/* * Device driver for National Semiconductor DS8390/WD83C690 based ethernet * adapters. By David Greenman, 29-April-1993 * * Copyright (C) 1993, David Greenman. This software may be used, modified, * copied, distributed, and sold, in both source and binary form provided * that the above copyright and these terms are retained. Under no * circumstances is the author responsible for the proper functioning * of this software, nor does the author assume any responsibility * for damages incurred with its use. * * Currently supports the Western Digital/SMC 8003 and 8013 series, * the SMC Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000, * and a variety of similar clones. * * $Id: if_ed.c,v 1.48 1994/09/16 13:33:40 davidg Exp $ */ #include "ed.h" #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #if NBPFILTER > 0 #include #include #endif #include #include #include #include /* For backwards compatibility */ #ifndef IFF_ALTPHYS #define IFF_ALTPHYS IFF_LINK0 #endif /* * ed_softc: per line info and status */ struct ed_softc { struct arpcom arpcom; /* ethernet common */ char *type_str; /* pointer to type string */ u_char vendor; /* interface vendor */ u_char type; /* interface type code */ u_short asic_addr; /* ASIC I/O bus address */ u_short nic_addr; /* NIC (DS8390) I/O bus address */ /* * The following 'proto' variable is part of a work-around for 8013EBT asics * being write-only. It's sort of a prototype/shadow of the real thing. */ u_char wd_laar_proto; u_char cr_proto; u_char isa16bit; /* width of access to card 0=8 or 1=16 */ int is790; /* set by the probe code if the card is 790 * based */ caddr_t bpf; /* BPF "magic cookie" */ caddr_t mem_start; /* NIC memory start address */ caddr_t mem_end; /* NIC memory end address */ u_long mem_size; /* total NIC memory size */ caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */ u_char mem_shared; /* NIC memory is shared with host */ u_char xmit_busy; /* transmitter is busy */ u_char txb_cnt; /* number of transmit buffers */ u_char txb_inuse; /* number of TX buffers currently in-use */ u_char txb_new; /* pointer to where new buffer will be added */ u_char txb_next_tx; /* pointer to next buffer ready to xmit */ u_short txb_len[8]; /* buffered xmit buffer lengths */ u_char tx_page_start; /* first page of TX buffer area */ u_char rec_page_start; /* first page of RX ring-buffer */ u_char rec_page_stop; /* last page of RX ring-buffer */ u_char next_packet; /* pointer to next unread RX packet */ } ed_softc[NED]; int ed_attach(struct isa_device *); void ed_init(int); void edintr(int); int ed_ioctl(struct ifnet *, int, caddr_t); int ed_probe(struct isa_device *); void ed_start(struct ifnet *); void ed_reset(int); void ed_watchdog(int); void ds_getmcaf(); static void ed_get_packet(struct ed_softc *, char *, int /* u_short */ , int); static void ed_stop(int); static inline void ed_rint(); static inline void ed_xmit(); static inline char *ed_ring_copy(); void ed_pio_readmem(), ed_pio_writemem(); u_short ed_pio_write_mbufs(); void ed_setrcr(struct ifnet *, struct ed_softc *); struct isa_driver eddriver = { ed_probe, ed_attach, "ed" }; /* * Interrupt conversion table for WD/SMC ASIC * (IRQ* are defined in icu.h) */ static unsigned short ed_intr_mask[] = { IRQ9, IRQ3, IRQ5, IRQ7, IRQ10, IRQ11, IRQ15, IRQ4 }; /* * Interrupt conversion table for 585/790 Combo */ static unsigned short ed_790_intr_mask[] = { 0, IRQ9, IRQ3, IRQ5, IRQ7, IRQ10, IRQ11, IRQ15 }; #define ETHER_MIN_LEN 64 #define ETHER_MAX_LEN 1518 #define ETHER_ADDR_LEN 6 #define ETHER_HDR_SIZE 14 /* * Determine if the device is present * * on entry: * a pointer to an isa_device struct * on exit: * NULL if device not found * or # of i/o addresses used (if found) */ int ed_probe(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; int nports; if (nports = ed_probe_WD80x3(isa_dev)) return (nports); if (nports = ed_probe_3Com(isa_dev)) return (nports); if (nports = ed_probe_Novell(isa_dev)) return (nports); return (0); } /* * Generic probe routine for testing for the existance of a DS8390. * Must be called after the NIC has just been reset. This routine * works by looking at certain register values that are gauranteed * to be initialized a certain way after power-up or reset. Seems * not to currently work on the 83C690. * * Specifically: * * Register reset bits set bits * Command Register (CR) TXP, STA RD2, STP * Interrupt Status (ISR) RST * Interrupt Mask (IMR) All bits * Data Control (DCR) LAS * Transmit Config. (TCR) LB1, LB0 * * We only look at the CR and ISR registers, however, because looking at * the others would require changing register pages (which would be * intrusive if this isn't an 8390). * * Return 1 if 8390 was found, 0 if not. */ int ed_probe_generic8390(sc) struct ed_softc *sc; { if ((inb(sc->nic_addr + ED_P0_CR) & (ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) != (ED_CR_RD2 | ED_CR_STP)) return (0); if ((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST) return (0); return (1); } /* * Probe and vendor-specific initialization routine for SMC/WD80x3 boards */ int ed_probe_WD80x3(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; int i; u_int memsize; u_char iptr, isa16bit, sum; sc->asic_addr = isa_dev->id_iobase; sc->nic_addr = sc->asic_addr + ED_WD_NIC_OFFSET; sc->is790 = 0; #ifdef TOSH_ETHER outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_POW); DELAY(10000); #endif /* * Attempt to do a checksum over the station address PROM. If it * fails, it's probably not a SMC/WD board. There is a problem with * this, though: some clone WD boards don't pass the checksum test. * Danpex boards for one. */ for (sum = 0, i = 0; i < 8; ++i) sum += inb(sc->asic_addr + ED_WD_PROM + i); if (sum != ED_WD_ROM_CHECKSUM_TOTAL) { /* * Checksum is invalid. This often happens with cheap WD8003E * clones. In this case, the checksum byte (the eighth byte) * seems to always be zero. */ if (inb(sc->asic_addr + ED_WD_CARD_ID) != ED_TYPE_WD8003E || inb(sc->asic_addr + ED_WD_PROM + 7) != 0) return (0); } /* reset card to force it into a known state. */ #ifdef TOSH_ETHER outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW); #else outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST); #endif DELAY(100); outb(sc->asic_addr + ED_WD_MSR, inb(sc->asic_addr + ED_WD_MSR) & ~ED_WD_MSR_RST); /* wait in the case this card is reading it's EEROM */ DELAY(5000); sc->vendor = ED_VENDOR_WD_SMC; sc->type = inb(sc->asic_addr + ED_WD_CARD_ID); /* * Set initial values for width/size. */ memsize = 8192; isa16bit = 0; switch (sc->type) { case ED_TYPE_WD8003S: sc->type_str = "WD8003S"; break; case ED_TYPE_WD8003E: sc->type_str = "WD8003E"; break; case ED_TYPE_WD8003EB: sc->type_str = "WD8003EB"; break; case ED_TYPE_WD8003W: sc->type_str = "WD8003W"; break; case ED_TYPE_WD8013EBT: sc->type_str = "WD8013EBT"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013W: sc->type_str = "WD8013W"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EP: /* also WD8003EP */ if (inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) { isa16bit = 1; memsize = 16384; sc->type_str = "WD8013EP"; } else { sc->type_str = "WD8003EP"; } break; case ED_TYPE_WD8013WC: sc->type_str = "WD8013WC"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EBP: sc->type_str = "WD8013EBP"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EPC: sc->type_str = "WD8013EPC"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_SMC8216C: sc->type_str = "SMC8216/SMC8216C"; memsize = 16384; isa16bit = 1; sc->is790 = 1; break; case ED_TYPE_SMC8216T: sc->type_str = "SMC8216T"; memsize = 16384; isa16bit = 1; sc->is790 = 1; break; #ifdef TOSH_ETHER case ED_TYPE_TOSHIBA1: sc->type_str = "Toshiba1"; memsize = 32768; isa16bit = 1; break; case ED_TYPE_TOSHIBA4: sc->type_str = "Toshiba4"; memsize = 32768; isa16bit = 1; break; #endif default: sc->type_str = ""; break; } /* * Make some adjustments to initial values depending on what is found * in the ICR. */ if (isa16bit && (sc->type != ED_TYPE_WD8013EBT) #ifdef TOSH_ETHER && (sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4) #endif && ((inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) { isa16bit = 0; memsize = 8192; } #if ED_DEBUG printf("type = %x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n", sc->type, sc->type_str, isa16bit, memsize, isa_dev->id_msize); for (i = 0; i < 8; i++) printf("%x -> %x\n", i, inb(sc->asic_addr + i)); #endif /* * Allow the user to override the autoconfiguration */ if (isa_dev->id_msize) memsize = isa_dev->id_msize; /* * (note that if the user specifies both of the following flags that * '8bit' mode intentionally has precedence) */ if (isa_dev->id_flags & ED_FLAGS_FORCE_16BIT_MODE) isa16bit = 1; if (isa_dev->id_flags & ED_FLAGS_FORCE_8BIT_MODE) isa16bit = 0; /* * Check 83C584 interrupt configuration register if this board has one * XXX - we could also check the IO address register. But why * bother...if we get past this, it *has* to be correct. */ if ((sc->type & ED_WD_SOFTCONFIG) && (!sc->is790)) { /* * Assemble together the encoded interrupt number. */ iptr = (inb(isa_dev->id_iobase + ED_WD_ICR) & ED_WD_ICR_IR2) | ((inb(isa_dev->id_iobase + ED_WD_IRR) & (ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5); /* * Translate it using translation table, and check for * correctness. */ if (ed_intr_mask[iptr] != isa_dev->id_irq) { printf("ed%d: kernel configured irq %d doesn't match board configured irq %d\n", isa_dev->id_unit, ffs(isa_dev->id_irq) - 1, ffs(ed_intr_mask[iptr]) - 1); return (0); } /* * Enable the interrupt. */ outb(isa_dev->id_iobase + ED_WD_IRR, inb(isa_dev->id_iobase + ED_WD_IRR) | ED_WD_IRR_IEN); } if (sc->is790) { outb(isa_dev->id_iobase + ED_WD790_HWR, inb(isa_dev->id_iobase + ED_WD790_HWR) | ED_WD790_HWR_SWH); iptr = (((inb(isa_dev->id_iobase + ED_WD790_GCR) & ED_WD790_GCR_IR2) >> 4) | (inb(isa_dev->id_iobase + ED_WD790_GCR) & (ED_WD790_GCR_IR1 | ED_WD790_GCR_IR0)) >> 2); outb(isa_dev->id_iobase + ED_WD790_HWR, inb(isa_dev->id_iobase + ED_WD790_HWR) & ~ED_WD790_HWR_SWH); if (ed_790_intr_mask[iptr] != isa_dev->id_irq) { printf("ed%d: kernel configured irq %d doesn't match board configured irq %d %d\n", isa_dev->id_unit, ffs(isa_dev->id_irq) - 1, ffs(ed_790_intr_mask[iptr]) - 1, iptr); return 0; } /* * Enable interrupts. */ outb(isa_dev->id_iobase + ED_WD790_ICR, inb(isa_dev->id_iobase + ED_WD790_ICR) | ED_WD790_ICR_EIL); } sc->isa16bit = isa16bit; sc->mem_shared = 1; isa_dev->id_msize = memsize; sc->mem_start = (caddr_t) isa_dev->id_maddr; /* * allocate one xmit buffer if < 16k, two buffers otherwise */ if ((memsize < 16384) || (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)) { sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE); sc->txb_cnt = 1; sc->rec_page_start = ED_TXBUF_SIZE; } else { sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE * 2); sc->txb_cnt = 2; sc->rec_page_start = ED_TXBUF_SIZE * 2; } sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; sc->rec_page_stop = memsize / ED_PAGE_SIZE; sc->tx_page_start = ED_WD_PAGE_OFFSET; /* * Get station address from on-board ROM */ for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->arpcom.ac_enaddr[i] = inb(sc->asic_addr + ED_WD_PROM + i); /* * Set upper address bits and 8/16 bit access to shared memory */ if (isa16bit) { if (sc->is790) { sc->wd_laar_proto = inb(sc->asic_addr + ED_WD_LAAR); outb(sc->asic_addr + ED_WD_LAAR, ED_WD_LAAR_M16EN); } else { outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto = ED_WD_LAAR_L16EN | ED_WD_LAAR_M16EN | ((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI))); } } else { if ((sc->type & ED_WD_SOFTCONFIG) || #ifdef TOSH_ETHER (sc->type == ED_TYPE_TOSHIBA1) || (sc->type == ED_TYPE_TOSHIBA4) || #endif (sc->type == ED_TYPE_WD8013EBT) && (!sc->is790)) { outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto = ((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI))); } } /* * Set address and enable interface shared memory. */ if (!sc->is790) { #ifdef TOSH_ETHER outb(sc->asic_addr + ED_WD_MSR + 1, ((kvtop(sc->mem_start) >> 8) & 0xe0) | 4); outb(sc->asic_addr + ED_WD_MSR + 2, ((kvtop(sc->mem_start) >> 16) & 0x0f)); outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB | ED_WD_MSR_POW); #else outb(sc->asic_addr + ED_WD_MSR, ((kvtop(sc->mem_start) >> 13) & ED_WD_MSR_ADDR) | ED_WD_MSR_MENB); #endif sc->cr_proto = ED_CR_RD2; } else { outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB); outb(sc->asic_addr + 0x04, (inb(sc->asic_addr + 0x04) | 0x80)); outb(sc->asic_addr + 0x0b, ((kvtop(sc->mem_start) >> 13) & 0x0f) | ((kvtop(sc->mem_start) >> 11) & 0x40) | (inb(sc->asic_addr + 0x0b) & 0xb0)); outb(sc->asic_addr + 0x04, (inb(sc->asic_addr + 0x04) & ~0x80)); sc->cr_proto = 0; } /* * Now zero memory and verify that it is clear */ bzero(sc->mem_start, memsize); for (i = 0; i < memsize; ++i) { if (sc->mem_start[i]) { printf("ed%d: failed to clear shared memory at %x - check configuration\n", isa_dev->id_unit, kvtop(sc->mem_start + i)); /* * Disable 16 bit access to shared memory */ if (isa16bit) { if (sc->is790) { outb(sc->asic_addr + ED_WD_MSR, 0x00); } outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto &= ~ED_WD_LAAR_M16EN)); } return (0); } } /* * Disable 16bit access to shared memory - we leave it * disabled so that 1) machines reboot properly when the board * is set 16 bit mode and there are conflicting 8bit * devices/ROMS in the same 128k address space as this boards * shared memory. and 2) so that other 8 bit devices with * shared memory can be used in this 128k region, too. */ if (isa16bit) { if (sc->is790) { outb(sc->asic_addr + ED_WD_MSR, 0x00); } outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto &= ~ED_WD_LAAR_M16EN)); } return (ED_WD_IO_PORTS); } /* * Probe and vendor-specific initialization routine for 3Com 3c503 boards */ int ed_probe_3Com(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; int i; u_int memsize; u_char isa16bit, sum; sc->asic_addr = isa_dev->id_iobase + ED_3COM_ASIC_OFFSET; sc->nic_addr = isa_dev->id_iobase + ED_3COM_NIC_OFFSET; /* * Verify that the kernel configured I/O address matches the board * configured address */ switch (inb(sc->asic_addr + ED_3COM_BCFR)) { case ED_3COM_BCFR_300: if (isa_dev->id_iobase != 0x300) return (0); break; case ED_3COM_BCFR_310: if (isa_dev->id_iobase != 0x310) return (0); break; case ED_3COM_BCFR_330: if (isa_dev->id_iobase != 0x330) return (0); break; case ED_3COM_BCFR_350: if (isa_dev->id_iobase != 0x350) return (0); break; case ED_3COM_BCFR_250: if (isa_dev->id_iobase != 0x250) return (0); break; case ED_3COM_BCFR_280: if (isa_dev->id_iobase != 0x280) return (0); break; case ED_3COM_BCFR_2A0: if (isa_dev->id_iobase != 0x2a0) return (0); break; case ED_3COM_BCFR_2E0: if (isa_dev->id_iobase != 0x2e0) return (0); break; default: return (0); } /* * Verify that the kernel shared memory address matches the board * configured address. */ switch (inb(sc->asic_addr + ED_3COM_PCFR)) { case ED_3COM_PCFR_DC000: if (kvtop(isa_dev->id_maddr) != 0xdc000) return (0); break; case ED_3COM_PCFR_D8000: if (kvtop(isa_dev->id_maddr) != 0xd8000) return (0); break; case ED_3COM_PCFR_CC000: if (kvtop(isa_dev->id_maddr) != 0xcc000) return (0); break; case ED_3COM_PCFR_C8000: if (kvtop(isa_dev->id_maddr) != 0xc8000) return (0); break; default: return (0); } /* * Reset NIC and ASIC. Enable on-board transceiver throughout reset * sequence because it'll lock up if the cable isn't connected if we * don't. */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL); /* * Wait for a while, then un-reset it */ DELAY(50); /* * The 3Com ASIC defaults to rather strange settings for the CR after * a reset - it's important to set it again after the following outb * (this is done when we map the PROM below). */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL); /* * Wait a bit for the NIC to recover from the reset */ DELAY(5000); sc->vendor = ED_VENDOR_3COM; sc->type_str = "3c503"; sc->mem_shared = 1; sc->cr_proto = ED_CR_RD2; /* * Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window * to it. */ memsize = 8192; /* * Get station address from on-board ROM */ /* * First, map ethernet address PROM over the top of where the NIC * registers normally appear. */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL); for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->arpcom.ac_enaddr[i] = inb(sc->nic_addr + i); /* * Unmap PROM - select NIC registers. The proper setting of the * tranceiver is set in ed_init so that the attach code is given a * chance to set the default based on a compile-time config option */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL); /* * Determine if this is an 8bit or 16bit board */ /* * select page 0 registers */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP); /* * Attempt to clear WTS bit. If it doesn't clear, then this is a 16bit * board. */ outb(sc->nic_addr + ED_P0_DCR, 0); /* * select page 2 registers */ outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_2 | ED_CR_RD2 | ED_CR_STP); /* * The 3c503 forces the WTS bit to a one if this is a 16bit board */ if (inb(sc->nic_addr + ED_P2_DCR) & ED_DCR_WTS) isa16bit = 1; else isa16bit = 0; /* * select page 0 registers */ outb(sc->nic_addr + ED_P2_CR, ED_CR_RD2 | ED_CR_STP); sc->mem_start = (caddr_t) isa_dev->id_maddr; sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; /* * We have an entire 8k window to put the transmit buffers on the * 16bit boards. But since the 16bit 3c503's shared memory is only * fast enough to overlap the loading of one full-size packet, trying * to load more than 2 buffers can actually leave the transmitter idle * during the load. So 2 seems the best value. (Although a mix of * variable-sized packets might change this assumption. Nonetheless, * we optimize for linear transfers of same-size packets.) */ if (isa16bit) { if (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT; sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT; sc->rec_page_stop = memsize / ED_PAGE_SIZE + ED_3COM_RX_PAGE_OFFSET_16BIT; sc->mem_ring = sc->mem_start; } else { sc->txb_cnt = 1; sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT; sc->rec_page_start = ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT; sc->rec_page_stop = memsize / ED_PAGE_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT; sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE); } sc->isa16bit = isa16bit; /* * Initialize GA page start/stop registers. Probably only needed if * doing DMA, but what the hell. */ outb(sc->asic_addr + ED_3COM_PSTR, sc->rec_page_start); outb(sc->asic_addr + ED_3COM_PSPR, sc->rec_page_stop); /* * Set IRQ. 3c503 only allows a choice of irq 2-5. */ switch (isa_dev->id_irq) { case IRQ2: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2); break; case IRQ3: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3); break; case IRQ4: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4); break; case IRQ5: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5); break; default: printf("ed%d: Invalid irq configuration (%d) must be 2-5 for 3c503\n", isa_dev->id_unit, ffs(isa_dev->id_irq) - 1); return (0); } /* * Initialize GA configuration register. Set bank and enable shared * mem. */ outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0); /* * Initialize "Vector Pointer" registers. These gawd-awful things are * compared to 20 bits of the address on ISA, and if they match, the * shared memory is disabled. We set them to 0xffff0...allegedly the * reset vector. */ outb(sc->asic_addr + ED_3COM_VPTR2, 0xff); outb(sc->asic_addr + ED_3COM_VPTR1, 0xff); outb(sc->asic_addr + ED_3COM_VPTR0, 0x00); /* * Zero memory and verify that it is clear */ bzero(sc->mem_start, memsize); for (i = 0; i < memsize; ++i) if (sc->mem_start[i]) { printf("ed%d: failed to clear shared memory at %x - check configuration\n", isa_dev->id_unit, kvtop(sc->mem_start + i)); return (0); } isa_dev->id_msize = memsize; return (ED_3COM_IO_PORTS); } /* * Probe and vendor-specific initialization routine for NE1000/2000 boards */ int ed_probe_Novell(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; u_int memsize, n; u_char romdata[16], isa16bit = 0, tmp; static char test_pattern[32] = "THIS is A memory TEST pattern"; char test_buffer[32]; sc->asic_addr = isa_dev->id_iobase + ED_NOVELL_ASIC_OFFSET; sc->nic_addr = isa_dev->id_iobase + ED_NOVELL_NIC_OFFSET; /* XXX - do Novell-specific probe here */ /* Reset the board */ #ifdef GWETHER outb(sc->asic_addr + ED_NOVELL_RESET, 0); DELAY(200); #endif /* GWETHER */ tmp = inb(sc->asic_addr + ED_NOVELL_RESET); /* * I don't know if this is necessary; probably cruft leftover from * Clarkson packet driver code. Doesn't do a thing on the boards I've * tested. -DG [note that a outb(0x84, 0) seems to work here, and is * non-invasive...but some boards don't seem to reset and I don't have * complete documentation on what the 'right' thing to do is...so we * do the invasive thing for now. Yuck.] */ outb(sc->asic_addr + ED_NOVELL_RESET, tmp); DELAY(5000); /* * This is needed because some NE clones apparently don't reset the * NIC properly (or the NIC chip doesn't reset fully on power-up) XXX * - this makes the probe invasive! ...Done against my better * judgement. -DLG */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP); DELAY(5000); /* Make sure that we really have an 8390 based board */ if (!ed_probe_generic8390(sc)) return (0); sc->vendor = ED_VENDOR_NOVELL; sc->mem_shared = 0; sc->cr_proto = ED_CR_RD2; isa_dev->id_maddr = 0; /* * Test the ability to read and write to the NIC memory. This has the * side affect of determining if this is an NE1000 or an NE2000. */ /* * This prevents packets from being stored in the NIC memory when the * readmem routine turns on the start bit in the CR. */ outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON); /* Temporarily initialize DCR for byte operations */ outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); outb(sc->nic_addr + ED_P0_PSTART, 8192 / ED_PAGE_SIZE); outb(sc->nic_addr + ED_P0_PSTOP, 16384 / ED_PAGE_SIZE); sc->isa16bit = 0; /* * Write a test pattern in byte mode. If this fails, then there * probably isn't any memory at 8k - which likely means that the board * is an NE2000. */ ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern)); ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) { /* not an NE1000 - try NE2000 */ outb(sc->nic_addr + ED_P0_DCR, ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS); outb(sc->nic_addr + ED_P0_PSTART, 16384 / ED_PAGE_SIZE); outb(sc->nic_addr + ED_P0_PSTOP, 32768 / ED_PAGE_SIZE); sc->isa16bit = 1; /* * Write a test pattern in word mode. If this also fails, then * we don't know what this board is. */ ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern)); ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) return (0); /* not an NE2000 either */ sc->type = ED_TYPE_NE2000; sc->type_str = "NE2000"; } else { sc->type = ED_TYPE_NE1000; sc->type_str = "NE1000"; } /* 8k of memory plus an additional 8k if 16bit */ memsize = 8192 + sc->isa16bit * 8192; #if 0 /* probably not useful - NE boards only come two ways */ /* allow kernel config file overrides */ if (isa_dev->id_msize) memsize = isa_dev->id_msize; #endif sc->mem_size = memsize; /* NIC memory doesn't start at zero on an NE board */ /* The start address is tied to the bus width */ sc->mem_start = (char *) 8192 + sc->isa16bit * 8192; sc->mem_end = sc->mem_start + memsize; sc->tx_page_start = memsize / ED_PAGE_SIZE; #ifdef GWETHER { int x, i, mstart = 0, msize = 0; char pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE]; for (i = 0; i < ED_PAGE_SIZE; i++) pbuf0[i] = 0; /* Clear all the memory. */ for (x = 1; x < 256; x++) ed_pio_writemem(sc, pbuf0, x * 256, ED_PAGE_SIZE); /* Search for the start of RAM. */ for (x = 1; x < 256; x++) { ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE); if (memcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) { for (i = 0; i < ED_PAGE_SIZE; i++) pbuf[i] = 255 - x; ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE); ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE); if (memcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0) { mstart = x * ED_PAGE_SIZE; msize = ED_PAGE_SIZE; break; } } } if (mstart == 0) { printf("ed%d: Cannot find start of RAM.\n", isa_dev->id_unit); return 0; } /* Search for the start of RAM. */ for (x = (mstart / ED_PAGE_SIZE) + 1; x < 256; x++) { ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE); if (memcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) { for (i = 0; i < ED_PAGE_SIZE; i++) pbuf[i] = 255 - x; ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE); ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE); if (memcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0) msize += ED_PAGE_SIZE; else { break; } } else { break; } } if (msize == 0) { printf("ed%d: Cannot find any RAM, start : %d, x = %d.\n", isa_dev->id_unit, mstart, x); return 0; } printf("ed%d: RAM start at %d, size : %d.\n", isa_dev->id_unit, mstart, msize); sc->mem_size = msize; sc->mem_start = (char *) mstart; sc->mem_end = (char *) (msize + mstart); sc->tx_page_start = mstart / ED_PAGE_SIZE; } #endif /* GWETHER */ /* * Use one xmit buffer if < 16k, two buffers otherwise (if not told * otherwise). */ if ((memsize < 16384) || (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE; sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE; sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE; ed_pio_readmem(sc, 0, romdata, 16); for (n = 0; n < ETHER_ADDR_LEN; n++) sc->arpcom.ac_enaddr[n] = romdata[n * (sc->isa16bit + 1)]; #ifdef GWETHER if (sc->arpcom.ac_enaddr[2] == 0x86) sc->type_str = "Gateway AT"; #endif /* GWETHER */ /* clear any pending interrupts that might have occurred above */ outb(sc->nic_addr + ED_P0_ISR, 0xff); return (ED_NOVELL_IO_PORTS); } /* * Install interface into kernel networking data structures */ int ed_attach(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; struct ifnet *ifp = &sc->arpcom.ac_if; /* * Set interface to stopped condition (reset) */ ed_stop(isa_dev->id_unit); /* * Initialize ifnet structure */ ifp->if_unit = isa_dev->id_unit; ifp->if_name = "ed"; ifp->if_init = ed_init; ifp->if_output = ether_output; ifp->if_start = ed_start; ifp->if_ioctl = ed_ioctl; ifp->if_reset = ed_reset; ifp->if_watchdog = ed_watchdog; /* * Set default state for ALTPHYS flag (used to disable the tranceiver * for AUI operation), based on compile-time config option. */ if (isa_dev->id_flags & ED_FLAGS_DISABLE_TRANCEIVER) ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST | IFF_ALTPHYS); else ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST); /* * Attach the interface */ if_attach(ifp); /* * Print additional info when attached */ printf("ed%d: address %s, ", isa_dev->id_unit, ether_sprintf(sc->arpcom.ac_enaddr)); if (sc->type_str && (*sc->type_str != 0)) printf("type %s ", sc->type_str); else printf("type unknown (0x%x) ", sc->type); printf("%s ", sc->isa16bit ? "(16 bit)" : "(8 bit)"); printf("%s\n", ((sc->vendor == ED_VENDOR_3COM) && (ifp->if_flags & IFF_ALTPHYS)) ? " tranceiver disabled" : ""); /* * If BPF is in the kernel, call the attach for it */ #if NBPFILTER > 0 bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif return 1; } /* * Reset interface. */ void ed_reset(unit) int unit; { int s; s = splimp(); /* * Stop interface and re-initialize. */ ed_stop(unit); ed_init(unit); (void) splx(s); } /* * Take interface offline. */ void ed_stop(unit) int unit; { struct ed_softc *sc = &ed_softc[unit]; int n = 5000; /* * Stop everything on the interface, and select page 0 registers. */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP); /* * Wait for interface to enter stopped state, but limit # of checks to * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but * just in case it's an old one. */ while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) == 0) && --n); } /* * Device timeout/watchdog routine. Entered if the device neglects to * generate an interrupt after a transmit has been started on it. */ void ed_watchdog(unit) int unit; { struct ed_softc *sc = &ed_softc[unit]; log(LOG_ERR, "ed%d: device timeout\n", unit); ++sc->arpcom.ac_if.if_oerrors; ed_reset(unit); } /* * Initialize device. */ void ed_init(unit) int unit; { struct ed_softc *sc = &ed_softc[unit]; struct ifnet *ifp = &sc->arpcom.ac_if; int i, s; u_char command; /* address not known */ if (ifp->if_addrlist == (struct ifaddr *) 0) return; /* * Initialize the NIC in the exact order outlined in the NS manual. * This init procedure is "mandatory"...don't change what or when * things happen. */ s = splimp(); /* reset transmitter flags */ sc->xmit_busy = 0; sc->arpcom.ac_if.if_timer = 0; sc->txb_inuse = 0; sc->txb_new = 0; sc->txb_next_tx = 0; /* This variable is used below - don't move this assignment */ sc->next_packet = sc->rec_page_start + 1; /* * Set interface for page 0, Remote DMA complete, Stopped */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP); if (sc->isa16bit) { /* * Set FIFO threshold to 8, No auto-init Remote DMA, byte * order=80x86, word-wide DMA xfers, */ outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS); } else { /* * Same as above, but byte-wide DMA xfers */ outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); } /* * Clear Remote Byte Count Registers */ outb(sc->nic_addr + ED_P0_RBCR0, 0); outb(sc->nic_addr + ED_P0_RBCR1, 0); /* * For the moment, don't store incoming packets in memory. */ outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON); /* * Place NIC in internal loopback mode */ outb(sc->nic_addr + ED_P0_TCR, ED_TCR_LB0); /* * Initialize transmit/receive (ring-buffer) Page Start */ outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start); outb(sc->nic_addr + ED_P0_PSTART, sc->rec_page_start); /* Set lower bits of byte addressable framing to 0 */ if (sc->is790) outb(sc->nic_addr + 0x09, 0); /* * Initialize Receiver (ring-buffer) Page Stop and Boundry */ outb(sc->nic_addr + ED_P0_PSTOP, sc->rec_page_stop); outb(sc->nic_addr + ED_P0_BNRY, sc->rec_page_start); /* * Clear all interrupts. A '1' in each bit position clears the * corresponding flag. */ outb(sc->nic_addr + ED_P0_ISR, 0xff); /* * Enable the following interrupts: receive/transmit complete, * receive/transmit error, and Receiver OverWrite. * * Counter overflow and Remote DMA complete are *not* enabled. */ outb(sc->nic_addr + ED_P0_IMR, ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE); /* * Program Command Register for page 1 */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); /* * Copy out our station address */ for (i = 0; i < ETHER_ADDR_LEN; ++i) outb(sc->nic_addr + ED_P1_PAR0 + i, sc->arpcom.ac_enaddr[i]); /* * Set Current Page pointer to next_packet (initialized above) */ outb(sc->nic_addr + ED_P1_CURR, sc->next_packet); /* * Program Receiver Configuration Register and multicast filter. CR is * set to page 0 on return. */ ed_setrcr(ifp, sc); /* * Take interface out of loopback */ outb(sc->nic_addr + ED_P0_TCR, 0); /* * If this is a 3Com board, the tranceiver must be software enabled * (there is no settable hardware default). */ if (sc->vendor == ED_VENDOR_3COM) { if (ifp->if_flags & IFF_ALTPHYS) { outb(sc->asic_addr + ED_3COM_CR, 0); } else { outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL); } } /* * Set 'running' flag, and clear output active flag. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* * ...and attempt to start output */ ed_start(ifp); (void) splx(s); } /* * This routine actually starts the transmission on the interface */ static inline void ed_xmit(ifp) struct ifnet *ifp; { struct ed_softc *sc = &ed_softc[ifp->if_unit]; unsigned short len; len = sc->txb_len[sc->txb_next_tx]; /* * Set NIC for page 0 register access */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA); /* * Set TX buffer start page */ outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start + sc->txb_next_tx * ED_TXBUF_SIZE); /* * Set TX length */ outb(sc->nic_addr + ED_P0_TBCR0, len); outb(sc->nic_addr + ED_P0_TBCR1, len >> 8); /* * Set page 0, Remote DMA complete, Transmit Packet, and *Start* */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_TXP | ED_CR_STA); sc->xmit_busy = 1; /* * Point to next transmit buffer slot and wrap if necessary. */ sc->txb_next_tx++; if (sc->txb_next_tx == sc->txb_cnt) sc->txb_next_tx = 0; /* * Set a timer just in case we never hear from the board again */ ifp->if_timer = 2; } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splimp _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ void ed_start(ifp) struct ifnet *ifp; { struct ed_softc *sc = &ed_softc[ifp->if_unit]; struct mbuf *m0, *m; caddr_t buffer; int len; outloop: /* * First, see if there are buffered packets and an idle transmitter - * should never happen at this point. */ if (sc->txb_inuse && (sc->xmit_busy == 0)) { printf("ed: packets buffered, but transmitter idle\n"); ed_xmit(ifp); } /* * See if there is room to put another packet in the buffer. */ if (sc->txb_inuse == sc->txb_cnt) { /* * No room. Indicate this to the outside world and exit. */ ifp->if_flags |= IFF_OACTIVE; return; } IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m); if (m == 0) { /* * We are using the !OACTIVE flag to indicate to the outside * world that we can accept an additional packet rather than * that the transmitter is _actually_ active. Indeed, the * transmitter may be active, but if we haven't filled all the * buffers with data then we still want to accept more. */ ifp->if_flags &= ~IFF_OACTIVE; return; } /* * Copy the mbuf chain into the transmit buffer */ m0 = m; /* txb_new points to next open buffer slot */ buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE); if (sc->mem_shared) { /* * Special case setup for 16 bit boards... */ if (sc->isa16bit) { switch (sc->vendor) { /* * For 16bit 3Com boards (which have 16k of * memory), we have the xmit buffers in a * different page of memory ('page 0') - so * change pages. */ case ED_VENDOR_3COM: outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL); break; /* * Enable 16bit access to shared memory on * WD/SMC boards. */ case ED_VENDOR_WD_SMC:{ outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto | ED_WD_LAAR_M16EN)); if (sc->is790) { outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB); } break; } } } for (len = 0; m != 0; m = m->m_next) { bcopy(mtod(m, caddr_t), buffer, m->m_len); buffer += m->m_len; len += m->m_len; } /* * Restore previous shared memory access */ if (sc->isa16bit) { switch (sc->vendor) { case ED_VENDOR_3COM: outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0); break; case ED_VENDOR_WD_SMC:{ if (sc->is790) { outb(sc->asic_addr + ED_WD_MSR, 0x00); } outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); break; } } } } else { len = ed_pio_write_mbufs(sc, m, buffer); } sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN); sc->txb_inuse++; /* * Point to next buffer slot and wrap if necessary. */ sc->txb_new++; if (sc->txb_new == sc->txb_cnt) sc->txb_new = 0; if (sc->xmit_busy == 0) ed_xmit(ifp); /* * Tap off here if there is a bpf listener. */ #if NBPFILTER > 0 if (sc->bpf) { bpf_mtap(sc->bpf, m0); } #endif m_freem(m0); /* * Loop back to the top to possibly buffer more packets */ goto outloop; } /* * Ethernet interface receiver interrupt. */ static inline void ed_rint(unit) int unit; { register struct ed_softc *sc = &ed_softc[unit]; u_char boundry, current; u_short len; struct ed_ring packet_hdr; char *packet_ptr; /* * Set NIC to page 1 registers to get 'current' pointer */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); /* * 'sc->next_packet' is the logical beginning of the ring-buffer - * i.e. it points to where new data has been buffered. The 'CURR' * (current) register points to the logical end of the ring-buffer - * i.e. it points to where additional new data will be added. We loop * here until the logical beginning equals the logical end (or in * other words, until the ring-buffer is empty). */ while (sc->next_packet != inb(sc->nic_addr + ED_P1_CURR)) { /* get pointer to this buffer's header structure */ packet_ptr = sc->mem_ring + (sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE; /* * The byte count includes a 4 byte header that was added by * the NIC. */ if (sc->mem_shared) packet_hdr = *(struct ed_ring *) packet_ptr; else ed_pio_readmem(sc, packet_ptr, (char *) &packet_hdr, sizeof(packet_hdr)); len = packet_hdr.count; if (len > ETHER_MAX_LEN) { /* * Length is a wild value. There's a good chance that * this was caused by the NIC being old and buggy. * The bug is that the length low byte is duplicated in * the high byte. Try to recalculate the length based on * the pointer to the next packet. */ /* * NOTE: sc->next_packet is pointing at the current packet. */ len &= ED_PAGE_SIZE - 1; /* preserve offset into page */ if (packet_hdr.next_packet >= sc->next_packet) { len += (packet_hdr.next_packet - sc->next_packet) * ED_PAGE_SIZE; } else { len += ((packet_hdr.next_packet - sc->rec_page_start) + (sc->rec_page_stop - sc->next_packet)) * ED_PAGE_SIZE; } } /* * Be fairly liberal about what we allow as a "reasonable" length * so that a [crufty] packet will make it to BPF (and can thus * be analyzed). Note that all that is really important is that * we have a length that will fit into one mbuf cluster or less; * the upper layer protocols can then figure out the length from * their own length field(s). */ if ((len <= MCLBYTES) && (packet_hdr.next_packet >= sc->rec_page_start) && (packet_hdr.next_packet < sc->rec_page_stop)) { /* * Go get packet. */ ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring), len - sizeof(struct ed_ring), packet_hdr.rsr & ED_RSR_PHY); ++sc->arpcom.ac_if.if_ipackets; } else { /* * Really BAD. The ring pointers are corrupted. */ log(LOG_ERR, "ed%d: NIC memory corrupt - invalid packet length %d\n", unit, len); ++sc->arpcom.ac_if.if_ierrors; ed_reset(unit); return; } /* * Update next packet pointer */ sc->next_packet = packet_hdr.next_packet; /* * Update NIC boundry pointer - being careful to keep it one * buffer behind. (as recommended by NS databook) */ boundry = sc->next_packet - 1; if (boundry < sc->rec_page_start) boundry = sc->rec_page_stop - 1; /* * Set NIC to page 0 registers to update boundry register */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA); outb(sc->nic_addr + ED_P0_BNRY, boundry); /* * Set NIC to page 1 registers before looping to top (prepare * to get 'CURR' current pointer) */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); } } /* * Ethernet interface interrupt processor */ void edintr(unit) int unit; { struct ed_softc *sc = &ed_softc[unit]; u_char isr; /* * Set NIC to page 0 registers */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA); /* * loop until there are no more new interrupts */ while (isr = inb(sc->nic_addr + ED_P0_ISR)) { /* * reset all the bits that we are 'acknowledging' by writing a * '1' to each bit position that was set (writing a '1' * *clears* the bit) */ outb(sc->nic_addr + ED_P0_ISR, isr); /* * Handle transmitter interrupts. Handle these first because * the receiver will reset the board under some conditions. */ if (isr & (ED_ISR_PTX | ED_ISR_TXE)) { u_char collisions = inb(sc->nic_addr + ED_P0_NCR) & 0x0f; /* * Check for transmit error. If a TX completed with an * error, we end up throwing the packet away. Really * the only error that is possible is excessive * collisions, and in this case it is best to allow * the automatic mechanisms of TCP to backoff the * flow. Of course, with UDP we're screwed, but this * is expected when a network is heavily loaded. */ (void) inb(sc->nic_addr + ED_P0_TSR); if (isr & ED_ISR_TXE) { /* * Excessive collisions (16) */ if ((inb(sc->nic_addr + ED_P0_TSR) & ED_TSR_ABT) && (collisions == 0)) { /* * When collisions total 16, the * P0_NCR will indicate 0, and the * TSR_ABT is set. */ collisions = 16; } /* * update output errors counter */ ++sc->arpcom.ac_if.if_oerrors; } else { /* * Update total number of successfully * transmitted packets. */ ++sc->arpcom.ac_if.if_opackets; } /* * reset tx busy and output active flags */ sc->xmit_busy = 0; sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE; /* * clear watchdog timer */ sc->arpcom.ac_if.if_timer = 0; /* * Add in total number of collisions on last * transmission. */ sc->arpcom.ac_if.if_collisions += collisions; /* * Decrement buffer in-use count if not zero (can only * be zero if a transmitter interrupt occured while * not actually transmitting). If data is ready to * transmit, start it transmitting, otherwise defer * until after handling receiver */ if (sc->txb_inuse && --sc->txb_inuse) ed_xmit(&sc->arpcom.ac_if); } /* * Handle receiver interrupts */ if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) { /* * Overwrite warning. In order to make sure that a * lockup of the local DMA hasn't occurred, we reset * and re-init the NIC. The NSC manual suggests only a * partial reset/re-init is necessary - but some chips * seem to want more. The DMA lockup has been seen * only with early rev chips - Methinks this bug was * fixed in later revs. -DG */ if (isr & ED_ISR_OVW) { ++sc->arpcom.ac_if.if_ierrors; #ifdef DIAGNOSTIC log(LOG_WARNING, "ed%d: warning - receiver ring buffer overrun\n", unit); #endif /* * Stop/reset/re-init NIC */ ed_reset(unit); } else { /* * Receiver Error. One or more of: CRC error, * frame alignment error FIFO overrun, or * missed packet. */ if (isr & ED_ISR_RXE) { ++sc->arpcom.ac_if.if_ierrors; #ifdef ED_DEBUG printf("ed%d: receive error %x\n", unit, inb(sc->nic_addr + ED_P0_RSR)); #endif } /* * Go get the packet(s) XXX - Doing this on an * error is dubious because there shouldn't be * any data to get (we've configured the * interface to not accept packets with * errors). */ /* * Enable 16bit access to shared memory first * on WD/SMC boards. */ if (sc->isa16bit && (sc->vendor == ED_VENDOR_WD_SMC)) { outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto |= ED_WD_LAAR_M16EN)); if (sc->is790) { outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB); } } ed_rint(unit); /* disable 16bit access */ if (sc->isa16bit && (sc->vendor == ED_VENDOR_WD_SMC)) { if (sc->is790) { outb(sc->asic_addr + ED_WD_MSR, 0x00); } outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto &= ~ED_WD_LAAR_M16EN)); } } } /* * If it looks like the transmitter can take more data, * attempt to start output on the interface. This is done * after handling the receiver to give the receiver priority. */ if ((sc->arpcom.ac_if.if_flags & IFF_OACTIVE) == 0) ed_start(&sc->arpcom.ac_if); /* * return NIC CR to standard state: page 0, remote DMA * complete, start (toggling the TXP bit off, even if was just * set in the transmit routine, is *okay* - it is 'edge' * triggered from low to high) */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA); /* * If the Network Talley Counters overflow, read them to reset * them. It appears that old 8390's won't clear the ISR flag * otherwise - resulting in an infinite loop. */ if (isr & ED_ISR_CNT) { (void) inb(sc->nic_addr + ED_P0_CNTR0); (void) inb(sc->nic_addr + ED_P0_CNTR1); (void) inb(sc->nic_addr + ED_P0_CNTR2); } } } /* * Process an ioctl request. This code needs some work - it looks * pretty ugly. */ int ed_ioctl(ifp, command, data) register struct ifnet *ifp; int command; caddr_t data; { register struct ifaddr *ifa = (struct ifaddr *) data; struct ed_softc *sc = &ed_softc[ifp->if_unit]; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; s = splimp(); switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ed_init(ifp->if_unit); /* before arpwhohas */ /* * See if another station has *our* IP address. i.e.: * There is an address conflict! If a conflict exists, * a message is sent to the console. */ ((struct arpcom *) ifp)->ac_ipaddr = IA_SIN(ifa)->sin_addr; arpwhohas((struct arpcom *) ifp, &IA_SIN(ifa)->sin_addr); break; #endif #ifdef NS /* * XXX - This code is probably wrong */ case AF_NS: { register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *) (sc->arpcom.ac_enaddr); else { bcopy((caddr_t) ina->x_host.c_host, (caddr_t) sc->arpcom.ac_enaddr, sizeof(sc->arpcom.ac_enaddr)); } /* * Set new address */ ed_init(ifp->if_unit); break; } #endif default: ed_init(ifp->if_unit); break; } break; case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) & ifr->ifr_data; bcopy((caddr_t) sc->arpcom.ac_enaddr, (caddr_t) sa->sa_data, ETHER_ADDR_LEN); } break; case SIOCSIFFLAGS: /* * If interface is marked down and it is running, then stop it */ if (((ifp->if_flags & IFF_UP) == 0) && (ifp->if_flags & IFF_RUNNING)) { ed_stop(ifp->if_unit); ifp->if_flags &= ~IFF_RUNNING; } else { /* * If interface is marked up and it is stopped, then * start it */ if ((ifp->if_flags & IFF_UP) && ((ifp->if_flags & IFF_RUNNING) == 0)) ed_init(ifp->if_unit); } #if NBPFILTER > 0 /* * Promiscuous flag may have changed, so reprogram the RCR. */ ed_setrcr(ifp, sc); #endif /* * An unfortunate hack to provide the (required) software * control of the tranceiver for 3Com boards. The ALTPHYS flag * disables the tranceiver if set. */ if (sc->vendor == ED_VENDOR_3COM) { if (ifp->if_flags & IFF_ALTPHYS) { outb(sc->asic_addr + ED_3COM_CR, 0); } else { outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL); } } break; case SIOCADDMULTI: case SIOCDELMULTI: /* * Update out multicast list. */ error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ ed_setrcr(ifp, sc); error = 0; } break; case SIOCSIFMTU: /* * Set the interface MTU. */ if (ifr->ifr_mtu > ETHERMTU) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; } break; default: error = EINVAL; } (void) splx(s); return (error); } /* * Macro to calculate a new address within shared memory when given an offset * from an address, taking into account ring-wrap. */ #define ringoffset(sc, start, off, type) \ ((type)( ((caddr_t)(start)+(off) >= (sc)->mem_end) ? \ (((caddr_t)(start)+(off))) - (sc)->mem_end \ + (sc)->mem_ring: \ ((caddr_t)(start)+(off)) )) /* * Retreive packet from shared memory and send to the next level up via * ether_input(). If there is a BPF listener, give a copy to BPF, too. */ static void ed_get_packet(sc, buf, len, multicast) struct ed_softc *sc; char *buf; u_short len; int multicast; { struct ether_header *eh; struct mbuf *m, *ed_ring_to_mbuf(); /* Allocate a header mbuf */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return; m->m_pkthdr.rcvif = &sc->arpcom.ac_if; m->m_pkthdr.len = len; m->m_len = 0; /* The following sillines is to make NFS happy */ #define EROUND ((sizeof(struct ether_header) + 3) & ~3) #define EOFF (EROUND - sizeof(struct ether_header)) /* * The following assumes there is room for the ether header in the * header mbuf */ m->m_data += EOFF; eh = mtod(m, struct ether_header *); if (sc->mem_shared) bcopy(buf, mtod(m, caddr_t), sizeof(struct ether_header)); else ed_pio_readmem(sc, buf, mtod(m, caddr_t), sizeof(struct ether_header)); buf += sizeof(struct ether_header); m->m_len += sizeof(struct ether_header); len -= sizeof(struct ether_header); /* * Pull packet off interface. Or if this was a trailer packet, the * data portion is appended. */ if (ed_ring_to_mbuf(sc, buf, m, len) == NULL) { m_freem(m); return; } #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. If so, hand off * the raw packet to bpf. */ if (sc->bpf) { bpf_mtap(sc->bpf, m); /* * Note that the interface cannot be in promiscuous mode if * there are no BPF listeners. And if we are in promiscuous * mode, we have to check if this packet is really ours. */ if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) && bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, sizeof(eh->ether_dhost)) != 0 && multicast == 0) { m_freem(m); return; } } #endif /* * Fix up data start offset in mbuf to point past ether header */ m_adj(m, sizeof(struct ether_header)); /* * silly ether_input routine needs 'type' in host byte order */ eh->ether_type = ntohs(eh->ether_type); ether_input(&sc->arpcom.ac_if, eh, m); return; } /* * Supporting routines */ /* * Given a NIC memory source address and a host memory destination * address, copy 'amount' from NIC to host using Programmed I/O. * The 'amount' is rounded up to a word - okay as long as mbufs * are word sized. * This routine is currently Novell-specific. */ void ed_pio_readmem(sc, src, dst, amount) struct ed_softc *sc; unsigned short src; unsigned char *dst; unsigned short amount; { unsigned short tmp_amount; /* select page 0 registers */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* round up to a word */ tmp_amount = amount; if (amount & 1) ++amount; /* set up DMA byte count */ outb(sc->nic_addr + ED_P0_RBCR0, amount); outb(sc->nic_addr + ED_P0_RBCR1, amount >> 8); /* set up source address in NIC mem */ outb(sc->nic_addr + ED_P0_RSAR0, src); outb(sc->nic_addr + ED_P0_RSAR1, src >> 8); outb(sc->nic_addr + ED_P0_CR, ED_CR_RD0 | ED_CR_STA); if (sc->isa16bit) { insw(sc->asic_addr + ED_NOVELL_DATA, dst, amount / 2); } else insb(sc->asic_addr + ED_NOVELL_DATA, dst, amount); } /* * Stripped down routine for writing a linear buffer to NIC memory. * Only used in the probe routine to test the memory. 'len' must * be even. */ void ed_pio_writemem(sc, src, dst, len) struct ed_softc *sc; char *src; unsigned short dst; unsigned short len; { int maxwait = 100; /* about 120us */ /* select page 0 registers */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* reset remote DMA complete flag */ outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC); /* set up DMA byte count */ outb(sc->nic_addr + ED_P0_RBCR0, len); outb(sc->nic_addr + ED_P0_RBCR1, len >> 8); /* set up destination address in NIC mem */ outb(sc->nic_addr + ED_P0_RSAR0, dst); outb(sc->nic_addr + ED_P0_RSAR1, dst >> 8); /* set remote DMA write */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA); if (sc->isa16bit) outsw(sc->asic_addr + ED_NOVELL_DATA, src, len / 2); else outsb(sc->asic_addr + ED_NOVELL_DATA, src, len); /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait); } /* * Write an mbuf chain to the destination NIC memory address using * programmed I/O. */ u_short ed_pio_write_mbufs(sc, m, dst) struct ed_softc *sc; struct mbuf *m; unsigned short dst; { unsigned short len, mb_offset; struct mbuf *mp; unsigned char residual[2]; int maxwait = 100; /* about 120us */ /* First, count up the total number of bytes to copy */ for (len = 0, mp = m; mp; mp = mp->m_next) len += mp->m_len; /* select page 0 registers */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* reset remote DMA complete flag */ outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC); /* set up DMA byte count */ outb(sc->nic_addr + ED_P0_RBCR0, len); outb(sc->nic_addr + ED_P0_RBCR1, len >> 8); /* set up destination address in NIC mem */ outb(sc->nic_addr + ED_P0_RSAR0, dst); outb(sc->nic_addr + ED_P0_RSAR1, dst >> 8); /* set remote DMA write */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA); mb_offset = 0; /* * Transfer the mbuf chain to the NIC memory. The following code isn't * too pretty. The problem is that we can only transfer words to the * board, and if an mbuf has an odd number of bytes in it, this is a * problem. It's not a simple matter of just removing a byte from the * next mbuf (adjusting data++ and len--) because this will hose-over * the mbuf chain which might be needed later for BPF. Instead, we * maintain an offset (mb_offset) which let's us skip over the first * byte in the following mbuf. */ while (m) { if (m->m_len - mb_offset) { if (sc->isa16bit) { if ((m->m_len - mb_offset) > 1) outsw(sc->asic_addr + ED_NOVELL_DATA, mtod(m, caddr_t) + mb_offset, (m->m_len - mb_offset) / 2); /* * if odd number of bytes, get the odd byte * from the next mbuf with data */ if ((m->m_len - mb_offset) & 1) { /* first the last byte in current mbuf */ residual[0] = *(mtod(m, caddr_t) + m->m_len - 1); /* advance past any empty mbufs */ while (m->m_next && (m->m_next->m_len == 0)) m = m->m_next; if (m->m_next) { /* * remove first byte in next * mbuf */ residual[1] = *(mtod(m->m_next, caddr_t)); mb_offset = 1; } outw(sc->asic_addr + ED_NOVELL_DATA, *((unsigned short *) residual)); } else mb_offset = 0; } else outsb(sc->asic_addr + ED_NOVELL_DATA, m->m_data, m->m_len); } m = m->m_next; } /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait); if (!maxwait) { log(LOG_WARNING, "ed%d: remote transmit DMA failed to complete\n", sc->arpcom.ac_if.if_unit); ed_reset(sc->arpcom.ac_if.if_unit); } return (len); } /* * Given a source and destination address, copy 'amount' of a packet from * the ring buffer into a linear destination buffer. Takes into account * ring-wrap. */ static inline char * ed_ring_copy(sc, src, dst, amount) struct ed_softc *sc; char *src; char *dst; u_short amount; { u_short tmp_amount; /* does copy wrap to lower addr in ring buffer? */ if (src + amount > sc->mem_end) { tmp_amount = sc->mem_end - src; /* copy amount up to end of NIC memory */ if (sc->mem_shared) bcopy(src, dst, tmp_amount); else ed_pio_readmem(sc, src, dst, tmp_amount); amount -= tmp_amount; src = sc->mem_ring; dst += tmp_amount; } if (sc->mem_shared) bcopy(src, dst, amount); else ed_pio_readmem(sc, src, dst, amount); return (src + amount); } /* * Copy data from receive buffer to end of mbuf chain * allocate additional mbufs as needed. return pointer * to last mbuf in chain. * sc = ed info (softc) * src = pointer in ed ring buffer * dst = pointer to last mbuf in mbuf chain to copy to * amount = amount of data to copy */ struct mbuf * ed_ring_to_mbuf(sc, src, dst, total_len) struct ed_softc *sc; char *src; struct mbuf *dst; u_short total_len; { register struct mbuf *m = dst; while (total_len) { register u_short amount = min(total_len, M_TRAILINGSPACE(m)); if (amount == 0) { /* no more data in this mbuf, alloc * another */ /* * If there is enough data for an mbuf cluster, * attempt to allocate one of those, otherwise, a * regular mbuf will do. Note that a regular mbuf is * always required, even if we get a cluster - getting * a cluster does not allocate any mbufs, and one is * needed to assign the cluster to. The mbuf that has * a cluster extension can not be used to contain data * - only the cluster can contain data. */ dst = m; MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) return (0); if (total_len >= MINCLSIZE) MCLGET(m, M_DONTWAIT); m->m_len = 0; dst->m_next = m; amount = min(total_len, M_TRAILINGSPACE(m)); } src = ed_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len, amount); m->m_len += amount; total_len -= amount; } return (m); } void ed_setrcr(ifp, sc) struct ifnet *ifp; struct ed_softc *sc; { int i; /* set page 1 registers */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); if (ifp->if_flags & IFF_PROMISC) { /* * Reconfigure the multicast filter. */ for (i = 0; i < 8; i++) outb(sc->nic_addr + ED_P1_MAR0 + i, 0xff); /* * And turn on promiscuous mode. Also enable reception of * runts and packets with CRC & alignment errors. */ /* Set page 0 registers */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP); outb(sc->nic_addr + ED_P0_RCR, ED_RCR_PRO | ED_RCR_AM | ED_RCR_AB | ED_RCR_AR | ED_RCR_SEP); } else { /* set up multicast addresses and filter modes */ if (ifp->if_flags & IFF_MULTICAST) { u_long mcaf[2]; if (ifp->if_flags & IFF_ALLMULTI) { mcaf[0] = 0xffffffff; mcaf[1] = 0xffffffff; } else ds_getmcaf(sc, mcaf); /* * Set multicast filter on chip. */ for (i = 0; i < 8; i++) outb(sc->nic_addr + ED_P1_MAR0 + i, ((u_char *) mcaf)[i]); /* Set page 0 registers */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP); outb(sc->nic_addr + ED_P0_RCR, ED_RCR_AM | ED_RCR_AB); } else { /* * Initialize multicast address hashing registers to * not accept multicasts. */ for (i = 0; i < 8; ++i) outb(sc->nic_addr + ED_P1_MAR0 + i, 0x00); /* Set page 0 registers */ outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP); outb(sc->nic_addr + ED_P0_RCR, ED_RCR_AB); } } } /* * Compute crc for ethernet address */ u_long ds_crc(ep) u_char *ep; { #define POLYNOMIAL 0x04c11db6 register u_long crc = 0xffffffffL; register int carry, i, j; register u_char b; for (i = 6; --i >= 0;) { b = *ep++; for (j = 8; --j >= 0;) { carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01); crc <<= 1; b >>= 1; if (carry) crc = ((crc ^ POLYNOMIAL) | carry); } } return crc; #undef POLYNOMIAL } /* * Compute the multicast address filter from the * list of multicast addresses we need to listen to. */ void ds_getmcaf(sc, mcaf) struct ed_softc *sc; u_long *mcaf; { register u_int index; register u_char *af = (u_char *) mcaf; register struct ether_multi *enm; register struct ether_multistep step; mcaf[0] = 0; mcaf[1] = 0; ETHER_FIRST_MULTI(step, &sc->arpcom, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) { mcaf[0] = 0xffffffff; mcaf[1] = 0xffffffff; return; } index = ds_crc(enm->enm_addrlo, 6) >> 26; af[index >> 3] |= 1 << (index & 7); ETHER_NEXT_MULTI(step, enm); } }