/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2017 Shunsuke Mie * Copyright (c) 2018 Leon Dang * Copyright (c) 2020 Chuck Tuffli * * Function crc16 Copyright (c) 2017, Fedor Uporov * Obtained from function ext2_crc16() in sys/fs/ext2fs/ext2_csum.c * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * bhyve PCIe-NVMe device emulation. * * options: * -s ,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z,eui64=#,dsm= * * accepted devpath: * /dev/blockdev * /path/to/image * ram=size_in_MiB * * maxq = max number of queues * qsz = max elements in each queue * ioslots = max number of concurrent io requests * sectsz = sector size (defaults to blockif sector size) * ser = serial number (20-chars max) * eui64 = IEEE Extended Unique Identifier (8 byte value) * dsm = DataSet Management support. Option is one of auto, enable,disable * */ /* TODO: - create async event for smart and log - intr coalesce */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bhyverun.h" #include "block_if.h" #include "config.h" #include "debug.h" #include "pci_emul.h" static int nvme_debug = 0; #define DPRINTF(fmt, args...) if (nvme_debug) PRINTLN(fmt, ##args) #define WPRINTF(fmt, args...) PRINTLN(fmt, ##args) /* defaults; can be overridden */ #define NVME_MSIX_BAR 4 #define NVME_IOSLOTS 8 /* The NVMe spec defines bits 13:4 in BAR0 as reserved */ #define NVME_MMIO_SPACE_MIN (1 << 14) #define NVME_QUEUES 16 #define NVME_MAX_QENTRIES 2048 /* Memory Page size Minimum reported in CAP register */ #define NVME_MPSMIN 0 /* MPSMIN converted to bytes */ #define NVME_MPSMIN_BYTES (1 << (12 + NVME_MPSMIN)) #define NVME_PRP2_ITEMS (PAGE_SIZE/sizeof(uint64_t)) #define NVME_MDTS 9 /* Note the + 1 allows for the initial descriptor to not be page aligned */ #define NVME_MAX_IOVEC ((1 << NVME_MDTS) + 1) #define NVME_MAX_DATA_SIZE ((1 << NVME_MDTS) * NVME_MPSMIN_BYTES) /* This is a synthetic status code to indicate there is no status */ #define NVME_NO_STATUS 0xffff #define NVME_COMPLETION_VALID(c) ((c).status != NVME_NO_STATUS) /* helpers */ /* Convert a zero-based value into a one-based value */ #define ONE_BASED(zero) ((zero) + 1) /* Convert a one-based value into a zero-based value */ #define ZERO_BASED(one) ((one) - 1) /* Encode number of SQ's and CQ's for Set/Get Features */ #define NVME_FEATURE_NUM_QUEUES(sc) \ (ZERO_BASED((sc)->num_squeues) & 0xffff) | \ (ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16; #define NVME_DOORBELL_OFFSET offsetof(struct nvme_registers, doorbell) enum nvme_controller_register_offsets { NVME_CR_CAP_LOW = 0x00, NVME_CR_CAP_HI = 0x04, NVME_CR_VS = 0x08, NVME_CR_INTMS = 0x0c, NVME_CR_INTMC = 0x10, NVME_CR_CC = 0x14, NVME_CR_CSTS = 0x1c, NVME_CR_NSSR = 0x20, NVME_CR_AQA = 0x24, NVME_CR_ASQ_LOW = 0x28, NVME_CR_ASQ_HI = 0x2c, NVME_CR_ACQ_LOW = 0x30, NVME_CR_ACQ_HI = 0x34, }; enum nvme_cmd_cdw11 { NVME_CMD_CDW11_PC = 0x0001, NVME_CMD_CDW11_IEN = 0x0002, NVME_CMD_CDW11_IV = 0xFFFF0000, }; enum nvme_copy_dir { NVME_COPY_TO_PRP, NVME_COPY_FROM_PRP, }; #define NVME_CQ_INTEN 0x01 #define NVME_CQ_INTCOAL 0x02 struct nvme_completion_queue { struct nvme_completion *qbase; pthread_mutex_t mtx; uint32_t size; uint16_t tail; /* nvme progress */ uint16_t head; /* guest progress */ uint16_t intr_vec; uint32_t intr_en; }; struct nvme_submission_queue { struct nvme_command *qbase; pthread_mutex_t mtx; uint32_t size; uint16_t head; /* nvme progress */ uint16_t tail; /* guest progress */ uint16_t cqid; /* completion queue id */ int qpriority; }; enum nvme_storage_type { NVME_STOR_BLOCKIF = 0, NVME_STOR_RAM = 1, }; struct pci_nvme_blockstore { enum nvme_storage_type type; void *ctx; uint64_t size; uint32_t sectsz; uint32_t sectsz_bits; uint64_t eui64; uint32_t deallocate:1; }; /* * Calculate the number of additional page descriptors for guest IO requests * based on the advertised Max Data Transfer (MDTS) and given the number of * default iovec's in a struct blockif_req. * * Note the + 1 allows for the initial descriptor to not be page aligned. */ #define MDTS_PAD_SIZE \ NVME_MAX_IOVEC > BLOCKIF_IOV_MAX ? \ NVME_MAX_IOVEC - BLOCKIF_IOV_MAX : \ 0 struct pci_nvme_ioreq { struct pci_nvme_softc *sc; STAILQ_ENTRY(pci_nvme_ioreq) link; struct nvme_submission_queue *nvme_sq; uint16_t sqid; /* command information */ uint16_t opc; uint16_t cid; uint32_t nsid; uint64_t prev_gpaddr; size_t prev_size; size_t bytes; struct blockif_req io_req; struct iovec iovpadding[MDTS_PAD_SIZE]; }; enum nvme_dsm_type { /* Dataset Management bit in ONCS reflects backing storage capability */ NVME_DATASET_MANAGEMENT_AUTO, /* Unconditionally set Dataset Management bit in ONCS */ NVME_DATASET_MANAGEMENT_ENABLE, /* Unconditionally clear Dataset Management bit in ONCS */ NVME_DATASET_MANAGEMENT_DISABLE, }; struct pci_nvme_softc; struct nvme_feature_obj; typedef void (*nvme_feature_cb)(struct pci_nvme_softc *, struct nvme_feature_obj *, struct nvme_command *, struct nvme_completion *); struct nvme_feature_obj { uint32_t cdw11; nvme_feature_cb set; nvme_feature_cb get; bool namespace_specific; }; #define NVME_FID_MAX (NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION + 1) struct pci_nvme_aer { STAILQ_ENTRY(pci_nvme_aer) link; uint16_t cid; /* Command ID of the submitted AER */ }; struct pci_nvme_softc { struct pci_devinst *nsc_pi; pthread_mutex_t mtx; struct nvme_registers regs; struct nvme_namespace_data nsdata; struct nvme_controller_data ctrldata; struct nvme_error_information_entry err_log; struct nvme_health_information_page health_log; struct nvme_firmware_page fw_log; struct pci_nvme_blockstore nvstore; uint16_t max_qentries; /* max entries per queue */ uint32_t max_queues; /* max number of IO SQ's or CQ's */ uint32_t num_cqueues; uint32_t num_squeues; bool num_q_is_set; /* Has host set Number of Queues */ struct pci_nvme_ioreq *ioreqs; STAILQ_HEAD(, pci_nvme_ioreq) ioreqs_free; /* free list of ioreqs */ uint32_t pending_ios; uint32_t ioslots; sem_t iosemlock; /* * Memory mapped Submission and Completion queues * Each array includes both Admin and IO queues */ struct nvme_completion_queue *compl_queues; struct nvme_submission_queue *submit_queues; struct nvme_feature_obj feat[NVME_FID_MAX]; enum nvme_dsm_type dataset_management; /* Accounting for SMART data */ __uint128_t read_data_units; __uint128_t write_data_units; __uint128_t read_commands; __uint128_t write_commands; uint32_t read_dunits_remainder; uint32_t write_dunits_remainder; STAILQ_HEAD(, pci_nvme_aer) aer_list; uint32_t aer_count; }; static struct pci_nvme_ioreq *pci_nvme_get_ioreq(struct pci_nvme_softc *); static void pci_nvme_release_ioreq(struct pci_nvme_softc *, struct pci_nvme_ioreq *); static void pci_nvme_io_done(struct blockif_req *, int); /* Controller Configuration utils */ #define NVME_CC_GET_EN(cc) \ ((cc) >> NVME_CC_REG_EN_SHIFT & NVME_CC_REG_EN_MASK) #define NVME_CC_GET_CSS(cc) \ ((cc) >> NVME_CC_REG_CSS_SHIFT & NVME_CC_REG_CSS_MASK) #define NVME_CC_GET_SHN(cc) \ ((cc) >> NVME_CC_REG_SHN_SHIFT & NVME_CC_REG_SHN_MASK) #define NVME_CC_GET_IOSQES(cc) \ ((cc) >> NVME_CC_REG_IOSQES_SHIFT & NVME_CC_REG_IOSQES_MASK) #define NVME_CC_GET_IOCQES(cc) \ ((cc) >> NVME_CC_REG_IOCQES_SHIFT & NVME_CC_REG_IOCQES_MASK) #define NVME_CC_WRITE_MASK \ ((NVME_CC_REG_EN_MASK << NVME_CC_REG_EN_SHIFT) | \ (NVME_CC_REG_IOSQES_MASK << NVME_CC_REG_IOSQES_SHIFT) | \ (NVME_CC_REG_IOCQES_MASK << NVME_CC_REG_IOCQES_SHIFT)) #define NVME_CC_NEN_WRITE_MASK \ ((NVME_CC_REG_CSS_MASK << NVME_CC_REG_CSS_SHIFT) | \ (NVME_CC_REG_MPS_MASK << NVME_CC_REG_MPS_SHIFT) | \ (NVME_CC_REG_AMS_MASK << NVME_CC_REG_AMS_SHIFT)) /* Controller Status utils */ #define NVME_CSTS_GET_RDY(sts) \ ((sts) >> NVME_CSTS_REG_RDY_SHIFT & NVME_CSTS_REG_RDY_MASK) #define NVME_CSTS_RDY (1 << NVME_CSTS_REG_RDY_SHIFT) /* Completion Queue status word utils */ #define NVME_STATUS_P (1 << NVME_STATUS_P_SHIFT) #define NVME_STATUS_MASK \ ((NVME_STATUS_SCT_MASK << NVME_STATUS_SCT_SHIFT) |\ (NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT)) #define NVME_ONCS_DSM (NVME_CTRLR_DATA_ONCS_DSM_MASK << \ NVME_CTRLR_DATA_ONCS_DSM_SHIFT) static void nvme_feature_invalid_cb(struct pci_nvme_softc *, struct nvme_feature_obj *, struct nvme_command *, struct nvme_completion *); static void nvme_feature_num_queues(struct pci_nvme_softc *, struct nvme_feature_obj *, struct nvme_command *, struct nvme_completion *); static void nvme_feature_iv_config(struct pci_nvme_softc *, struct nvme_feature_obj *, struct nvme_command *, struct nvme_completion *); static __inline void cpywithpad(char *dst, size_t dst_size, const char *src, char pad) { size_t len; len = strnlen(src, dst_size); memset(dst, pad, dst_size); memcpy(dst, src, len); } static __inline void pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code) { *status &= ~NVME_STATUS_MASK; *status |= (type & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT | (code & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; } static __inline void pci_nvme_status_genc(uint16_t *status, uint16_t code) { pci_nvme_status_tc(status, NVME_SCT_GENERIC, code); } /* * Initialize the requested number or IO Submission and Completion Queues. * Admin queues are allocated implicitly. */ static void pci_nvme_init_queues(struct pci_nvme_softc *sc, uint32_t nsq, uint32_t ncq) { uint32_t i; /* * Allocate and initialize the Submission Queues */ if (nsq > NVME_QUEUES) { WPRINTF("%s: clamping number of SQ from %u to %u", __func__, nsq, NVME_QUEUES); nsq = NVME_QUEUES; } sc->num_squeues = nsq; sc->submit_queues = calloc(sc->num_squeues + 1, sizeof(struct nvme_submission_queue)); if (sc->submit_queues == NULL) { WPRINTF("%s: SQ allocation failed", __func__); sc->num_squeues = 0; } else { struct nvme_submission_queue *sq = sc->submit_queues; for (i = 0; i < sc->num_squeues; i++) pthread_mutex_init(&sq[i].mtx, NULL); } /* * Allocate and initialize the Completion Queues */ if (ncq > NVME_QUEUES) { WPRINTF("%s: clamping number of CQ from %u to %u", __func__, ncq, NVME_QUEUES); ncq = NVME_QUEUES; } sc->num_cqueues = ncq; sc->compl_queues = calloc(sc->num_cqueues + 1, sizeof(struct nvme_completion_queue)); if (sc->compl_queues == NULL) { WPRINTF("%s: CQ allocation failed", __func__); sc->num_cqueues = 0; } else { struct nvme_completion_queue *cq = sc->compl_queues; for (i = 0; i < sc->num_cqueues; i++) pthread_mutex_init(&cq[i].mtx, NULL); } } static void pci_nvme_init_ctrldata(struct pci_nvme_softc *sc) { struct nvme_controller_data *cd = &sc->ctrldata; cd->vid = 0xFB5D; cd->ssvid = 0x0000; cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' '); cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' '); /* Num of submission commands that we can handle at a time (2^rab) */ cd->rab = 4; /* FreeBSD OUI */ cd->ieee[0] = 0x58; cd->ieee[1] = 0x9c; cd->ieee[2] = 0xfc; cd->mic = 0; cd->mdts = NVME_MDTS; /* max data transfer size (2^mdts * CAP.MPSMIN) */ cd->ver = 0x00010300; cd->oacs = 1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT; cd->acl = 2; cd->aerl = 4; /* Advertise 1, Read-only firmware slot */ cd->frmw = NVME_CTRLR_DATA_FRMW_SLOT1_RO_MASK | (1 << NVME_CTRLR_DATA_FRMW_NUM_SLOTS_SHIFT); cd->lpa = 0; /* TODO: support some simple things like SMART */ cd->elpe = 0; /* max error log page entries */ cd->npss = 1; /* number of power states support */ /* Warning Composite Temperature Threshold */ cd->wctemp = 0x0157; cd->sqes = (6 << NVME_CTRLR_DATA_SQES_MAX_SHIFT) | (6 << NVME_CTRLR_DATA_SQES_MIN_SHIFT); cd->cqes = (4 << NVME_CTRLR_DATA_CQES_MAX_SHIFT) | (4 << NVME_CTRLR_DATA_CQES_MIN_SHIFT); cd->nn = 1; /* number of namespaces */ cd->oncs = 0; switch (sc->dataset_management) { case NVME_DATASET_MANAGEMENT_AUTO: if (sc->nvstore.deallocate) cd->oncs |= NVME_ONCS_DSM; break; case NVME_DATASET_MANAGEMENT_ENABLE: cd->oncs |= NVME_ONCS_DSM; break; default: break; } cd->fna = 0x03; cd->power_state[0].mp = 10; } /* * Calculate the CRC-16 of the given buffer * See copyright attribution at top of file */ static uint16_t crc16(uint16_t crc, const void *buffer, unsigned int len) { const unsigned char *cp = buffer; /* CRC table for the CRC-16. The poly is 0x8005 (x16 + x15 + x2 + 1). */ static uint16_t const crc16_table[256] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040 }; while (len--) crc = (((crc >> 8) & 0xffU) ^ crc16_table[(crc ^ *cp++) & 0xffU]) & 0x0000ffffU; return crc; } static void pci_nvme_init_nsdata(struct pci_nvme_softc *sc, struct nvme_namespace_data *nd, uint32_t nsid, struct pci_nvme_blockstore *nvstore) { /* Get capacity and block size information from backing store */ nd->nsze = nvstore->size / nvstore->sectsz; nd->ncap = nd->nsze; nd->nuse = nd->nsze; if (nvstore->type == NVME_STOR_BLOCKIF) nvstore->deallocate = blockif_candelete(nvstore->ctx); nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */ nd->flbas = 0; /* Create an EUI-64 if user did not provide one */ if (nvstore->eui64 == 0) { char *data = NULL; uint64_t eui64 = nvstore->eui64; asprintf(&data, "%s%u%u%u", get_config_value("name"), sc->nsc_pi->pi_bus, sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func); if (data != NULL) { eui64 = OUI_FREEBSD_NVME_LOW | crc16(0, data, strlen(data)); free(data); } nvstore->eui64 = (eui64 << 16) | (nsid & 0xffff); } be64enc(nd->eui64, nvstore->eui64); /* LBA data-sz = 2^lbads */ nd->lbaf[0] = nvstore->sectsz_bits << NVME_NS_DATA_LBAF_LBADS_SHIFT; } static void pci_nvme_init_logpages(struct pci_nvme_softc *sc) { memset(&sc->err_log, 0, sizeof(sc->err_log)); memset(&sc->health_log, 0, sizeof(sc->health_log)); memset(&sc->fw_log, 0, sizeof(sc->fw_log)); /* Set read/write remainder to round up according to spec */ sc->read_dunits_remainder = 999; sc->write_dunits_remainder = 999; /* Set nominal Health values checked by implementations */ sc->health_log.temperature = 310; sc->health_log.available_spare = 100; sc->health_log.available_spare_threshold = 10; } static void pci_nvme_init_features(struct pci_nvme_softc *sc) { sc->feat[0].set = nvme_feature_invalid_cb; sc->feat[0].get = nvme_feature_invalid_cb; sc->feat[NVME_FEAT_LBA_RANGE_TYPE].namespace_specific = true; sc->feat[NVME_FEAT_ERROR_RECOVERY].namespace_specific = true; sc->feat[NVME_FEAT_NUMBER_OF_QUEUES].set = nvme_feature_num_queues; sc->feat[NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION].set = nvme_feature_iv_config; sc->feat[NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG].get = nvme_feature_invalid_cb; sc->feat[NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW].get = nvme_feature_invalid_cb; } static void pci_nvme_aer_init(struct pci_nvme_softc *sc) { STAILQ_INIT(&sc->aer_list); sc->aer_count = 0; } static void pci_nvme_aer_destroy(struct pci_nvme_softc *sc) { struct pci_nvme_aer *aer = NULL; while (!STAILQ_EMPTY(&sc->aer_list)) { aer = STAILQ_FIRST(&sc->aer_list); STAILQ_REMOVE_HEAD(&sc->aer_list, link); free(aer); } pci_nvme_aer_init(sc); } static bool pci_nvme_aer_available(struct pci_nvme_softc *sc) { return (!STAILQ_EMPTY(&sc->aer_list)); } static bool pci_nvme_aer_limit_reached(struct pci_nvme_softc *sc) { struct nvme_controller_data *cd = &sc->ctrldata; /* AERL is a zero based value while aer_count is one's based */ return (sc->aer_count == (cd->aerl + 1)); } /* * Add an Async Event Request * * Stores an AER to be returned later if the Controller needs to notify the * host of an event. * Note that while the NVMe spec doesn't require Controllers to return AER's * in order, this implementation does preserve the order. */ static int pci_nvme_aer_add(struct pci_nvme_softc *sc, uint16_t cid) { struct pci_nvme_aer *aer = NULL; if (pci_nvme_aer_limit_reached(sc)) return (-1); aer = calloc(1, sizeof(struct pci_nvme_aer)); if (aer == NULL) return (-1); sc->aer_count++; /* Save the Command ID for use in the completion message */ aer->cid = cid; STAILQ_INSERT_TAIL(&sc->aer_list, aer, link); return (0); } /* * Get an Async Event Request structure * * Returns a pointer to an AER previously submitted by the host or NULL if * no AER's exist. Caller is responsible for freeing the returned struct. */ static struct pci_nvme_aer * pci_nvme_aer_get(struct pci_nvme_softc *sc) { struct pci_nvme_aer *aer = NULL; aer = STAILQ_FIRST(&sc->aer_list); if (aer != NULL) { STAILQ_REMOVE_HEAD(&sc->aer_list, link); sc->aer_count--; } return (aer); } static void pci_nvme_reset_locked(struct pci_nvme_softc *sc) { uint32_t i; DPRINTF("%s", __func__); sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) | (1 << NVME_CAP_LO_REG_CQR_SHIFT) | (60 << NVME_CAP_LO_REG_TO_SHIFT); sc->regs.cap_hi = 1 << NVME_CAP_HI_REG_CSS_NVM_SHIFT; sc->regs.vs = 0x00010300; /* NVMe v1.3 */ sc->regs.cc = 0; sc->regs.csts = 0; assert(sc->submit_queues != NULL); for (i = 0; i < sc->num_squeues + 1; i++) { sc->submit_queues[i].qbase = NULL; sc->submit_queues[i].size = 0; sc->submit_queues[i].cqid = 0; sc->submit_queues[i].tail = 0; sc->submit_queues[i].head = 0; } assert(sc->compl_queues != NULL); for (i = 0; i < sc->num_cqueues + 1; i++) { sc->compl_queues[i].qbase = NULL; sc->compl_queues[i].size = 0; sc->compl_queues[i].tail = 0; sc->compl_queues[i].head = 0; } sc->num_q_is_set = false; pci_nvme_aer_destroy(sc); } static void pci_nvme_reset(struct pci_nvme_softc *sc) { pthread_mutex_lock(&sc->mtx); pci_nvme_reset_locked(sc); pthread_mutex_unlock(&sc->mtx); } static void pci_nvme_init_controller(struct vmctx *ctx, struct pci_nvme_softc *sc) { uint16_t acqs, asqs; DPRINTF("%s", __func__); asqs = (sc->regs.aqa & NVME_AQA_REG_ASQS_MASK) + 1; sc->submit_queues[0].size = asqs; sc->submit_queues[0].qbase = vm_map_gpa(ctx, sc->regs.asq, sizeof(struct nvme_command) * asqs); DPRINTF("%s mapping Admin-SQ guest 0x%lx, host: %p", __func__, sc->regs.asq, sc->submit_queues[0].qbase); acqs = ((sc->regs.aqa >> NVME_AQA_REG_ACQS_SHIFT) & NVME_AQA_REG_ACQS_MASK) + 1; sc->compl_queues[0].size = acqs; sc->compl_queues[0].qbase = vm_map_gpa(ctx, sc->regs.acq, sizeof(struct nvme_completion) * acqs); sc->compl_queues[0].intr_en = NVME_CQ_INTEN; DPRINTF("%s mapping Admin-CQ guest 0x%lx, host: %p", __func__, sc->regs.acq, sc->compl_queues[0].qbase); } static int nvme_prp_memcpy(struct vmctx *ctx, uint64_t prp1, uint64_t prp2, uint8_t *b, size_t len, enum nvme_copy_dir dir) { uint8_t *p; size_t bytes; if (len > (8 * 1024)) { return (-1); } /* Copy from the start of prp1 to the end of the physical page */ bytes = PAGE_SIZE - (prp1 & PAGE_MASK); bytes = MIN(bytes, len); p = vm_map_gpa(ctx, prp1, bytes); if (p == NULL) { return (-1); } if (dir == NVME_COPY_TO_PRP) memcpy(p, b, bytes); else memcpy(b, p, bytes); b += bytes; len -= bytes; if (len == 0) { return (0); } len = MIN(len, PAGE_SIZE); p = vm_map_gpa(ctx, prp2, len); if (p == NULL) { return (-1); } if (dir == NVME_COPY_TO_PRP) memcpy(p, b, len); else memcpy(b, p, len); return (0); } /* * Write a Completion Queue Entry update * * Write the completion and update the doorbell value */ static void pci_nvme_cq_update(struct pci_nvme_softc *sc, struct nvme_completion_queue *cq, uint32_t cdw0, uint16_t cid, uint16_t sqid, uint16_t status) { struct nvme_submission_queue *sq = &sc->submit_queues[sqid]; struct nvme_completion *cqe; assert(cq->qbase != NULL); pthread_mutex_lock(&cq->mtx); cqe = &cq->qbase[cq->tail]; /* Flip the phase bit */ status |= (cqe->status ^ NVME_STATUS_P) & NVME_STATUS_P_MASK; cqe->cdw0 = cdw0; cqe->sqhd = sq->head; cqe->sqid = sqid; cqe->cid = cid; cqe->status = status; cq->tail++; if (cq->tail >= cq->size) { cq->tail = 0; } pthread_mutex_unlock(&cq->mtx); } static int nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { uint16_t qid = command->cdw10 & 0xffff; DPRINTF("%s DELETE_IO_SQ %u", __func__, qid); if (qid == 0 || qid > sc->num_squeues || (sc->submit_queues[qid].qbase == NULL)) { WPRINTF("%s NOT PERMITTED queue id %u / num_squeues %u", __func__, qid, sc->num_squeues); pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_QUEUE_IDENTIFIER); return (1); } sc->submit_queues[qid].qbase = NULL; sc->submit_queues[qid].cqid = 0; pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); return (1); } static int nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { if (command->cdw11 & NVME_CMD_CDW11_PC) { uint16_t qid = command->cdw10 & 0xffff; struct nvme_submission_queue *nsq; if ((qid == 0) || (qid > sc->num_squeues) || (sc->submit_queues[qid].qbase != NULL)) { WPRINTF("%s queue index %u > num_squeues %u", __func__, qid, sc->num_squeues); pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_QUEUE_IDENTIFIER); return (1); } nsq = &sc->submit_queues[qid]; nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff); DPRINTF("%s size=%u (max=%u)", __func__, nsq->size, sc->max_qentries); if ((nsq->size < 2) || (nsq->size > sc->max_qentries)) { /* * Queues must specify at least two entries * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec */ pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED); return (1); } nsq->head = nsq->tail = 0; nsq->cqid = (command->cdw11 >> 16) & 0xffff; if ((nsq->cqid == 0) || (nsq->cqid > sc->num_cqueues)) { pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_QUEUE_IDENTIFIER); return (1); } if (sc->compl_queues[nsq->cqid].qbase == NULL) { pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_COMPLETION_QUEUE_INVALID); return (1); } nsq->qpriority = (command->cdw11 >> 1) & 0x03; nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, sizeof(struct nvme_command) * (size_t)nsq->size); DPRINTF("%s sq %u size %u gaddr %p cqid %u", __func__, qid, nsq->size, nsq->qbase, nsq->cqid); pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); DPRINTF("%s completed creating IOSQ qid %u", __func__, qid); } else { /* * Guest sent non-cont submission queue request. * This setting is unsupported by this emulation. */ WPRINTF("%s unsupported non-contig (list-based) " "create i/o submission queue", __func__); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); } return (1); } static int nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { uint16_t qid = command->cdw10 & 0xffff; uint16_t sqid; DPRINTF("%s DELETE_IO_CQ %u", __func__, qid); if (qid == 0 || qid > sc->num_cqueues || (sc->compl_queues[qid].qbase == NULL)) { WPRINTF("%s queue index %u / num_cqueues %u", __func__, qid, sc->num_cqueues); pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_QUEUE_IDENTIFIER); return (1); } /* Deleting an Active CQ is an error */ for (sqid = 1; sqid < sc->num_squeues + 1; sqid++) if (sc->submit_queues[sqid].cqid == qid) { pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_QUEUE_DELETION); return (1); } sc->compl_queues[qid].qbase = NULL; pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); return (1); } static int nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { struct nvme_completion_queue *ncq; uint16_t qid = command->cdw10 & 0xffff; /* Only support Physically Contiguous queues */ if ((command->cdw11 & NVME_CMD_CDW11_PC) == 0) { WPRINTF("%s unsupported non-contig (list-based) " "create i/o completion queue", __func__); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (1); } if ((qid == 0) || (qid > sc->num_cqueues) || (sc->compl_queues[qid].qbase != NULL)) { WPRINTF("%s queue index %u > num_cqueues %u", __func__, qid, sc->num_cqueues); pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_QUEUE_IDENTIFIER); return (1); } ncq = &sc->compl_queues[qid]; ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1; ncq->intr_vec = (command->cdw11 >> 16) & 0xffff; if (ncq->intr_vec > (sc->max_queues + 1)) { pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_INTERRUPT_VECTOR); return (1); } ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff); if ((ncq->size < 2) || (ncq->size > sc->max_qentries)) { /* * Queues must specify at least two entries * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec */ pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED); return (1); } ncq->head = ncq->tail = 0; ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, sizeof(struct nvme_command) * (size_t)ncq->size); pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); return (1); } static int nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { uint32_t logsize; uint8_t logpage = command->cdw10 & 0xFF; DPRINTF("%s log page %u len %u", __func__, logpage, logsize); pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); /* * Command specifies the number of dwords to return in fields NUMDU * and NUMDL. This is a zero-based value. */ logsize = ((command->cdw11 << 16) | (command->cdw10 >> 16)) + 1; logsize *= sizeof(uint32_t); switch (logpage) { case NVME_LOG_ERROR: nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1, command->prp2, (uint8_t *)&sc->err_log, MIN(logsize, sizeof(sc->err_log)), NVME_COPY_TO_PRP); break; case NVME_LOG_HEALTH_INFORMATION: pthread_mutex_lock(&sc->mtx); memcpy(&sc->health_log.data_units_read, &sc->read_data_units, sizeof(sc->health_log.data_units_read)); memcpy(&sc->health_log.data_units_written, &sc->write_data_units, sizeof(sc->health_log.data_units_written)); memcpy(&sc->health_log.host_read_commands, &sc->read_commands, sizeof(sc->health_log.host_read_commands)); memcpy(&sc->health_log.host_write_commands, &sc->write_commands, sizeof(sc->health_log.host_write_commands)); pthread_mutex_unlock(&sc->mtx); nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1, command->prp2, (uint8_t *)&sc->health_log, MIN(logsize, sizeof(sc->health_log)), NVME_COPY_TO_PRP); break; case NVME_LOG_FIRMWARE_SLOT: nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1, command->prp2, (uint8_t *)&sc->fw_log, MIN(logsize, sizeof(sc->fw_log)), NVME_COPY_TO_PRP); break; default: DPRINTF("%s get log page %x command not supported", __func__, logpage); pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_LOG_PAGE); } return (1); } static int nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { void *dest; uint16_t status; DPRINTF("%s identify 0x%x nsid 0x%x", __func__, command->cdw10 & 0xFF, command->nsid); pci_nvme_status_genc(&status, NVME_SC_SUCCESS); switch (command->cdw10 & 0xFF) { case 0x00: /* return Identify Namespace data structure */ nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1, command->prp2, (uint8_t *)&sc->nsdata, sizeof(sc->nsdata), NVME_COPY_TO_PRP); break; case 0x01: /* return Identify Controller data structure */ nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1, command->prp2, (uint8_t *)&sc->ctrldata, sizeof(sc->ctrldata), NVME_COPY_TO_PRP); break; case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */ dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, sizeof(uint32_t) * 1024); /* All unused entries shall be zero */ bzero(dest, sizeof(uint32_t) * 1024); ((uint32_t *)dest)[0] = 1; break; case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */ if (command->nsid != 1) { pci_nvme_status_genc(&status, NVME_SC_INVALID_NAMESPACE_OR_FORMAT); break; } dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, sizeof(uint32_t) * 1024); /* All bytes after the descriptor shall be zero */ bzero(dest, sizeof(uint32_t) * 1024); /* Return NIDT=1 (i.e. EUI64) descriptor */ ((uint8_t *)dest)[0] = 1; ((uint8_t *)dest)[1] = sizeof(uint64_t); bcopy(sc->nsdata.eui64, ((uint8_t *)dest) + 4, sizeof(uint64_t)); break; default: DPRINTF("%s unsupported identify command requested 0x%x", __func__, command->cdw10 & 0xFF); pci_nvme_status_genc(&status, NVME_SC_INVALID_FIELD); break; } compl->status = status; return (1); } static const char * nvme_fid_to_name(uint8_t fid) { const char *name; switch (fid) { case NVME_FEAT_ARBITRATION: name = "Arbitration"; break; case NVME_FEAT_POWER_MANAGEMENT: name = "Power Management"; break; case NVME_FEAT_LBA_RANGE_TYPE: name = "LBA Range Type"; break; case NVME_FEAT_TEMPERATURE_THRESHOLD: name = "Temperature Threshold"; break; case NVME_FEAT_ERROR_RECOVERY: name = "Error Recovery"; break; case NVME_FEAT_VOLATILE_WRITE_CACHE: name = "Volatile Write Cache"; break; case NVME_FEAT_NUMBER_OF_QUEUES: name = "Number of Queues"; break; case NVME_FEAT_INTERRUPT_COALESCING: name = "Interrupt Coalescing"; break; case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION: name = "Interrupt Vector Configuration"; break; case NVME_FEAT_WRITE_ATOMICITY: name = "Write Atomicity Normal"; break; case NVME_FEAT_ASYNC_EVENT_CONFIGURATION: name = "Asynchronous Event Configuration"; break; case NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION: name = "Autonomous Power State Transition"; break; case NVME_FEAT_HOST_MEMORY_BUFFER: name = "Host Memory Buffer"; break; case NVME_FEAT_TIMESTAMP: name = "Timestamp"; break; case NVME_FEAT_KEEP_ALIVE_TIMER: name = "Keep Alive Timer"; break; case NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT: name = "Host Controlled Thermal Management"; break; case NVME_FEAT_NON_OP_POWER_STATE_CONFIG: name = "Non-Operation Power State Config"; break; case NVME_FEAT_READ_RECOVERY_LEVEL_CONFIG: name = "Read Recovery Level Config"; break; case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG: name = "Predictable Latency Mode Config"; break; case NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW: name = "Predictable Latency Mode Window"; break; case NVME_FEAT_LBA_STATUS_INFORMATION_ATTRIBUTES: name = "LBA Status Information Report Interval"; break; case NVME_FEAT_HOST_BEHAVIOR_SUPPORT: name = "Host Behavior Support"; break; case NVME_FEAT_SANITIZE_CONFIG: name = "Sanitize Config"; break; case NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION: name = "Endurance Group Event Configuration"; break; case NVME_FEAT_SOFTWARE_PROGRESS_MARKER: name = "Software Progress Marker"; break; case NVME_FEAT_HOST_IDENTIFIER: name = "Host Identifier"; break; case NVME_FEAT_RESERVATION_NOTIFICATION_MASK: name = "Reservation Notification Mask"; break; case NVME_FEAT_RESERVATION_PERSISTENCE: name = "Reservation Persistence"; break; case NVME_FEAT_NAMESPACE_WRITE_PROTECTION_CONFIG: name = "Namespace Write Protection Config"; break; default: name = "Unknown"; break; } return (name); } static void nvme_feature_invalid_cb(struct pci_nvme_softc *sc, struct nvme_feature_obj *feat, struct nvme_command *command, struct nvme_completion *compl) { pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); } static void nvme_feature_iv_config(struct pci_nvme_softc *sc, struct nvme_feature_obj *feat, struct nvme_command *command, struct nvme_completion *compl) { uint32_t i; uint32_t cdw11 = command->cdw11; uint16_t iv; bool cd; pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); iv = cdw11 & 0xffff; cd = cdw11 & (1 << 16); if (iv > (sc->max_queues + 1)) { return; } /* No Interrupt Coalescing (i.e. not Coalescing Disable) for Admin Q */ if ((iv == 0) && !cd) return; /* Requested Interrupt Vector must be used by a CQ */ for (i = 0; i < sc->num_cqueues + 1; i++) { if (sc->compl_queues[i].intr_vec == iv) { pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); } } } static void nvme_feature_num_queues(struct pci_nvme_softc *sc, struct nvme_feature_obj *feat, struct nvme_command *command, struct nvme_completion *compl) { uint16_t nqr; /* Number of Queues Requested */ if (sc->num_q_is_set) { WPRINTF("%s: Number of Queues already set", __func__); pci_nvme_status_genc(&compl->status, NVME_SC_COMMAND_SEQUENCE_ERROR); return; } nqr = command->cdw11 & 0xFFFF; if (nqr == 0xffff) { WPRINTF("%s: Illegal NSQR value %#x", __func__, nqr); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return; } sc->num_squeues = ONE_BASED(nqr); if (sc->num_squeues > sc->max_queues) { DPRINTF("NSQR=%u is greater than max %u", sc->num_squeues, sc->max_queues); sc->num_squeues = sc->max_queues; } nqr = (command->cdw11 >> 16) & 0xFFFF; if (nqr == 0xffff) { WPRINTF("%s: Illegal NCQR value %#x", __func__, nqr); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return; } sc->num_cqueues = ONE_BASED(nqr); if (sc->num_cqueues > sc->max_queues) { DPRINTF("NCQR=%u is greater than max %u", sc->num_cqueues, sc->max_queues); sc->num_cqueues = sc->max_queues; } /* Patch the command value which will be saved on callback's return */ command->cdw11 = NVME_FEATURE_NUM_QUEUES(sc); compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc); sc->num_q_is_set = true; } static int nvme_opc_set_features(struct pci_nvme_softc *sc, struct nvme_command *command, struct nvme_completion *compl) { struct nvme_feature_obj *feat; uint32_t nsid = command->nsid; uint8_t fid = command->cdw10 & 0xFF; DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid)); if (fid >= NVME_FID_MAX) { DPRINTF("%s invalid feature 0x%x", __func__, fid); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (1); } feat = &sc->feat[fid]; if (!feat->namespace_specific && !((nsid == 0) || (nsid == NVME_GLOBAL_NAMESPACE_TAG))) { pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_FEATURE_NOT_NS_SPECIFIC); return (1); } compl->cdw0 = 0; pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); if (feat->set) feat->set(sc, feat, command, compl); if (compl->status == NVME_SC_SUCCESS) feat->cdw11 = command->cdw11; return (0); } static int nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { struct nvme_feature_obj *feat; uint8_t fid = command->cdw10 & 0xFF; DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid)); if (fid >= NVME_FID_MAX) { DPRINTF("%s invalid feature 0x%x", __func__, fid); pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (1); } compl->cdw0 = 0; pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); feat = &sc->feat[fid]; if (feat->get) { feat->get(sc, feat, command, compl); } if (compl->status == NVME_SC_SUCCESS) { compl->cdw0 = feat->cdw11; } return (0); } static int nvme_opc_format_nvm(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { uint8_t ses, lbaf, pi; /* Only supports Secure Erase Setting - User Data Erase */ ses = (command->cdw10 >> 9) & 0x7; if (ses > 0x1) { pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (1); } /* Only supports a single LBA Format */ lbaf = command->cdw10 & 0xf; if (lbaf != 0) { pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_FORMAT); return (1); } /* Doesn't support Protection Infomation */ pi = (command->cdw10 >> 5) & 0x7; if (pi != 0) { pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); return (1); } if (sc->nvstore.type == NVME_STOR_RAM) { if (sc->nvstore.ctx) free(sc->nvstore.ctx); sc->nvstore.ctx = calloc(1, sc->nvstore.size); pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); } else { struct pci_nvme_ioreq *req; int err; req = pci_nvme_get_ioreq(sc); if (req == NULL) { pci_nvme_status_genc(&compl->status, NVME_SC_INTERNAL_DEVICE_ERROR); WPRINTF("%s: unable to allocate IO req", __func__); return (1); } req->nvme_sq = &sc->submit_queues[0]; req->sqid = 0; req->opc = command->opc; req->cid = command->cid; req->nsid = command->nsid; req->io_req.br_offset = 0; req->io_req.br_resid = sc->nvstore.size; req->io_req.br_callback = pci_nvme_io_done; err = blockif_delete(sc->nvstore.ctx, &req->io_req); if (err) { pci_nvme_status_genc(&compl->status, NVME_SC_INTERNAL_DEVICE_ERROR); pci_nvme_release_ioreq(sc, req); } } return (1); } static int nvme_opc_abort(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { DPRINTF("%s submission queue %u, command ID 0x%x", __func__, command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF); /* TODO: search for the command ID and abort it */ compl->cdw0 = 1; pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); return (1); } static int nvme_opc_async_event_req(struct pci_nvme_softc* sc, struct nvme_command* command, struct nvme_completion* compl) { DPRINTF("%s async event request 0x%x", __func__, command->cdw11); /* Don't exceed the Async Event Request Limit (AERL). */ if (pci_nvme_aer_limit_reached(sc)) { pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED); return (1); } if (pci_nvme_aer_add(sc, command->cid)) { pci_nvme_status_tc(&compl->status, NVME_SCT_GENERIC, NVME_SC_INTERNAL_DEVICE_ERROR); return (1); } /* * Raise events when they happen based on the Set Features cmd. * These events happen async, so only set completion successful if * there is an event reflective of the request to get event. */ compl->status = NVME_NO_STATUS; return (0); } static void pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value) { struct nvme_completion compl; struct nvme_command *cmd; struct nvme_submission_queue *sq; struct nvme_completion_queue *cq; uint16_t sqhead; DPRINTF("%s index %u", __func__, (uint32_t)value); sq = &sc->submit_queues[0]; cq = &sc->compl_queues[0]; pthread_mutex_lock(&sq->mtx); sqhead = sq->head; DPRINTF("sqhead %u, tail %u", sqhead, sq->tail); while (sqhead != atomic_load_acq_short(&sq->tail)) { cmd = &(sq->qbase)[sqhead]; compl.cdw0 = 0; compl.status = 0; switch (cmd->opc) { case NVME_OPC_DELETE_IO_SQ: DPRINTF("%s command DELETE_IO_SQ", __func__); nvme_opc_delete_io_sq(sc, cmd, &compl); break; case NVME_OPC_CREATE_IO_SQ: DPRINTF("%s command CREATE_IO_SQ", __func__); nvme_opc_create_io_sq(sc, cmd, &compl); break; case NVME_OPC_DELETE_IO_CQ: DPRINTF("%s command DELETE_IO_CQ", __func__); nvme_opc_delete_io_cq(sc, cmd, &compl); break; case NVME_OPC_CREATE_IO_CQ: DPRINTF("%s command CREATE_IO_CQ", __func__); nvme_opc_create_io_cq(sc, cmd, &compl); break; case NVME_OPC_GET_LOG_PAGE: DPRINTF("%s command GET_LOG_PAGE", __func__); nvme_opc_get_log_page(sc, cmd, &compl); break; case NVME_OPC_IDENTIFY: DPRINTF("%s command IDENTIFY", __func__); nvme_opc_identify(sc, cmd, &compl); break; case NVME_OPC_ABORT: DPRINTF("%s command ABORT", __func__); nvme_opc_abort(sc, cmd, &compl); break; case NVME_OPC_SET_FEATURES: DPRINTF("%s command SET_FEATURES", __func__); nvme_opc_set_features(sc, cmd, &compl); break; case NVME_OPC_GET_FEATURES: DPRINTF("%s command GET_FEATURES", __func__); nvme_opc_get_features(sc, cmd, &compl); break; case NVME_OPC_FIRMWARE_ACTIVATE: DPRINTF("%s command FIRMWARE_ACTIVATE", __func__); pci_nvme_status_tc(&compl.status, NVME_SCT_COMMAND_SPECIFIC, NVME_SC_INVALID_FIRMWARE_SLOT); break; case NVME_OPC_ASYNC_EVENT_REQUEST: DPRINTF("%s command ASYNC_EVENT_REQ", __func__); nvme_opc_async_event_req(sc, cmd, &compl); break; case NVME_OPC_FORMAT_NVM: DPRINTF("%s command FORMAT_NVM", __func__); if ((sc->ctrldata.oacs & (1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT)) == 0) { pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE); } compl.status = NVME_NO_STATUS; nvme_opc_format_nvm(sc, cmd, &compl); break; default: DPRINTF("0x%x command is not implemented", cmd->opc); pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE); } sqhead = (sqhead + 1) % sq->size; if (NVME_COMPLETION_VALID(compl)) { pci_nvme_cq_update(sc, &sc->compl_queues[0], compl.cdw0, cmd->cid, 0, /* SQID */ compl.status); } } DPRINTF("setting sqhead %u", sqhead); sq->head = sqhead; if (cq->head != cq->tail) pci_generate_msix(sc->nsc_pi, 0); pthread_mutex_unlock(&sq->mtx); } /* * Update the Write and Read statistics reported in SMART data * * NVMe defines "data unit" as thousand's of 512 byte blocks and is rounded up. * E.g. 1 data unit is 1 - 1,000 512 byte blocks. 3 data units are 2,001 - 3,000 * 512 byte blocks. Rounding up is acheived by initializing the remainder to 999. */ static void pci_nvme_stats_write_read_update(struct pci_nvme_softc *sc, uint8_t opc, size_t bytes, uint16_t status) { pthread_mutex_lock(&sc->mtx); switch (opc) { case NVME_OPC_WRITE: sc->write_commands++; if (status != NVME_SC_SUCCESS) break; sc->write_dunits_remainder += (bytes / 512); while (sc->write_dunits_remainder >= 1000) { sc->write_data_units++; sc->write_dunits_remainder -= 1000; } break; case NVME_OPC_READ: sc->read_commands++; if (status != NVME_SC_SUCCESS) break; sc->read_dunits_remainder += (bytes / 512); while (sc->read_dunits_remainder >= 1000) { sc->read_data_units++; sc->read_dunits_remainder -= 1000; } break; default: DPRINTF("%s: Invalid OPC 0x%02x for stats", __func__, opc); break; } pthread_mutex_unlock(&sc->mtx); } /* * Check if the combination of Starting LBA (slba) and Number of Logical * Blocks (nlb) exceeds the range of the underlying storage. * * Because NVMe specifies the SLBA in blocks as a uint64_t and blockif stores * the capacity in bytes as a uint64_t, care must be taken to avoid integer * overflow. */ static bool pci_nvme_out_of_range(struct pci_nvme_blockstore *nvstore, uint64_t slba, uint32_t nlb) { size_t offset, bytes; /* Overflow check of multiplying Starting LBA by the sector size */ if (slba >> (64 - nvstore->sectsz_bits)) return (true); offset = slba << nvstore->sectsz_bits; bytes = nlb << nvstore->sectsz_bits; /* Overflow check of Number of Logical Blocks */ if ((nvstore->size - offset) < bytes) return (true); return (false); } static int pci_nvme_append_iov_req(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req, uint64_t gpaddr, size_t size, int do_write, uint64_t lba) { int iovidx; if (req == NULL) return (-1); if (req->io_req.br_iovcnt == NVME_MAX_IOVEC) { return (-1); } /* concatenate contig block-iovs to minimize number of iovs */ if ((req->prev_gpaddr + req->prev_size) == gpaddr) { iovidx = req->io_req.br_iovcnt - 1; req->io_req.br_iov[iovidx].iov_base = paddr_guest2host(req->sc->nsc_pi->pi_vmctx, req->prev_gpaddr, size); req->prev_size += size; req->io_req.br_resid += size; req->io_req.br_iov[iovidx].iov_len = req->prev_size; } else { iovidx = req->io_req.br_iovcnt; if (iovidx == 0) { req->io_req.br_offset = lba; req->io_req.br_resid = 0; req->io_req.br_param = req; } req->io_req.br_iov[iovidx].iov_base = paddr_guest2host(req->sc->nsc_pi->pi_vmctx, gpaddr, size); req->io_req.br_iov[iovidx].iov_len = size; req->prev_gpaddr = gpaddr; req->prev_size = size; req->io_req.br_resid += size; req->io_req.br_iovcnt++; } return (0); } static void pci_nvme_set_completion(struct pci_nvme_softc *sc, struct nvme_submission_queue *sq, int sqid, uint16_t cid, uint32_t cdw0, uint16_t status) { struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid]; DPRINTF("%s sqid %d cqid %u cid %u status: 0x%x 0x%x", __func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status), NVME_STATUS_GET_SC(status)); pci_nvme_cq_update(sc, cq, 0, /* CDW0 */ cid, sqid, status); if (cq->head != cq->tail) { if (cq->intr_en & NVME_CQ_INTEN) { pci_generate_msix(sc->nsc_pi, cq->intr_vec); } else { DPRINTF("%s: CQ%u interrupt disabled", __func__, sq->cqid); } } } static void pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req) { req->sc = NULL; req->nvme_sq = NULL; req->sqid = 0; pthread_mutex_lock(&sc->mtx); STAILQ_INSERT_TAIL(&sc->ioreqs_free, req, link); sc->pending_ios--; /* when no more IO pending, can set to ready if device reset/enabled */ if (sc->pending_ios == 0 && NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts))) sc->regs.csts |= NVME_CSTS_RDY; pthread_mutex_unlock(&sc->mtx); sem_post(&sc->iosemlock); } static struct pci_nvme_ioreq * pci_nvme_get_ioreq(struct pci_nvme_softc *sc) { struct pci_nvme_ioreq *req = NULL;; sem_wait(&sc->iosemlock); pthread_mutex_lock(&sc->mtx); req = STAILQ_FIRST(&sc->ioreqs_free); assert(req != NULL); STAILQ_REMOVE_HEAD(&sc->ioreqs_free, link); req->sc = sc; sc->pending_ios++; pthread_mutex_unlock(&sc->mtx); req->io_req.br_iovcnt = 0; req->io_req.br_offset = 0; req->io_req.br_resid = 0; req->io_req.br_param = req; req->prev_gpaddr = 0; req->prev_size = 0; return req; } static void pci_nvme_io_done(struct blockif_req *br, int err) { struct pci_nvme_ioreq *req = br->br_param; struct nvme_submission_queue *sq = req->nvme_sq; uint16_t code, status; DPRINTF("%s error %d %s", __func__, err, strerror(err)); /* TODO return correct error */ code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS; pci_nvme_status_genc(&status, code); pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, 0, status); pci_nvme_stats_write_read_update(req->sc, req->opc, req->bytes, status); pci_nvme_release_ioreq(req->sc, req); } /* * Implements the Flush command. The specification states: * If a volatile write cache is not present, Flush commands complete * successfully and have no effect * in the description of the Volatile Write Cache (VWC) field of the Identify * Controller data. Therefore, set status to Success if the command is * not supported (i.e. RAM or as indicated by the blockif). */ static bool nvme_opc_flush(struct pci_nvme_softc *sc, struct nvme_command *cmd, struct pci_nvme_blockstore *nvstore, struct pci_nvme_ioreq *req, uint16_t *status) { bool pending = false; if (nvstore->type == NVME_STOR_RAM) { pci_nvme_status_genc(status, NVME_SC_SUCCESS); } else { int err; req->io_req.br_callback = pci_nvme_io_done; err = blockif_flush(nvstore->ctx, &req->io_req); switch (err) { case 0: pending = true; break; case EOPNOTSUPP: pci_nvme_status_genc(status, NVME_SC_SUCCESS); break; default: pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR); } } return (pending); } static uint16_t nvme_write_read_ram(struct pci_nvme_softc *sc, struct pci_nvme_blockstore *nvstore, uint64_t prp1, uint64_t prp2, size_t offset, uint64_t bytes, bool is_write) { uint8_t *buf = nvstore->ctx; enum nvme_copy_dir dir; uint16_t status; if (is_write) dir = NVME_COPY_TO_PRP; else dir = NVME_COPY_FROM_PRP; if (nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, prp1, prp2, buf + offset, bytes, dir)) pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR); else pci_nvme_status_genc(&status, NVME_SC_SUCCESS); return (status); } static uint16_t nvme_write_read_blockif(struct pci_nvme_softc *sc, struct pci_nvme_blockstore *nvstore, struct pci_nvme_ioreq *req, uint64_t prp1, uint64_t prp2, size_t offset, uint64_t bytes, bool is_write) { uint64_t size; int err; uint16_t status = NVME_NO_STATUS; size = MIN(PAGE_SIZE - (prp1 % PAGE_SIZE), bytes); if (pci_nvme_append_iov_req(sc, req, prp1, size, is_write, offset)) { pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR); goto out; } offset += size; bytes -= size; if (bytes == 0) { ; } else if (bytes <= PAGE_SIZE) { size = bytes; if (pci_nvme_append_iov_req(sc, req, prp2, size, is_write, offset)) { pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR); goto out; } } else { void *vmctx = sc->nsc_pi->pi_vmctx; uint64_t *prp_list = &prp2; uint64_t *last = prp_list; /* PRP2 is pointer to a physical region page list */ while (bytes) { /* Last entry in list points to the next list */ if (prp_list == last) { uint64_t prp = *prp_list; prp_list = paddr_guest2host(vmctx, prp, PAGE_SIZE - (prp % PAGE_SIZE)); last = prp_list + (NVME_PRP2_ITEMS - 1); } size = MIN(bytes, PAGE_SIZE); if (pci_nvme_append_iov_req(sc, req, *prp_list, size, is_write, offset)) { pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR); goto out; } offset += size; bytes -= size; prp_list++; } } req->io_req.br_callback = pci_nvme_io_done; if (is_write) err = blockif_write(nvstore->ctx, &req->io_req); else err = blockif_read(nvstore->ctx, &req->io_req); if (err) pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR); out: return (status); } static bool nvme_opc_write_read(struct pci_nvme_softc *sc, struct nvme_command *cmd, struct pci_nvme_blockstore *nvstore, struct pci_nvme_ioreq *req, uint16_t *status) { uint64_t lba, nblocks, bytes; size_t offset; bool is_write = cmd->opc == NVME_OPC_WRITE; bool pending = false; lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10; nblocks = (cmd->cdw12 & 0xFFFF) + 1; if (pci_nvme_out_of_range(nvstore, lba, nblocks)) { WPRINTF("%s command would exceed LBA range", __func__); pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE); goto out; } bytes = nblocks << nvstore->sectsz_bits; if (bytes > NVME_MAX_DATA_SIZE) { WPRINTF("%s command would exceed MDTS", __func__); pci_nvme_status_genc(status, NVME_SC_INVALID_FIELD); goto out; } offset = lba << nvstore->sectsz_bits; req->bytes = bytes; req->io_req.br_offset = lba; /* PRP bits 1:0 must be zero */ cmd->prp1 &= ~0x3UL; cmd->prp2 &= ~0x3UL; if (nvstore->type == NVME_STOR_RAM) { *status = nvme_write_read_ram(sc, nvstore, cmd->prp1, cmd->prp2, offset, bytes, is_write); } else { *status = nvme_write_read_blockif(sc, nvstore, req, cmd->prp1, cmd->prp2, offset, bytes, is_write); if (*status == NVME_NO_STATUS) pending = true; } out: if (!pending) pci_nvme_stats_write_read_update(sc, cmd->opc, bytes, *status); return (pending); } static void pci_nvme_dealloc_sm(struct blockif_req *br, int err) { struct pci_nvme_ioreq *req = br->br_param; struct pci_nvme_softc *sc = req->sc; bool done = true; uint16_t status; if (err) { pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR); } else if ((req->prev_gpaddr + 1) == (req->prev_size)) { pci_nvme_status_genc(&status, NVME_SC_SUCCESS); } else { struct iovec *iov = req->io_req.br_iov; req->prev_gpaddr++; iov += req->prev_gpaddr; /* The iov_* values already include the sector size */ req->io_req.br_offset = (off_t)iov->iov_base; req->io_req.br_resid = iov->iov_len; if (blockif_delete(sc->nvstore.ctx, &req->io_req)) { pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR); } else done = false; } if (done) { pci_nvme_set_completion(sc, req->nvme_sq, req->sqid, req->cid, 0, status); pci_nvme_release_ioreq(sc, req); } } static bool nvme_opc_dataset_mgmt(struct pci_nvme_softc *sc, struct nvme_command *cmd, struct pci_nvme_blockstore *nvstore, struct pci_nvme_ioreq *req, uint16_t *status) { struct nvme_dsm_range *range; uint32_t nr, r, non_zero, dr; int err; bool pending = false; if ((sc->ctrldata.oncs & NVME_ONCS_DSM) == 0) { pci_nvme_status_genc(status, NVME_SC_INVALID_OPCODE); goto out; } nr = cmd->cdw10 & 0xff; /* copy locally because a range entry could straddle PRPs */ range = calloc(1, NVME_MAX_DSM_TRIM); if (range == NULL) { pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR); goto out; } nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, cmd->prp1, cmd->prp2, (uint8_t *)range, NVME_MAX_DSM_TRIM, NVME_COPY_FROM_PRP); /* Check for invalid ranges and the number of non-zero lengths */ non_zero = 0; for (r = 0; r <= nr; r++) { if (pci_nvme_out_of_range(nvstore, range[r].starting_lba, range[r].length)) { pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE); goto out; } if (range[r].length != 0) non_zero++; } if (cmd->cdw11 & NVME_DSM_ATTR_DEALLOCATE) { size_t offset, bytes; int sectsz_bits = sc->nvstore.sectsz_bits; /* * DSM calls are advisory only, and compliant controllers * may choose to take no actions (i.e. return Success). */ if (!nvstore->deallocate) { pci_nvme_status_genc(status, NVME_SC_SUCCESS); goto out; } /* If all ranges have a zero length, return Success */ if (non_zero == 0) { pci_nvme_status_genc(status, NVME_SC_SUCCESS); goto out; } if (req == NULL) { pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR); goto out; } offset = range[0].starting_lba << sectsz_bits; bytes = range[0].length << sectsz_bits; /* * If the request is for more than a single range, store * the ranges in the br_iov. Optimize for the common case * of a single range. * * Note that NVMe Number of Ranges is a zero based value */ req->io_req.br_iovcnt = 0; req->io_req.br_offset = offset; req->io_req.br_resid = bytes; if (nr == 0) { req->io_req.br_callback = pci_nvme_io_done; } else { struct iovec *iov = req->io_req.br_iov; for (r = 0, dr = 0; r <= nr; r++) { offset = range[r].starting_lba << sectsz_bits; bytes = range[r].length << sectsz_bits; if (bytes == 0) continue; if ((nvstore->size - offset) < bytes) { pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE); goto out; } iov[dr].iov_base = (void *)offset; iov[dr].iov_len = bytes; dr++; } req->io_req.br_callback = pci_nvme_dealloc_sm; /* * Use prev_gpaddr to track the current entry and * prev_size to track the number of entries */ req->prev_gpaddr = 0; req->prev_size = dr; } err = blockif_delete(nvstore->ctx, &req->io_req); if (err) pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR); else pending = true; } out: free(range); return (pending); } static void pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx) { struct nvme_submission_queue *sq; uint16_t status; uint16_t sqhead; /* handle all submissions up to sq->tail index */ sq = &sc->submit_queues[idx]; pthread_mutex_lock(&sq->mtx); sqhead = sq->head; DPRINTF("nvme_handle_io qid %u head %u tail %u cmdlist %p", idx, sqhead, sq->tail, sq->qbase); while (sqhead != atomic_load_acq_short(&sq->tail)) { struct nvme_command *cmd; struct pci_nvme_ioreq *req; uint32_t nsid; bool pending; pending = false; req = NULL; status = 0; cmd = &sq->qbase[sqhead]; sqhead = (sqhead + 1) % sq->size; nsid = le32toh(cmd->nsid); if ((nsid == 0) || (nsid > sc->ctrldata.nn)) { pci_nvme_status_genc(&status, NVME_SC_INVALID_NAMESPACE_OR_FORMAT); status |= NVME_STATUS_DNR_MASK << NVME_STATUS_DNR_SHIFT; goto complete; } req = pci_nvme_get_ioreq(sc); if (req == NULL) { pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR); WPRINTF("%s: unable to allocate IO req", __func__); goto complete; } req->nvme_sq = sq; req->sqid = idx; req->opc = cmd->opc; req->cid = cmd->cid; req->nsid = cmd->nsid; switch (cmd->opc) { case NVME_OPC_FLUSH: pending = nvme_opc_flush(sc, cmd, &sc->nvstore, req, &status); break; case NVME_OPC_WRITE: case NVME_OPC_READ: pending = nvme_opc_write_read(sc, cmd, &sc->nvstore, req, &status); break; case NVME_OPC_WRITE_ZEROES: /* TODO: write zeroes WPRINTF("%s write zeroes lba 0x%lx blocks %u", __func__, lba, cmd->cdw12 & 0xFFFF); */ pci_nvme_status_genc(&status, NVME_SC_SUCCESS); break; case NVME_OPC_DATASET_MANAGEMENT: pending = nvme_opc_dataset_mgmt(sc, cmd, &sc->nvstore, req, &status); break; default: WPRINTF("%s unhandled io command 0x%x", __func__, cmd->opc); pci_nvme_status_genc(&status, NVME_SC_INVALID_OPCODE); } complete: if (!pending) { pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0, status); if (req != NULL) pci_nvme_release_ioreq(sc, req); } } sq->head = sqhead; pthread_mutex_unlock(&sq->mtx); } static void pci_nvme_handle_doorbell(struct vmctx *ctx, struct pci_nvme_softc* sc, uint64_t idx, int is_sq, uint64_t value) { DPRINTF("nvme doorbell %lu, %s, val 0x%lx", idx, is_sq ? "SQ" : "CQ", value & 0xFFFF); if (is_sq) { if (idx > sc->num_squeues) { WPRINTF("%s queue index %lu overflow from " "guest (max %u)", __func__, idx, sc->num_squeues); return; } atomic_store_short(&sc->submit_queues[idx].tail, (uint16_t)value); if (idx == 0) { pci_nvme_handle_admin_cmd(sc, value); } else { /* submission queue; handle new entries in SQ */ if (idx > sc->num_squeues) { WPRINTF("%s SQ index %lu overflow from " "guest (max %u)", __func__, idx, sc->num_squeues); return; } pci_nvme_handle_io_cmd(sc, (uint16_t)idx); } } else { if (idx > sc->num_cqueues) { WPRINTF("%s queue index %lu overflow from " "guest (max %u)", __func__, idx, sc->num_cqueues); return; } atomic_store_short(&sc->compl_queues[idx].head, (uint16_t)value); } } static void pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite) { const char *s = iswrite ? "WRITE" : "READ"; switch (offset) { case NVME_CR_CAP_LOW: DPRINTF("%s %s NVME_CR_CAP_LOW", func, s); break; case NVME_CR_CAP_HI: DPRINTF("%s %s NVME_CR_CAP_HI", func, s); break; case NVME_CR_VS: DPRINTF("%s %s NVME_CR_VS", func, s); break; case NVME_CR_INTMS: DPRINTF("%s %s NVME_CR_INTMS", func, s); break; case NVME_CR_INTMC: DPRINTF("%s %s NVME_CR_INTMC", func, s); break; case NVME_CR_CC: DPRINTF("%s %s NVME_CR_CC", func, s); break; case NVME_CR_CSTS: DPRINTF("%s %s NVME_CR_CSTS", func, s); break; case NVME_CR_NSSR: DPRINTF("%s %s NVME_CR_NSSR", func, s); break; case NVME_CR_AQA: DPRINTF("%s %s NVME_CR_AQA", func, s); break; case NVME_CR_ASQ_LOW: DPRINTF("%s %s NVME_CR_ASQ_LOW", func, s); break; case NVME_CR_ASQ_HI: DPRINTF("%s %s NVME_CR_ASQ_HI", func, s); break; case NVME_CR_ACQ_LOW: DPRINTF("%s %s NVME_CR_ACQ_LOW", func, s); break; case NVME_CR_ACQ_HI: DPRINTF("%s %s NVME_CR_ACQ_HI", func, s); break; default: DPRINTF("unknown nvme bar-0 offset 0x%lx", offset); } } static void pci_nvme_write_bar_0(struct vmctx *ctx, struct pci_nvme_softc* sc, uint64_t offset, int size, uint64_t value) { uint32_t ccreg; if (offset >= NVME_DOORBELL_OFFSET) { uint64_t belloffset = offset - NVME_DOORBELL_OFFSET; uint64_t idx = belloffset / 8; /* door bell size = 2*int */ int is_sq = (belloffset % 8) < 4; if (belloffset > ((sc->max_queues+1) * 8 - 4)) { WPRINTF("guest attempted an overflow write offset " "0x%lx, val 0x%lx in %s", offset, value, __func__); return; } pci_nvme_handle_doorbell(ctx, sc, idx, is_sq, value); return; } DPRINTF("nvme-write offset 0x%lx, size %d, value 0x%lx", offset, size, value); if (size != 4) { WPRINTF("guest wrote invalid size %d (offset 0x%lx, " "val 0x%lx) to bar0 in %s", size, offset, value, __func__); /* TODO: shutdown device */ return; } pci_nvme_bar0_reg_dumps(__func__, offset, 1); pthread_mutex_lock(&sc->mtx); switch (offset) { case NVME_CR_CAP_LOW: case NVME_CR_CAP_HI: /* readonly */ break; case NVME_CR_VS: /* readonly */ break; case NVME_CR_INTMS: /* MSI-X, so ignore */ break; case NVME_CR_INTMC: /* MSI-X, so ignore */ break; case NVME_CR_CC: ccreg = (uint32_t)value; DPRINTF("%s NVME_CR_CC en %x css %x shn %x iosqes %u " "iocqes %u", __func__, NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg), NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg), NVME_CC_GET_IOCQES(ccreg)); if (NVME_CC_GET_SHN(ccreg)) { /* perform shutdown - flush out data to backend */ sc->regs.csts &= ~(NVME_CSTS_REG_SHST_MASK << NVME_CSTS_REG_SHST_SHIFT); sc->regs.csts |= NVME_SHST_COMPLETE << NVME_CSTS_REG_SHST_SHIFT; } if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) { if (NVME_CC_GET_EN(ccreg) == 0) /* transition 1-> causes controller reset */ pci_nvme_reset_locked(sc); else pci_nvme_init_controller(ctx, sc); } /* Insert the iocqes, iosqes and en bits from the write */ sc->regs.cc &= ~NVME_CC_WRITE_MASK; sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK; if (NVME_CC_GET_EN(ccreg) == 0) { /* Insert the ams, mps and css bit fields */ sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK; sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK; sc->regs.csts &= ~NVME_CSTS_RDY; } else if (sc->pending_ios == 0) { sc->regs.csts |= NVME_CSTS_RDY; } break; case NVME_CR_CSTS: break; case NVME_CR_NSSR: /* ignore writes; don't support subsystem reset */ break; case NVME_CR_AQA: sc->regs.aqa = (uint32_t)value; break; case NVME_CR_ASQ_LOW: sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) | (0xFFFFF000 & value); break; case NVME_CR_ASQ_HI: sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) | (value << 32); break; case NVME_CR_ACQ_LOW: sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) | (0xFFFFF000 & value); break; case NVME_CR_ACQ_HI: sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) | (value << 32); break; default: DPRINTF("%s unknown offset 0x%lx, value 0x%lx size %d", __func__, offset, value, size); } pthread_mutex_unlock(&sc->mtx); } static void pci_nvme_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, uint64_t offset, int size, uint64_t value) { struct pci_nvme_softc* sc = pi->pi_arg; if (baridx == pci_msix_table_bar(pi) || baridx == pci_msix_pba_bar(pi)) { DPRINTF("nvme-write baridx %d, msix: off 0x%lx, size %d, " " value 0x%lx", baridx, offset, size, value); pci_emul_msix_twrite(pi, offset, size, value); return; } switch (baridx) { case 0: pci_nvme_write_bar_0(ctx, sc, offset, size, value); break; default: DPRINTF("%s unknown baridx %d, val 0x%lx", __func__, baridx, value); } } static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc, uint64_t offset, int size) { uint64_t value; pci_nvme_bar0_reg_dumps(__func__, offset, 0); if (offset < NVME_DOORBELL_OFFSET) { void *p = &(sc->regs); pthread_mutex_lock(&sc->mtx); memcpy(&value, (void *)((uintptr_t)p + offset), size); pthread_mutex_unlock(&sc->mtx); } else { value = 0; WPRINTF("pci_nvme: read invalid offset %ld", offset); } switch (size) { case 1: value &= 0xFF; break; case 2: value &= 0xFFFF; break; case 4: value &= 0xFFFFFFFF; break; } DPRINTF(" nvme-read offset 0x%lx, size %d -> value 0x%x", offset, size, (uint32_t)value); return (value); } static uint64_t pci_nvme_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, uint64_t offset, int size) { struct pci_nvme_softc* sc = pi->pi_arg; if (baridx == pci_msix_table_bar(pi) || baridx == pci_msix_pba_bar(pi)) { DPRINTF("nvme-read bar: %d, msix: regoff 0x%lx, size %d", baridx, offset, size); return pci_emul_msix_tread(pi, offset, size); } switch (baridx) { case 0: return pci_nvme_read_bar_0(sc, offset, size); default: DPRINTF("unknown bar %d, 0x%lx", baridx, offset); } return (0); } static int pci_nvme_parse_config(struct pci_nvme_softc *sc, nvlist_t *nvl) { char bident[sizeof("XX:X:X")]; const char *value; uint32_t sectsz; sc->max_queues = NVME_QUEUES; sc->max_qentries = NVME_MAX_QENTRIES; sc->ioslots = NVME_IOSLOTS; sc->num_squeues = sc->max_queues; sc->num_cqueues = sc->max_queues; sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO; sectsz = 0; snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn), "NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func); value = get_config_value_node(nvl, "maxq"); if (value != NULL) sc->max_queues = atoi(value); value = get_config_value_node(nvl, "qsz"); if (value != NULL) { sc->max_qentries = atoi(value); if (sc->max_qentries <= 0) { EPRINTLN("nvme: Invalid qsz option %d", sc->max_qentries); return (-1); } } value = get_config_value_node(nvl, "ioslots"); if (value != NULL) { sc->ioslots = atoi(value); if (sc->ioslots <= 0) { EPRINTLN("Invalid ioslots option %d", sc->ioslots); return (-1); } } value = get_config_value_node(nvl, "sectsz"); if (value != NULL) sectsz = atoi(value); value = get_config_value_node(nvl, "ser"); if (value != NULL) { /* * This field indicates the Product Serial Number in * 7-bit ASCII, unused bytes should be space characters. * Ref: NVMe v1.3c. */ cpywithpad((char *)sc->ctrldata.sn, sizeof(sc->ctrldata.sn), value, ' '); } value = get_config_value_node(nvl, "eui64"); if (value != NULL) sc->nvstore.eui64 = htobe64(strtoull(value, NULL, 0)); value = get_config_value_node(nvl, "dsm"); if (value != NULL) { if (strcmp(value, "auto") == 0) sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO; else if (strcmp(value, "enable") == 0) sc->dataset_management = NVME_DATASET_MANAGEMENT_ENABLE; else if (strcmp(value, "disable") == 0) sc->dataset_management = NVME_DATASET_MANAGEMENT_DISABLE; } value = get_config_value_node(nvl, "ram"); if (value != NULL) { uint64_t sz = strtoull(value, NULL, 10); sc->nvstore.type = NVME_STOR_RAM; sc->nvstore.size = sz * 1024 * 1024; sc->nvstore.ctx = calloc(1, sc->nvstore.size); sc->nvstore.sectsz = 4096; sc->nvstore.sectsz_bits = 12; if (sc->nvstore.ctx == NULL) { EPRINTLN("nvme: Unable to allocate RAM"); return (-1); } } else { snprintf(bident, sizeof(bident), "%d:%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func); sc->nvstore.ctx = blockif_open(nvl, bident); if (sc->nvstore.ctx == NULL) { EPRINTLN("nvme: Could not open backing file: %s", strerror(errno)); return (-1); } sc->nvstore.type = NVME_STOR_BLOCKIF; sc->nvstore.size = blockif_size(sc->nvstore.ctx); } if (sectsz == 512 || sectsz == 4096 || sectsz == 8192) sc->nvstore.sectsz = sectsz; else if (sc->nvstore.type != NVME_STOR_RAM) sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx); for (sc->nvstore.sectsz_bits = 9; (1 << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz; sc->nvstore.sectsz_bits++); if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES) sc->max_queues = NVME_QUEUES; return (0); } static int pci_nvme_init(struct vmctx *ctx, struct pci_devinst *pi, nvlist_t *nvl) { struct pci_nvme_softc *sc; uint32_t pci_membar_sz; int error; error = 0; sc = calloc(1, sizeof(struct pci_nvme_softc)); pi->pi_arg = sc; sc->nsc_pi = pi; error = pci_nvme_parse_config(sc, nvl); if (error < 0) goto done; else error = 0; STAILQ_INIT(&sc->ioreqs_free); sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq)); for (int i = 0; i < sc->ioslots; i++) { STAILQ_INSERT_TAIL(&sc->ioreqs_free, &sc->ioreqs[i], link); } pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A); pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D); pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE); pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM); pci_set_cfgdata8(pi, PCIR_PROGIF, PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0); /* * Allocate size of NVMe registers + doorbell space for all queues. * * The specification requires a minimum memory I/O window size of 16K. * The Windows driver will refuse to start a device with a smaller * window. */ pci_membar_sz = sizeof(struct nvme_registers) + 2 * sizeof(uint32_t) * (sc->max_queues + 1); pci_membar_sz = MAX(pci_membar_sz, NVME_MMIO_SPACE_MIN); DPRINTF("nvme membar size: %u", pci_membar_sz); error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz); if (error) { WPRINTF("%s pci alloc mem bar failed", __func__); goto done; } error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR); if (error) { WPRINTF("%s pci add msixcap failed", __func__); goto done; } error = pci_emul_add_pciecap(pi, PCIEM_TYPE_ROOT_INT_EP); if (error) { WPRINTF("%s pci add Express capability failed", __func__); goto done; } pthread_mutex_init(&sc->mtx, NULL); sem_init(&sc->iosemlock, 0, sc->ioslots); pci_nvme_init_queues(sc, sc->max_queues, sc->max_queues); /* * Controller data depends on Namespace data so initialize Namespace * data first. */ pci_nvme_init_nsdata(sc, &sc->nsdata, 1, &sc->nvstore); pci_nvme_init_ctrldata(sc); pci_nvme_init_logpages(sc); pci_nvme_init_features(sc); pci_nvme_aer_init(sc); pci_nvme_reset(sc); pci_lintr_request(pi); done: return (error); } struct pci_devemu pci_de_nvme = { .pe_emu = "nvme", .pe_init = pci_nvme_init, .pe_legacy_config = blockif_legacy_config, .pe_barwrite = pci_nvme_write, .pe_barread = pci_nvme_read }; PCI_EMUL_SET(pci_de_nvme);