/*- * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * machdep.c * * Machine dependant functions for kernel setup * * This file needs a lot of work. * * Created : 17/09/94 */ #include "opt_ddb.h" #include __FBSDID("$FreeBSD$"); #define _ARM32_BUS_DMA_PRIVATE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Page table for mapping proc0 zero page */ #define KERNEL_PT_SYS 0 #define KERNEL_PT_KERN 1 #define KERNEL_PT_KERN_NUM 44 /* L2 table for mapping after kernel */ #define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM #define KERNEL_PT_AFKERNEL_NUM 5 /* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */ #define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM) /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #define UND_STACK_SIZE 1 extern int s3c2410_pclk; extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; struct pv_addr kernel_pt_table[NUM_KERNEL_PTS]; extern void *_end; extern int *end; struct pcpu __pcpu; struct pcpu *pcpup = &__pcpu; /* Physical and virtual addresses for some global pages */ vm_paddr_t phys_avail[10]; vm_paddr_t dump_avail[4]; vm_offset_t physical_pages; struct pv_addr systempage; struct pv_addr msgbufpv; struct pv_addr irqstack; struct pv_addr undstack; struct pv_addr abtstack; struct pv_addr kernelstack; #define _A(a) ((a) & ~L1_S_OFFSET) #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) /* Static device mappings. */ static const struct pmap_devmap s3c24x0_devmap[] = { /* * Map the devices we need early on. */ { _A(S3C24X0_CLKMAN_BASE), _A(S3C24X0_CLKMAN_PA_BASE), _S(S3C24X0_CLKMAN_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { _A(S3C24X0_GPIO_BASE), _A(S3C24X0_GPIO_PA_BASE), _S(S3C2410_GPIO_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { _A(S3C24X0_INTCTL_BASE), _A(S3C24X0_INTCTL_PA_BASE), _S(S3C24X0_INTCTL_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { _A(S3C24X0_TIMER_BASE), _A(S3C24X0_TIMER_PA_BASE), _S(S3C24X0_TIMER_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { _A(S3C24X0_UART0_BASE), _A(S3C24X0_UART0_PA_BASE), _S(S3C24X0_UART_PA_BASE(3) - S3C24X0_UART0_PA_BASE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { _A(S3C24X0_WDT_BASE), _A(S3C24X0_WDT_PA_BASE), _S(S3C24X0_WDT_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0, 0, } }; #undef _A #undef _S #define ioreg_read32(a) (*(volatile uint32_t *)(a)) #define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v)) #ifdef DDB extern vm_offset_t ksym_start, ksym_end; #endif struct arm32_dma_range s3c24x0_range = { .dr_sysbase = 0, .dr_busbase = 0, .dr_len = 0, }; struct arm32_dma_range * bus_dma_get_range(void) { if (s3c24x0_range.dr_len == 0) { s3c24x0_range.dr_sysbase = dump_avail[0]; s3c24x0_range.dr_busbase = dump_avail[0]; s3c24x0_range.dr_len = dump_avail[1] - dump_avail[0]; } return (&s3c24x0_range); } int bus_dma_get_range_nb(void) { return (1); } void * initarm(struct arm_boot_params *abp) { struct pv_addr kernel_l1pt; int loop; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t afterkern; vm_offset_t lastaddr; int i; uint32_t memsize; i = 0; boothowto = 0; set_cpufuncs(); cpufuncs.cf_sleep = s3c24x0_sleep; lastaddr = fake_preload_metadata(); pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); #define KERNEL_TEXT_BASE (KERNBASE) freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_va, (np)); \ (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR); #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += (np * PAGE_SIZE); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_va = freemempos - (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_pa = kernel_pt_table[loop].pv_va - KERNVIRTADDR + KERNPHYSADDR; } } /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH, &kernel_pt_table[KERNEL_PT_SYS]); for (i = 0; i < KERNEL_PT_KERN_NUM; i++) pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE, &kernel_pt_table[KERNEL_PT_KERN + i]); pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, (((uint32_t)(lastaddr) - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa, msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } pmap_devmap_bootstrap(l1pagetable, s3c24x0_devmap); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross reloations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* Disable all peripheral interrupts */ ioreg_write32(S3C24X0_INTCTL_BASE + INTCTL_INTMSK, ~0); memsize = board_init(); /* Find pclk for uart */ switch(ioreg_read32(S3C24X0_GPIO_BASE + GPIO_GSTATUS1) >> 16) { case 0x3241: s3c2410_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL, &s3c2410_pclk); break; case 0x3244: s3c2440_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL, &s3c2410_pclk); break; } cninit(); /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); init_proc0(kernelstack.pv_va); arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + 0x100000 * (KERNEL_PT_KERN_NUM - 1); /* * ARM_USE_SMALL_ALLOC uses dump_avail, so it must be filled before * calling pmap_bootstrap. */ dump_avail[0] = PHYSADDR; dump_avail[1] = PHYSADDR + memsize; dump_avail[2] = 0; dump_avail[3] = 0; pmap_bootstrap(freemempos, KERNVIRTADDR + 3 * memsize, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); physmem = memsize / PAGE_SIZE; phys_avail[0] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR; phys_avail[1] = PHYSADDR + memsize; phys_avail[2] = 0; phys_avail[3] = 0; init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }