBSS)) || scan.meshid == NULL || scan.meshconf == NULL) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "beacon", "%s", "not a mesh sta"); vap->iv_stats.is_mesh_wrongmesh++; return; } /* * Ignore STAs for other mesh networks. */ if (memcmp(scan.meshid+2, ms->ms_id, ms->ms_idlen) != 0 || mesh_verify_meshconf(vap, scan.meshconf)) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "beacon", "%s", "not for our mesh"); vap->iv_stats.is_mesh_wrongmesh++; return; } /* * Peer only based on the current ACL policy. */ if (vap->iv_acl != NULL && !vap->iv_acl->iac_check(vap, wh)) { IEEE80211_DISCARD(vap, IEEE80211_MSG_ACL, wh, NULL, "%s", "disallowed by ACL"); vap->iv_stats.is_rx_acl++; return; } /* * Do neighbor discovery. */ if (!IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_macaddr)) { /* * Create a new entry in the neighbor table. */ ni = ieee80211_add_neighbor(vap, wh, &scan); } /* * Automatically peer with discovered nodes if possible. */ if (ni != vap->iv_bss && (ms->ms_flags & IEEE80211_MESHFLAGS_AP)) { switch (ni->ni_mlstate) { case IEEE80211_NODE_MESH_IDLE: { uint16_t args[1]; /* Wait for backoff callout to reset counter */ if (ni->ni_mlhcnt >= ieee80211_mesh_maxholding) return; ni->ni_mlpid = mesh_generateid(vap); if (ni->ni_mlpid == 0) return; mesh_linkchange(ni, IEEE80211_NODE_MESH_OPENSNT); args[0] = ni->ni_mlpid; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_OPEN, args); ni->ni_mlrcnt = 0; mesh_peer_timeout_setup(ni); break; } case IEEE80211_NODE_MESH_ESTABLISHED: { /* * Valid beacon from a peer mesh STA * bump TA lifetime */ rt = ieee80211_mesh_rt_find(vap, wh->i_addr2); if(rt != NULL) { ieee80211_mesh_rt_update(rt, ticks_to_msecs( ms->ms_ppath->mpp_inact)); } break; } default: break; /* ignore */ } } break; } case IEEE80211_FC0_SUBTYPE_PROBE_REQ: { uint8_t *ssid, *meshid, *rates, *xrates; uint8_t *sfrm; if (vap->iv_state != IEEE80211_S_RUN) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "wrong state %s", ieee80211_state_name[vap->iv_state]); vap->iv_stats.is_rx_mgtdiscard++; return; } if (IEEE80211_IS_MULTICAST(wh->i_addr2)) { /* frame must be directed */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "not unicast"); vap->iv_stats.is_rx_mgtdiscard++; /* XXX stat */ return; } /* * prreq frame format * [tlv] ssid * [tlv] supported rates * [tlv] extended supported rates * [tlv] mesh id */ ssid = meshid = rates = xrates = NULL; sfrm = frm; while (efrm - frm > 1) { IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); switch (*frm) { case IEEE80211_ELEMID_SSID: ssid = frm; break; case IEEE80211_ELEMID_RATES: rates = frm; break; case IEEE80211_ELEMID_XRATES: xrates = frm; break; case IEEE80211_ELEMID_MESHID: meshid = frm; break; } frm += frm[1] + 2; } IEEE80211_VERIFY_ELEMENT(ssid, IEEE80211_NWID_LEN, return); IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE, return); if (xrates != NULL) IEEE80211_VERIFY_ELEMENT(xrates, IEEE80211_RATE_MAXSIZE - rates[1], return); if (meshid != NULL) { IEEE80211_VERIFY_ELEMENT(meshid, IEEE80211_MESHID_LEN, return); /* NB: meshid, not ssid */ IEEE80211_VERIFY_SSID(vap->iv_bss, meshid, return); } /* XXX find a better class or define it's own */ IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_INPUT, wh->i_addr2, "%s", "recv probe req"); /* * Some legacy 11b clients cannot hack a complete * probe response frame. When the request includes * only a bare-bones rate set, communicate this to * the transmit side. */ ieee80211_send_proberesp(vap, wh->i_addr2, 0); break; } case IEEE80211_FC0_SUBTYPE_ACTION: case IEEE80211_FC0_SUBTYPE_ACTION_NOACK: if (ni == vap->iv_bss) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "unknown node"); vap->iv_stats.is_rx_mgtdiscard++; } else if (!IEEE80211_ADDR_EQ(vap->iv_myaddr, wh->i_addr1) && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "not for us"); vap->iv_stats.is_rx_mgtdiscard++; } else if (vap->iv_state != IEEE80211_S_RUN) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "wrong state %s", ieee80211_state_name[vap->iv_state]); vap->iv_stats.is_rx_mgtdiscard++; } else { if (ieee80211_parse_action(ni, m0) == 0) (void)ic->ic_recv_action(ni, wh, frm, efrm); } break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: case IEEE80211_FC0_SUBTYPE_ATIM: case IEEE80211_FC0_SUBTYPE_DISASSOC: case IEEE80211_FC0_SUBTYPE_AUTH: case IEEE80211_FC0_SUBTYPE_DEAUTH: IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "not handled"); vap->iv_stats.is_rx_mgtdiscard++; break; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, "mgt", "subtype 0x%x not handled", subtype); vap->iv_stats.is_rx_badsubtype++; break; } } static void mesh_recv_ctl(struct ieee80211_node *ni, struct mbuf *m, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_BAR: ieee80211_recv_bar(ni, m); break; } } /* * Parse meshpeering action ie's for MPM frames */ static const struct ieee80211_meshpeer_ie * mesh_parse_meshpeering_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh, /* XXX for VERIFY_LENGTH */ const uint8_t *frm, const uint8_t *efrm, struct ieee80211_meshpeer_ie *mp, uint8_t subtype) { struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_meshpeer_ie *mpie; uint16_t args[3]; const uint8_t *meshid, *meshconf, *meshpeer; uint8_t sendclose = 0; /* 1 = MPM frame rejected, close will be sent */ meshid = meshconf = meshpeer = NULL; while (efrm - frm > 1) { IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return NULL); switch (*frm) { case IEEE80211_ELEMID_MESHID: meshid = frm; break; case IEEE80211_ELEMID_MESHCONF: meshconf = frm; break; case IEEE80211_ELEMID_MESHPEER: meshpeer = frm; mpie = (const struct ieee80211_meshpeer_ie *) frm; memset(mp, 0, sizeof(*mp)); mp->peer_len = mpie->peer_len; mp->peer_proto = LE_READ_2(&mpie->peer_proto); mp->peer_llinkid = LE_READ_2(&mpie->peer_llinkid); switch (subtype) { case IEEE80211_ACTION_MESHPEERING_CONFIRM: mp->peer_linkid = LE_READ_2(&mpie->peer_linkid); break; case IEEE80211_ACTION_MESHPEERING_CLOSE: /* NB: peer link ID is optional */ if (mpie->peer_len == (IEEE80211_MPM_BASE_SZ + 2)) { mp->peer_linkid = 0; mp->peer_rcode = LE_READ_2(&mpie->peer_linkid); } else { mp->peer_linkid = LE_READ_2(&mpie->peer_linkid); mp->peer_rcode = LE_READ_2(&mpie->peer_rcode); } break; } break; } frm += frm[1] + 2; } /* * Verify the contents of the frame. * If it fails validation, close the peer link. */ if (mesh_verify_meshpeer(vap, subtype, (const uint8_t *)mp)) { sendclose = 1; IEEE80211_DISCARD(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, wh, NULL, "%s", "MPM validation failed"); } /* If meshid is not the same reject any frames type. */ if (sendclose == 0 && mesh_verify_meshid(vap, meshid)) { sendclose = 1; IEEE80211_DISCARD(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, wh, NULL, "%s", "not for our mesh"); if (subtype == IEEE80211_ACTION_MESHPEERING_CLOSE) { /* * Standard not clear about this, if we dont ignore * there will be an endless loop between nodes sending * CLOSE frames between each other with wrong meshid. * Discard and timers will bring FSM to IDLE state. */ return NULL; } } /* * Close frames are accepted if meshid is the same. * Verify the other two types. */ if (sendclose == 0 && subtype != IEEE80211_ACTION_MESHPEERING_CLOSE && mesh_verify_meshconf(vap, meshconf)) { sendclose = 1; IEEE80211_DISCARD(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, wh, NULL, "%s", "configuration missmatch"); } if (sendclose) { vap->iv_stats.is_rx_mgtdiscard++; switch (ni->ni_mlstate) { case IEEE80211_NODE_MESH_IDLE: case IEEE80211_NODE_MESH_ESTABLISHED: case IEEE80211_NODE_MESH_HOLDING: /* ignore */ break; case IEEE80211_NODE_MESH_OPENSNT: case IEEE80211_NODE_MESH_OPENRCV: case IEEE80211_NODE_MESH_CONFIRMRCV: args[0] = ni->ni_mlpid; args[1] = ni->ni_mllid; /* Reason codes for rejection */ switch (subtype) { case IEEE80211_ACTION_MESHPEERING_OPEN: args[2] = IEEE80211_REASON_MESH_CPVIOLATION; break; case IEEE80211_ACTION_MESHPEERING_CONFIRM: args[2] = IEEE80211_REASON_MESH_INCONS_PARAMS; break; } ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING); mesh_peer_timeout_setup(ni); break; } return NULL; } return (const struct ieee80211_meshpeer_ie *) mp; } static int mesh_recv_action_meshpeering_open(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_meshpeer_ie ie; const struct ieee80211_meshpeer_ie *meshpeer; uint16_t args[3]; /* +2+2 for action + code + capabilites */ meshpeer = mesh_parse_meshpeering_action(ni, wh, frm+2+2, efrm, &ie, IEEE80211_ACTION_MESHPEERING_OPEN); if (meshpeer == NULL) { return 0; } /* XXX move up */ IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni, "recv PEER OPEN, lid 0x%x", meshpeer->peer_llinkid); switch (ni->ni_mlstate) { case IEEE80211_NODE_MESH_IDLE: /* Reject open request if reached our maximum neighbor count */ if (ms->ms_neighbors >= IEEE80211_MESH_MAX_NEIGHBORS) { args[0] = meshpeer->peer_llinkid; args[1] = 0; args[2] = IEEE80211_REASON_MESH_MAX_PEERS; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); /* stay in IDLE state */ return (0); } /* Open frame accepted */ mesh_linkchange(ni, IEEE80211_NODE_MESH_OPENRCV); ni->ni_mllid = meshpeer->peer_llinkid; ni->ni_mlpid = mesh_generateid(vap); if (ni->ni_mlpid == 0) return 0; /* XXX */ args[0] = ni->ni_mlpid; /* Announce we're open too... */ ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_OPEN, args); /* ...and confirm the link. */ args[0] = ni->ni_mlpid; args[1] = ni->ni_mllid; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CONFIRM, args); mesh_peer_timeout_setup(ni); break; case IEEE80211_NODE_MESH_OPENRCV: /* Wrong Link ID */ if (ni->ni_mllid != meshpeer->peer_llinkid) { args[0] = ni->ni_mllid; args[1] = ni->ni_mlpid; args[2] = IEEE80211_REASON_PEER_LINK_CANCELED; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING); mesh_peer_timeout_setup(ni); break; } /* Duplicate open, confirm again. */ args[0] = ni->ni_mlpid; args[1] = ni->ni_mllid; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CONFIRM, args); break; case IEEE80211_NODE_MESH_OPENSNT: ni->ni_mllid = meshpeer->peer_llinkid; mesh_linkchange(ni, IEEE80211_NODE_MESH_OPENRCV); args[0] = ni->ni_mlpid; args[1] = ni->ni_mllid; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CONFIRM, args); /* NB: don't setup/clear any timeout */ break; case IEEE80211_NODE_MESH_CONFIRMRCV: if (ni->ni_mlpid != meshpeer->peer_linkid || ni->ni_mllid != meshpeer->peer_llinkid) { args[0] = ni->ni_mlpid; args[1] = ni->ni_mllid; args[2] = IEEE80211_REASON_PEER_LINK_CANCELED; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING); mesh_peer_timeout_setup(ni); break; } mesh_linkchange(ni, IEEE80211_NODE_MESH_ESTABLISHED); ni->ni_mllid = meshpeer->peer_llinkid; args[0] = ni->ni_mlpid; args[1] = ni->ni_mllid; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CONFIRM, args); mesh_peer_timeout_stop(ni); break; case IEEE80211_NODE_MESH_ESTABLISHED: if (ni->ni_mllid != meshpeer->peer_llinkid) { args[0] = ni->ni_mllid; args[1] = ni->ni_mlpid; args[2] = IEEE80211_REASON_PEER_LINK_CANCELED; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING); mesh_peer_timeout_setup(ni); break; } args[0] = ni->ni_mlpid; args[1] = ni->ni_mllid; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CONFIRM, args); break; case IEEE80211_NODE_MESH_HOLDING: args[0] = ni->ni_mlpid; args[1] = meshpeer->peer_llinkid; /* Standard not clear about what the reaason code should be */ args[2] = IEEE80211_REASON_PEER_LINK_CANCELED; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); break; } return 0; } static int mesh_recv_action_meshpeering_confirm(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_meshpeer_ie ie; const struct ieee80211_meshpeer_ie *meshpeer; uint16_t args[3]; /* +2+2+2+2 for action + code + capabilites + status code + AID */ meshpeer = mesh_parse_meshpeering_action(ni, wh, frm+2+2+2+2, efrm, &ie, IEEE80211_ACTION_MESHPEERING_CONFIRM); if (meshpeer == NULL) { return 0; } IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni, "recv PEER CONFIRM, local id 0x%x, peer id 0x%x", meshpeer->peer_llinkid, meshpeer->peer_linkid); switch (ni->ni_mlstate) { case IEEE80211_NODE_MESH_OPENRCV: mesh_linkchange(ni, IEEE80211_NODE_MESH_ESTABLISHED); mesh_peer_timeout_stop(ni); break; case IEEE80211_NODE_MESH_OPENSNT: mesh_linkchange(ni, IEEE80211_NODE_MESH_CONFIRMRCV); mesh_peer_timeout_setup(ni); break; case IEEE80211_NODE_MESH_HOLDING: args[0] = ni->ni_mlpid; args[1] = meshpeer->peer_llinkid; /* Standard not clear about what the reaason code should be */ args[2] = IEEE80211_REASON_PEER_LINK_CANCELED; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); break; case IEEE80211_NODE_MESH_CONFIRMRCV: if (ni->ni_mllid != meshpeer->peer_llinkid) { args[0] = ni->ni_mlpid; args[1] = ni->ni_mllid; args[2] = IEEE80211_REASON_PEER_LINK_CANCELED; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING); mesh_peer_timeout_setup(ni); } break; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, wh, NULL, "received confirm in invalid state %d", ni->ni_mlstate); vap->iv_stats.is_rx_mgtdiscard++; break; } return 0; } static int mesh_recv_action_meshpeering_close(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211_meshpeer_ie ie; const struct ieee80211_meshpeer_ie *meshpeer; uint16_t args[3]; /* +2 for action + code */ meshpeer = mesh_parse_meshpeering_action(ni, wh, frm+2, efrm, &ie, IEEE80211_ACTION_MESHPEERING_CLOSE); if (meshpeer == NULL) { return 0; } /* * XXX: check reason code, for example we could receive * IEEE80211_REASON_MESH_MAX_PEERS then we should not attempt * to peer again. */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni, "%s", "recv PEER CLOSE"); switch (ni->ni_mlstate) { case IEEE80211_NODE_MESH_IDLE: /* ignore */ break; case IEEE80211_NODE_MESH_OPENRCV: case IEEE80211_NODE_MESH_OPENSNT: case IEEE80211_NODE_MESH_CONFIRMRCV: case IEEE80211_NODE_MESH_ESTABLISHED: args[0] = ni->ni_mlpid; args[1] = ni->ni_mllid; args[2] = IEEE80211_REASON_MESH_CLOSE_RCVD; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING); mesh_peer_timeout_setup(ni); break; case IEEE80211_NODE_MESH_HOLDING: mesh_linkchange(ni, IEEE80211_NODE_MESH_IDLE); mesh_peer_timeout_stop(ni); break; } return 0; } /* * Link Metric handling. */ static int mesh_recv_action_meshlmetric(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { const struct ieee80211_meshlmetric_ie *ie = (const struct ieee80211_meshlmetric_ie *) (frm+2); /* action + code */ struct ieee80211_meshlmetric_ie lm_rep; if (ie->lm_flags & IEEE80211_MESH_LMETRIC_FLAGS_REQ) { lm_rep.lm_flags = 0; lm_rep.lm_metric = mesh_airtime_calc(ni); ieee80211_send_action(ni, IEEE80211_ACTION_CAT_MESH, IEEE80211_ACTION_MESH_LMETRIC, &lm_rep); } /* XXX: else do nothing for now */ return 0; } /* * Parse meshgate action ie's for GANN frames. * Returns -1 if parsing fails, otherwise 0. */ static int mesh_parse_meshgate_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh, /* XXX for VERIFY_LENGTH */ struct ieee80211_meshgann_ie *ie, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_meshgann_ie *gannie; while (efrm - frm > 1) { IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return -1); switch (*frm) { case IEEE80211_ELEMID_MESHGANN: gannie = (const struct ieee80211_meshgann_ie *) frm; memset(ie, 0, sizeof(*ie)); ie->gann_ie = gannie->gann_ie; ie->gann_len = gannie->gann_len; ie->gann_flags = gannie->gann_flags; ie->gann_hopcount = gannie->gann_hopcount; ie->gann_ttl = gannie->gann_ttl; IEEE80211_ADDR_COPY(ie->gann_addr, gannie->gann_addr); ie->gann_seq = LE_READ_4(&gannie->gann_seq); ie->gann_interval = LE_READ_2(&gannie->gann_interval); break; } frm += frm[1] + 2; } return 0; } /* * Mesh Gate Announcement handling. */ static int mesh_recv_action_meshgate(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_mesh_gate_route *gr, *next; struct ieee80211_mesh_route *rt_gate; struct ieee80211_meshgann_ie pgann; struct ieee80211_meshgann_ie ie; int found = 0; /* +2 for action + code */ if (mesh_parse_meshgate_action(ni, wh, &ie, frm+2, efrm) != 0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_MESH, ni->ni_macaddr, NULL, "%s", "GANN parsing failed"); vap->iv_stats.is_rx_mgtdiscard++; return (0); } if (IEEE80211_ADDR_EQ(vap->iv_myaddr, ie.gann_addr)) return 0; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, ni->ni_macaddr, "received GANN, meshgate: %6D (seq %u)", ie.gann_addr, ":", ie.gann_seq); if (ms == NULL) return (0); MESH_RT_LOCK(ms); TAILQ_FOREACH_SAFE(gr, &ms->ms_known_gates, gr_next, next) { if (!IEEE80211_ADDR_EQ(gr->gr_addr, ie.gann_addr)) continue; if (ie.gann_seq <= gr->gr_lastseq) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_MESH, ni->ni_macaddr, NULL, "GANN old seqno %u <= %u", ie.gann_seq, gr->gr_lastseq); MESH_RT_UNLOCK(ms); return (0); } /* corresponding mesh gate found & GANN accepted */ found = 1; break; } if (found == 0) { /* this GANN is from a new mesh Gate add it to known table. */ IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, ie.gann_addr, "stored new GANN information, seq %u.", ie.gann_seq); gr = malloc(ALIGN(sizeof(struct ieee80211_mesh_gate_route)), M_80211_MESH_GT_RT, M_NOWAIT | M_ZERO); IEEE80211_ADDR_COPY(gr->gr_addr, ie.gann_addr); TAILQ_INSERT_TAIL(&ms->ms_known_gates, gr, gr_next); } gr->gr_lastseq = ie.gann_seq; /* check if we have a path to this gate */ rt_gate = mesh_rt_find_locked(ms, gr->gr_addr); if (rt_gate != NULL && rt_gate->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) { gr->gr_route = rt_gate; rt_gate->rt_flags |= IEEE80211_MESHRT_FLAGS_GATE; } MESH_RT_UNLOCK(ms); /* popagate only if decremented ttl >= 1 && forwarding is enabled */ if ((ie.gann_ttl - 1) < 1 && !(ms->ms_flags & IEEE80211_MESHFLAGS_FWD)) return 0; pgann.gann_flags = ie.gann_flags; /* Reserved */ pgann.gann_hopcount = ie.gann_hopcount + 1; pgann.gann_ttl = ie.gann_ttl - 1; IEEE80211_ADDR_COPY(pgann.gann_addr, ie.gann_addr); pgann.gann_seq = ie.gann_seq; pgann.gann_interval = ie.gann_interval; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, ie.gann_addr, "%s", "propagate GANN"); ieee80211_send_action(vap->iv_bss, IEEE80211_ACTION_CAT_MESH, IEEE80211_ACTION_MESH_GANN, &pgann); return 0; } static int mesh_send_action(struct ieee80211_node *ni, const uint8_t sa[IEEE80211_ADDR_LEN], const uint8_t da[IEEE80211_ADDR_LEN], struct mbuf *m) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_bpf_params params; struct ieee80211_frame *wh; int ret; KASSERT(ni != NULL, ("null node")); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, "block %s frame in CAC state", "Mesh action"); vap->iv_stats.is_tx_badstate++; ieee80211_free_node(ni); m_freem(m); return EIO; /* XXX */ } M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); if (m == NULL) { ieee80211_free_node(ni); return ENOMEM; } IEEE80211_TX_LOCK(ic); wh = mtod(m, struct ieee80211_frame *); ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_ACTION, IEEE80211_NONQOS_TID, sa, da, sa); m->m_flags |= M_ENCAP; /* mark encapsulated */ memset(¶ms, 0, sizeof(params)); params.ibp_pri = WME_AC_VO; params.ibp_rate0 = ni->ni_txparms->mgmtrate; if (IEEE80211_IS_MULTICAST(da)) params.ibp_try0 = 1; else params.ibp_try0 = ni->ni_txparms->maxretry; params.ibp_power = ni->ni_txpower; IEEE80211_NODE_STAT(ni, tx_mgmt); ret = ieee80211_raw_output(vap, ni, m, ¶ms); IEEE80211_TX_UNLOCK(ic); return (ret); } #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) #define ADDWORD(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = ((v) >> 8) & 0xff; \ frm[2] = ((v) >> 16) & 0xff; \ frm[3] = ((v) >> 24) & 0xff; \ frm += 4; \ } while (0) static int mesh_send_action_meshpeering_open(struct ieee80211_node *ni, int category, int action, void *args0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; uint16_t *args = args0; const struct ieee80211_rateset *rs; struct mbuf *m; uint8_t *frm; IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni, "send PEER OPEN action: localid 0x%x", args[0]); IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) /* action+category */ + sizeof(uint16_t) /* capabilites */ + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + 2 + IEEE80211_MESHID_LEN + sizeof(struct ieee80211_meshconf_ie) + sizeof(struct ieee80211_meshpeer_ie) ); if (m != NULL) { /* * mesh peer open action frame format: * [1] category * [1] action * [2] capabilities * [tlv] rates * [tlv] xrates * [tlv] mesh id * [tlv] mesh conf * [tlv] mesh peer link mgmt */ *frm++ = category; *frm++ = action; ADDSHORT(frm, ieee80211_getcapinfo(vap, ni->ni_chan)); rs = ieee80211_get_suprates(ic, ic->ic_curchan); frm = ieee80211_add_rates(frm, rs); frm = ieee80211_add_xrates(frm, rs); frm = ieee80211_add_meshid(frm, vap); frm = ieee80211_add_meshconf(frm, vap); frm = ieee80211_add_meshpeer(frm, IEEE80211_ACTION_MESHPEERING_OPEN, args[0], 0, 0); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return mesh_send_action(ni, vap->iv_myaddr, ni->ni_macaddr, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } static int mesh_send_action_meshpeering_confirm(struct ieee80211_node *ni, int category, int action, void *args0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; uint16_t *args = args0; const struct ieee80211_rateset *rs; struct mbuf *m; uint8_t *frm; IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni, "send PEER CONFIRM action: localid 0x%x, peerid 0x%x", args[0], args[1]); IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) /* action+category */ + sizeof(uint16_t) /* capabilites */ + sizeof(uint16_t) /* status code */ + sizeof(uint16_t) /* AID */ + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + 2 + IEEE80211_MESHID_LEN + sizeof(struct ieee80211_meshconf_ie) + sizeof(struct ieee80211_meshpeer_ie) ); if (m != NULL) { /* * mesh peer confirm action frame format: * [1] category * [1] action * [2] capabilities * [2] status code * [2] association id (peer ID) * [tlv] rates * [tlv] xrates * [tlv] mesh id * [tlv] mesh conf * [tlv] mesh peer link mgmt */ *frm++ = category; *frm++ = action; ADDSHORT(frm, ieee80211_getcapinfo(vap, ni->ni_chan)); ADDSHORT(frm, 0); /* status code */ ADDSHORT(frm, args[1]); /* AID */ rs = ieee80211_get_suprates(ic, ic->ic_curchan); frm = ieee80211_add_rates(frm, rs); frm = ieee80211_add_xrates(frm, rs); frm = ieee80211_add_meshid(frm, vap); frm = ieee80211_add_meshconf(frm, vap); frm = ieee80211_add_meshpeer(frm, IEEE80211_ACTION_MESHPEERING_CONFIRM, args[0], args[1], 0); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return mesh_send_action(ni, vap->iv_myaddr, ni->ni_macaddr, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } static int mesh_send_action_meshpeering_close(struct ieee80211_node *ni, int category, int action, void *args0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; uint16_t *args = args0; struct mbuf *m; uint8_t *frm; IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni, "send PEER CLOSE action: localid 0x%x, peerid 0x%x reason %d", args[0], args[1], args[2]); IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) /* action+category */ + sizeof(uint16_t) /* reason code */ + 2 + IEEE80211_MESHID_LEN + sizeof(struct ieee80211_meshpeer_ie) ); if (m != NULL) { /* * mesh peer close action frame format: * [1] category * [1] action * [tlv] mesh id * [tlv] mesh peer link mgmt */ *frm++ = category; *frm++ = action; frm = ieee80211_add_meshid(frm, vap); frm = ieee80211_add_meshpeer(frm, IEEE80211_ACTION_MESHPEERING_CLOSE, args[0], args[1], args[2]); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return mesh_send_action(ni, vap->iv_myaddr, ni->ni_macaddr, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } static int mesh_send_action_meshlmetric(struct ieee80211_node *ni, int category, int action, void *arg0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_meshlmetric_ie *ie = arg0; struct mbuf *m; uint8_t *frm; if (ie->lm_flags & IEEE80211_MESH_LMETRIC_FLAGS_REQ) { IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni, "%s", "send LINK METRIC REQUEST action"); } else { IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni, "send LINK METRIC REPLY action: metric 0x%x", ie->lm_metric); } IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) + /* action+category */ sizeof(struct ieee80211_meshlmetric_ie) ); if (m != NULL) { /* * mesh link metric * [1] category * [1] action * [tlv] mesh link metric */ *frm++ = category; *frm++ = action; frm = ieee80211_add_meshlmetric(frm, ie->lm_flags, ie->lm_metric); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return mesh_send_action(ni, vap->iv_myaddr, ni->ni_macaddr, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } static int mesh_send_action_meshgate(struct ieee80211_node *ni, int category, int action, void *arg0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_meshgann_ie *ie = arg0; struct mbuf *m; uint8_t *frm; IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) + /* action+category */ IEEE80211_MESHGANN_BASE_SZ ); if (m != NULL) { /* * mesh link metric * [1] category * [1] action * [tlv] mesh gate annoucement */ *frm++ = category; *frm++ = action; frm = ieee80211_add_meshgate(frm, ie); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return mesh_send_action(ni, vap->iv_myaddr, broadcastaddr, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } static void mesh_peer_timeout_setup(struct ieee80211_node *ni) { switch (ni->ni_mlstate) { case IEEE80211_NODE_MESH_HOLDING: ni->ni_mltval = ieee80211_mesh_holdingtimeout; break; case IEEE80211_NODE_MESH_CONFIRMRCV: ni->ni_mltval = ieee80211_mesh_confirmtimeout; break; case IEEE80211_NODE_MESH_IDLE: ni->ni_mltval = 0; break; default: ni->ni_mltval = ieee80211_mesh_retrytimeout; break; } if (ni->ni_mltval) callout_reset(&ni->ni_mltimer, ni->ni_mltval, mesh_peer_timeout_cb, ni); } /* * Same as above but backoffs timer statisically 50%. */ static void mesh_peer_timeout_backoff(struct ieee80211_node *ni) { uint32_t r; r = arc4random(); ni->ni_mltval += r % ni->ni_mltval; callout_reset(&ni->ni_mltimer, ni->ni_mltval, mesh_peer_timeout_cb, ni); } static __inline void mesh_peer_timeout_stop(struct ieee80211_node *ni) { callout_drain(&ni->ni_mltimer); } static void mesh_peer_backoff_cb(void *arg) { struct ieee80211_node *ni = (struct ieee80211_node *)arg; /* After backoff timeout, try to peer automatically again. */ ni->ni_mlhcnt = 0; } /* * Mesh Peer Link Management FSM timeout handling. */ static void mesh_peer_timeout_cb(void *arg) { struct ieee80211_node *ni = (struct ieee80211_node *)arg; uint16_t args[3]; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_MESH, ni, "mesh link timeout, state %d, retry counter %d", ni->ni_mlstate, ni->ni_mlrcnt); switch (ni->ni_mlstate) { case IEEE80211_NODE_MESH_IDLE: case IEEE80211_NODE_MESH_ESTABLISHED: break; case IEEE80211_NODE_MESH_OPENSNT: case IEEE80211_NODE_MESH_OPENRCV: if (ni->ni_mlrcnt == ieee80211_mesh_maxretries) { args[0] = ni->ni_mlpid; args[2] = IEEE80211_REASON_MESH_MAX_RETRIES; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); ni->ni_mlrcnt = 0; mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING); mesh_peer_timeout_setup(ni); } else { args[0] = ni->ni_mlpid; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_OPEN, args); ni->ni_mlrcnt++; mesh_peer_timeout_backoff(ni); } break; case IEEE80211_NODE_MESH_CONFIRMRCV: args[0] = ni->ni_mlpid; args[2] = IEEE80211_REASON_MESH_CONFIRM_TIMEOUT; ieee80211_send_action(ni, IEEE80211_ACTION_CAT_SELF_PROT, IEEE80211_ACTION_MESHPEERING_CLOSE, args); mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING); mesh_peer_timeout_setup(ni); break; case IEEE80211_NODE_MESH_HOLDING: ni->ni_mlhcnt++; if (ni->ni_mlhcnt >= ieee80211_mesh_maxholding) callout_reset(&ni->ni_mlhtimer, ieee80211_mesh_backofftimeout, mesh_peer_backoff_cb, ni); mesh_linkchange(ni, IEEE80211_NODE_MESH_IDLE); break; } } static int mesh_verify_meshid(struct ieee80211vap *vap, const uint8_t *ie) { struct ieee80211_mesh_state *ms = vap->iv_mesh; if (ie == NULL || ie[1] != ms->ms_idlen) return 1; return memcmp(ms->ms_id, ie + 2, ms->ms_idlen); } /* * Check if we are using the same algorithms for this mesh. */ static int mesh_verify_meshconf(struct ieee80211vap *vap, const uint8_t *ie) { const struct ieee80211_meshconf_ie *meshconf = (const struct ieee80211_meshconf_ie *) ie; const struct ieee80211_mesh_state *ms = vap->iv_mesh; if (meshconf == NULL) return 1; if (meshconf->conf_pselid != ms->ms_ppath->mpp_ie) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH, "unknown path selection algorithm: 0x%x\n", meshconf->conf_pselid); return 1; } if (meshconf->conf_pmetid != ms->ms_pmetric->mpm_ie) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH, "unknown path metric algorithm: 0x%x\n", meshconf->conf_pmetid); return 1; } if (meshconf->conf_ccid != 0) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH, "unknown congestion control algorithm: 0x%x\n", meshconf->conf_ccid); return 1; } if (meshconf->conf_syncid != IEEE80211_MESHCONF_SYNC_NEIGHOFF) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH, "unknown sync algorithm: 0x%x\n", meshconf->conf_syncid); return 1; } if (meshconf->conf_authid != 0) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH, "unknown auth auth algorithm: 0x%x\n", meshconf->conf_pselid); return 1; } /* Not accepting peers */ if (!(meshconf->conf_cap & IEEE80211_MESHCONF_CAP_AP)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH, "not accepting peers: 0x%x\n", meshconf->conf_cap); return 1; } return 0; } static int mesh_verify_meshpeer(struct ieee80211vap *vap, uint8_t subtype, const uint8_t *ie) { const struct ieee80211_meshpeer_ie *meshpeer = (const struct ieee80211_meshpeer_ie *) ie; if (meshpeer == NULL || meshpeer->peer_len < IEEE80211_MPM_BASE_SZ || meshpeer->peer_len > IEEE80211_MPM_MAX_SZ) return 1; if (meshpeer->peer_proto != IEEE80211_MPPID_MPM) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, "Only MPM protocol is supported (proto: 0x%02X)", meshpeer->peer_proto); return 1; } switch (subtype) { case IEEE80211_ACTION_MESHPEERING_OPEN: if (meshpeer->peer_len != IEEE80211_MPM_BASE_SZ) return 1; break; case IEEE80211_ACTION_MESHPEERING_CONFIRM: if (meshpeer->peer_len != IEEE80211_MPM_BASE_SZ + 2) return 1; break; case IEEE80211_ACTION_MESHPEERING_CLOSE: if (meshpeer->peer_len < IEEE80211_MPM_BASE_SZ + 2) return 1; if (meshpeer->peer_len == (IEEE80211_MPM_BASE_SZ + 2) && meshpeer->peer_linkid != 0) return 1; if (meshpeer->peer_rcode == 0) return 1; break; } return 0; } /* * Add a Mesh ID IE to a frame. */ uint8_t * ieee80211_add_meshid(uint8_t *frm, struct ieee80211vap *vap) { struct ieee80211_mesh_state *ms = vap->iv_mesh; KASSERT(vap->iv_opmode == IEEE80211_M_MBSS, ("not a mbss vap")); *frm++ = IEEE80211_ELEMID_MESHID; *frm++ = ms->ms_idlen; memcpy(frm, ms->ms_id, ms->ms_idlen); return frm + ms->ms_idlen; } /* * Add a Mesh Configuration IE to a frame. * For now just use HWMP routing, Airtime link metric, Null Congestion * Signaling, Null Sync Protocol and Null Authentication. */ uint8_t * ieee80211_add_meshconf(uint8_t *frm, struct ieee80211vap *vap) { const struct ieee80211_mesh_state *ms = vap->iv_mesh; uint16_t caps; KASSERT(vap->iv_opmode == IEEE80211_M_MBSS, ("not a MBSS vap")); *frm++ = IEEE80211_ELEMID_MESHCONF; *frm++ = IEEE80211_MESH_CONF_SZ; *frm++ = ms->ms_ppath->mpp_ie; /* path selection */ *frm++ = ms->ms_pmetric->mpm_ie; /* link metric */ *frm++ = IEEE80211_MESHCONF_CC_DISABLED; *frm++ = IEEE80211_MESHCONF_SYNC_NEIGHOFF; *frm++ = IEEE80211_MESHCONF_AUTH_DISABLED; /* NB: set the number of neighbors before the rest */ *frm = (ms->ms_neighbors > IEEE80211_MESH_MAX_NEIGHBORS ? IEEE80211_MESH_MAX_NEIGHBORS : ms->ms_neighbors) << 1; if (ms->ms_flags & IEEE80211_MESHFLAGS_GATE) *frm |= IEEE80211_MESHCONF_FORM_GATE; frm += 1; caps = 0; if (ms->ms_flags & IEEE80211_MESHFLAGS_AP) caps |= IEEE80211_MESHCONF_CAP_AP; if (ms->ms_flags & IEEE80211_MESHFLAGS_FWD) caps |= IEEE80211_MESHCONF_CAP_FWRD; *frm++ = caps; return frm; } /* * Add a Mesh Peer Management IE to a frame. */ uint8_t * ieee80211_add_meshpeer(uint8_t *frm, uint8_t subtype, uint16_t localid, uint16_t peerid, uint16_t reason) { KASSERT(localid != 0, ("localid == 0")); *frm++ = IEEE80211_ELEMID_MESHPEER; switch (subtype) { case IEEE80211_ACTION_MESHPEERING_OPEN: *frm++ = IEEE80211_MPM_BASE_SZ; /* length */ ADDSHORT(frm, IEEE80211_MPPID_MPM); /* proto */ ADDSHORT(frm, localid); /* local ID */ break; case IEEE80211_ACTION_MESHPEERING_CONFIRM: KASSERT(peerid != 0, ("sending peer confirm without peer id")); *frm++ = IEEE80211_MPM_BASE_SZ + 2; /* length */ ADDSHORT(frm, IEEE80211_MPPID_MPM); /* proto */ ADDSHORT(frm, localid); /* local ID */ ADDSHORT(frm, peerid); /* peer ID */ break; case IEEE80211_ACTION_MESHPEERING_CLOSE: if (peerid) *frm++ = IEEE80211_MPM_MAX_SZ; /* length */ else *frm++ = IEEE80211_MPM_BASE_SZ + 2; /* length */ ADDSHORT(frm, IEEE80211_MPPID_MPM); /* proto */ ADDSHORT(frm, localid); /* local ID */ if (peerid) ADDSHORT(frm, peerid); /* peer ID */ ADDSHORT(frm, reason); break; } return frm; } /* * Compute an Airtime Link Metric for the link with this node. * * Based on Draft 3.0 spec (11B.10, p.149). */ /* * Max 802.11s overhead. */ #define IEEE80211_MESH_MAXOVERHEAD \ (sizeof(struct ieee80211_qosframe_addr4) \ + sizeof(struct ieee80211_meshcntl_ae10) \ + sizeof(struct llc) \ + IEEE80211_ADDR_LEN \ + IEEE80211_WEP_IVLEN \ + IEEE80211_WEP_KIDLEN \ + IEEE80211_WEP_CRCLEN \ + IEEE80211_WEP_MICLEN \ + IEEE80211_CRC_LEN) uint32_t mesh_airtime_calc(struct ieee80211_node *ni) { #define M_BITS 8 #define S_FACTOR (2 * M_BITS) struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ni->ni_vap->iv_ifp; const static int nbits = 8192 << M_BITS; uint32_t overhead, rate, errrate; uint64_t res; /* Time to transmit a frame */ rate = ni->ni_txrate; overhead = ieee80211_compute_duration(ic->ic_rt, ifp->if_mtu + IEEE80211_MESH_MAXOVERHEAD, rate, 0) << M_BITS; /* Error rate in percentage */ /* XXX assuming small failures are ok */ errrate = (((ifp->if_oerrors + ifp->if_ierrors) / 100) << M_BITS) / 100; res = (overhead + (nbits / rate)) * ((1 << S_FACTOR) / ((1 << M_BITS) - errrate)); return (uint32_t)(res >> S_FACTOR); #undef M_BITS #undef S_FACTOR } /* * Add a Mesh Link Metric report IE to a frame. */ uint8_t * ieee80211_add_meshlmetric(uint8_t *frm, uint8_t flags, uint32_t metric) { *frm++ = IEEE80211_ELEMID_MESHLINK; *frm++ = 5; *frm++ = flags; ADDWORD(frm, metric); return frm; } /* * Add a Mesh Gate Announcement IE to a frame. */ uint8_t * ieee80211_add_meshgate(uint8_t *frm, struct ieee80211_meshgann_ie *ie) { *frm++ = IEEE80211_ELEMID_MESHGANN; /* ie */ *frm++ = IEEE80211_MESHGANN_BASE_SZ; /* len */ *frm++ = ie->gann_flags; *frm++ = ie->gann_hopcount; *frm++ = ie->gann_ttl; IEEE80211_ADDR_COPY(frm, ie->gann_addr); frm += 6; ADDWORD(frm, ie->gann_seq); ADDSHORT(frm, ie->gann_interval); return frm; } #undef ADDSHORT #undef ADDWORD /* * Initialize any mesh-specific node state. */ void ieee80211_mesh_node_init(struct ieee80211vap *vap, struct ieee80211_node *ni) { ni->ni_flags |= IEEE80211_NODE_QOS; callout_init(&ni->ni_mltimer, CALLOUT_MPSAFE); callout_init(&ni->ni_mlhtimer, CALLOUT_MPSAFE); } /* * Cleanup any mesh-specific node state. */ void ieee80211_mesh_node_cleanup(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_mesh_state *ms = vap->iv_mesh; callout_drain(&ni->ni_mltimer); callout_drain(&ni->ni_mlhtimer); /* NB: short-circuit callbacks after mesh_vdetach */ if (vap->iv_mesh != NULL) ms->ms_ppath->mpp_peerdown(ni); } void ieee80211_parse_meshid(struct ieee80211_node *ni, const uint8_t *ie) { ni->ni_meshidlen = ie[1]; memcpy(ni->ni_meshid, ie + 2, ie[1]); } /* * Setup mesh-specific node state on neighbor discovery. */ void ieee80211_mesh_init_neighbor(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const struct ieee80211_scanparams *sp) { ieee80211_parse_meshid(ni, sp->meshid); } void ieee80211_mesh_update_beacon(struct ieee80211vap *vap, struct ieee80211_beacon_offsets *bo) { KASSERT(vap->iv_opmode == IEEE80211_M_MBSS, ("not a MBSS vap")); if (isset(bo->bo_flags, IEEE80211_BEACON_MESHCONF)) { (void)ieee80211_add_meshconf(bo->bo_meshconf, vap); clrbit(bo->bo_flags, IEEE80211_BEACON_MESHCONF); } } static int mesh_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_mesh_state *ms = vap->iv_mesh; uint8_t tmpmeshid[IEEE80211_NWID_LEN]; struct ieee80211_mesh_route *rt; struct ieee80211req_mesh_route *imr; size_t len, off; uint8_t *p; int error; if (vap->iv_opmode != IEEE80211_M_MBSS) return ENOSYS; error = 0; switch (ireq->i_type) { case IEEE80211_IOC_MESH_ID: ireq->i_len = ms->ms_idlen; memcpy(tmpmeshid, ms->ms_id, ireq->i_len); error = copyout(tmpmeshid, ireq->i_data, ireq->i_len); break; case IEEE80211_IOC_MESH_AP: ireq->i_val = (ms->ms_flags & IEEE80211_MESHFLAGS_AP) != 0; break; case IEEE80211_IOC_MESH_FWRD: ireq->i_val = (ms->ms_flags & IEEE80211_MESHFLAGS_FWD) != 0; break; case IEEE80211_IOC_MESH_GATE: ireq->i_val = (ms->ms_flags & IEEE80211_MESHFLAGS_GATE) != 0; break; case IEEE80211_IOC_MESH_TTL: ireq->i_val = ms->ms_ttl; break; case IEEE80211_IOC_MESH_RTCMD: switch (ireq->i_val) { case IEEE80211_MESH_RTCMD_LIST: len = 0; MESH_RT_LOCK(ms); TAILQ_FOREACH(rt, &ms->ms_routes, rt_next) { len += sizeof(*imr); } MESH_RT_UNLOCK(ms); if (len > ireq->i_len || ireq->i_len < sizeof(*imr)) { ireq->i_len = len; return ENOMEM; } ireq->i_len = len; /* XXX M_WAIT? */ p = malloc(len, M_TEMP, M_NOWAIT | M_ZERO); if (p == NULL) return ENOMEM; off = 0; MESH_RT_LOCK(ms); TAILQ_FOREACH(rt, &ms->ms_routes, rt_next) { if (off >= len) break; imr = (struct ieee80211req_mesh_route *) (p + off); IEEE80211_ADDR_COPY(imr->imr_dest, rt->rt_dest); IEEE80211_ADDR_COPY(imr->imr_nexthop, rt->rt_nexthop); imr->imr_metric = rt->rt_metric; imr->imr_nhops = rt->rt_nhops; imr->imr_lifetime = ieee80211_mesh_rt_update(rt, 0); imr->imr_lastmseq = rt->rt_lastmseq; imr->imr_flags = rt->rt_flags; /* last */ off += sizeof(*imr); } MESH_RT_UNLOCK(ms); error = copyout(p, (uint8_t *)ireq->i_data, ireq->i_len); free(p, M_TEMP); break; case IEEE80211_MESH_RTCMD_FLUSH: case IEEE80211_MESH_RTCMD_ADD: case IEEE80211_MESH_RTCMD_DELETE: return EINVAL; default: return ENOSYS; } break; case IEEE80211_IOC_MESH_PR_METRIC: len = strlen(ms->ms_pmetric->mpm_descr); if (ireq->i_len < len) return EINVAL; ireq->i_len = len; error = copyout(ms->ms_pmetric->mpm_descr, (uint8_t *)ireq->i_data, len); break; case IEEE80211_IOC_MESH_PR_PATH: len = strlen(ms->ms_ppath->mpp_descr); if (ireq->i_len < len) return EINVAL; ireq->i_len = len; error = copyout(ms->ms_ppath->mpp_descr, (uint8_t *)ireq->i_data, len); break; default: return ENOSYS; } return error; } IEEE80211_IOCTL_GET(mesh, mesh_ioctl_get80211); static int mesh_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_mesh_state *ms = vap->iv_mesh; uint8_t tmpmeshid[IEEE80211_NWID_LEN]; uint8_t tmpaddr[IEEE80211_ADDR_LEN]; char tmpproto[IEEE80211_MESH_PROTO_DSZ]; int error; if (vap->iv_opmode != IEEE80211_M_MBSS) return ENOSYS; error = 0; switch (ireq->i_type) { case IEEE80211_IOC_MESH_ID: if (ireq->i_val != 0 || ireq->i_len > IEEE80211_MESHID_LEN) return EINVAL; error = copyin(ireq->i_data, tmpmeshid, ireq->i_len); if (error != 0) break; memset(ms->ms_id, 0, IEEE80211_NWID_LEN); ms->ms_idlen = ireq->i_len; memcpy(ms->ms_id, tmpmeshid, ireq->i_len); error = ENETRESET; break; case IEEE80211_IOC_MESH_AP: if (ireq->i_val) ms->ms_flags |= IEEE80211_MESHFLAGS_AP; else ms->ms_flags &= ~IEEE80211_MESHFLAGS_AP; error = ENETRESET; break; case IEEE80211_IOC_MESH_FWRD: if (ireq->i_val) ms->ms_flags |= IEEE80211_MESHFLAGS_FWD; else ms->ms_flags &= ~IEEE80211_MESHFLAGS_FWD; mesh_gatemode_setup(vap); break; case IEEE80211_IOC_MESH_GATE: if (ireq->i_val) ms->ms_flags |= IEEE80211_MESHFLAGS_GATE; else ms->ms_flags &= ~IEEE80211_MESHFLAGS_GATE; break; case IEEE80211_IOC_MESH_TTL: ms->ms_ttl = (uint8_t) ireq->i_val; break; case IEEE80211_IOC_MESH_RTCMD: switch (ireq->i_val) { case IEEE80211_MESH_RTCMD_LIST: return EINVAL; case IEEE80211_MESH_RTCMD_FLUSH: ieee80211_mesh_rt_flush(vap); break; case IEEE80211_MESH_RTCMD_ADD: if (IEEE80211_ADDR_EQ(vap->iv_myaddr, ireq->i_data) || IEEE80211_ADDR_EQ(broadcastaddr, ireq->i_data)) return EINVAL; error = copyin(ireq->i_data, &tmpaddr, IEEE80211_ADDR_LEN); if (error == 0) ieee80211_mesh_discover(vap, tmpaddr, NULL); break; case IEEE80211_MESH_RTCMD_DELETE: ieee80211_mesh_rt_del(vap, ireq->i_data); break; default: return ENOSYS; } break; case IEEE80211_IOC_MESH_PR_METRIC: error = copyin(ireq->i_data, tmpproto, sizeof(tmpproto)); if (error == 0) { error = mesh_select_proto_metric(vap, tmpproto); if (error == 0) error = ENETRESET; } break; case IEEE80211_IOC_MESH_PR_PATH: error = copyin(ireq->i_data, tmpproto, sizeof(tmpproto)); if (error == 0) { error = mesh_select_proto_path(vap, tmpproto); if (error == 0) error = ENETRESET; } break; default: return ENOSYS; } return error; } IEEE80211_IOCTL_SET(mesh, mesh_ioctl_set80211);