/*- * Copyright (c) 2000 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct l_descriptor { l_uint entry_number; l_ulong base_addr; l_uint limit; l_uint seg_32bit:1; l_uint contents:2; l_uint read_exec_only:1; l_uint limit_in_pages:1; l_uint seg_not_present:1; l_uint useable:1; }; struct l_old_select_argv { l_int nfds; l_fd_set *readfds; l_fd_set *writefds; l_fd_set *exceptfds; struct l_timeval *timeout; }; int linux_to_bsd_sigaltstack(int lsa) { int bsa = 0; if (lsa & LINUX_SS_DISABLE) bsa |= SS_DISABLE; if (lsa & LINUX_SS_ONSTACK) bsa |= SS_ONSTACK; return (bsa); } int bsd_to_linux_sigaltstack(int bsa) { int lsa = 0; if (bsa & SS_DISABLE) lsa |= LINUX_SS_DISABLE; if (bsa & SS_ONSTACK) lsa |= LINUX_SS_ONSTACK; return (lsa); } int linux_execve(struct thread *td, struct linux_execve_args *args) { struct execve_args bsd; caddr_t sg; sg = stackgap_init(); CHECKALTEXIST(td, &sg, args->path); #ifdef DEBUG if (ldebug(execve)) printf(ARGS(execve, "%s"), args->path); #endif bsd.fname = args->path; bsd.argv = args->argp; bsd.envv = args->envp; return (execve(td, &bsd)); } struct l_ipc_kludge { struct l_msgbuf *msgp; l_long msgtyp; }; int linux_ipc(struct thread *td, struct linux_ipc_args *args) { switch (args->what & 0xFFFF) { case LINUX_SEMOP: { struct linux_semop_args a; a.semid = args->arg1; a.tsops = args->ptr; a.nsops = args->arg2; return (linux_semop(td, &a)); } case LINUX_SEMGET: { struct linux_semget_args a; a.key = args->arg1; a.nsems = args->arg2; a.semflg = args->arg3; return (linux_semget(td, &a)); } case LINUX_SEMCTL: { struct linux_semctl_args a; int error; a.semid = args->arg1; a.semnum = args->arg2; a.cmd = args->arg3; error = copyin(args->ptr, &a.arg, sizeof(a.arg)); if (error) return (error); return (linux_semctl(td, &a)); } case LINUX_MSGSND: { struct linux_msgsnd_args a; a.msqid = args->arg1; a.msgp = args->ptr; a.msgsz = args->arg2; a.msgflg = args->arg3; return (linux_msgsnd(td, &a)); } case LINUX_MSGRCV: { struct linux_msgrcv_args a; a.msqid = args->arg1; a.msgsz = args->arg2; a.msgflg = args->arg3; if ((args->what >> 16) == 0) { struct l_ipc_kludge tmp; int error; if (args->ptr == NULL) return (EINVAL); error = copyin(args->ptr, &tmp, sizeof(tmp)); if (error) return (error); a.msgp = tmp.msgp; a.msgtyp = tmp.msgtyp; } else { a.msgp = args->ptr; a.msgtyp = args->arg5; } return (linux_msgrcv(td, &a)); } case LINUX_MSGGET: { struct linux_msgget_args a; a.key = args->arg1; a.msgflg = args->arg2; return (linux_msgget(td, &a)); } case LINUX_MSGCTL: { struct linux_msgctl_args a; a.msqid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; return (linux_msgctl(td, &a)); } case LINUX_SHMAT: { struct linux_shmat_args a; a.shmid = args->arg1; a.shmaddr = args->ptr; a.shmflg = args->arg2; a.raddr = (l_ulong *)args->arg3; return (linux_shmat(td, &a)); } case LINUX_SHMDT: { struct linux_shmdt_args a; a.shmaddr = args->ptr; return (linux_shmdt(td, &a)); } case LINUX_SHMGET: { struct linux_shmget_args a; a.key = args->arg1; a.size = args->arg2; a.shmflg = args->arg3; return (linux_shmget(td, &a)); } case LINUX_SHMCTL: { struct linux_shmctl_args a; a.shmid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; return (linux_shmctl(td, &a)); } default: break; } return (EINVAL); } int linux_old_select(struct thread *td, struct linux_old_select_args *args) { struct l_old_select_argv linux_args; struct linux_select_args newsel; int error; #ifdef DEBUG if (ldebug(old_select)) printf(ARGS(old_select, "%p"), args->ptr); #endif error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); newsel.nfds = linux_args.nfds; newsel.readfds = linux_args.readfds; newsel.writefds = linux_args.writefds; newsel.exceptfds = linux_args.exceptfds; newsel.timeout = linux_args.timeout; return (linux_select(td, &newsel)); } int linux_fork(struct thread *td, struct linux_fork_args *args) { int error; #ifdef DEBUG if (ldebug(fork)) printf(ARGS(fork, "")); #endif if ((error = fork(td, (struct fork_args *)args)) != 0) return (error); if (td->td_retval[1] == 1) td->td_retval[0] = 0; return (0); } int linux_vfork(struct thread *td, struct linux_vfork_args *args) { int error; #ifdef DEBUG if (ldebug(vfork)) printf(ARGS(vfork, "")); #endif if ((error = vfork(td, (struct vfork_args *)args)) != 0) return (error); /* Are we the child? */ if (td->td_retval[1] == 1) td->td_retval[0] = 0; return (0); } #define CLONE_VM 0x100 #define CLONE_FS 0x200 #define CLONE_FILES 0x400 #define CLONE_SIGHAND 0x800 #define CLONE_PID 0x1000 int linux_clone(struct thread *td, struct linux_clone_args *args) { int error, ff = RFPROC | RFSTOPPED; struct proc *p2; int exit_signal; #ifdef DEBUG if (ldebug(clone)) { printf(ARGS(clone, "flags %x, stack %x"), (unsigned int)args->flags, (unsigned int)args->stack); if (args->flags & CLONE_PID) printf(LMSG("CLONE_PID not yet supported")); } #endif if (!args->stack) return (EINVAL); exit_signal = args->flags & 0x000000ff; if (exit_signal >= LINUX_NSIG) return (EINVAL); if (exit_signal <= LINUX_SIGTBLSZ) exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)]; if (args->flags & CLONE_VM) ff |= RFMEM; if (args->flags & CLONE_SIGHAND) ff |= RFSIGSHARE; if (!(args->flags & CLONE_FILES)) ff |= RFFDG; mtx_lock(&Giant); error = fork1(td, ff, 0, &p2); if (error == 0) { td->td_retval[0] = p2->p_pid; td->td_retval[1] = 0; PROC_LOCK(p2); p2->p_sigparent = exit_signal; FIRST_THREAD_IN_PROC(p2)->td_frame->tf_esp = (unsigned int)args->stack; #ifdef DEBUG if (ldebug(clone)) printf(LMSG("clone: successful rfork to %ld"), (long)p2->p_pid); #endif /* * Make this runnable after we are finished with it. */ mtx_lock_spin(&sched_lock); TD_SET_CAN_RUN(FIRST_THREAD_IN_PROC(p2)); setrunqueue(FIRST_THREAD_IN_PROC(p2)); mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p2); } mtx_unlock(&Giant); return (error); } /* XXX move */ struct l_mmap_argv { l_caddr_t addr; l_int len; l_int prot; l_int flags; l_int fd; l_int pos; }; #define STACK_SIZE (2 * 1024 * 1024) #define GUARD_SIZE (4 * PAGE_SIZE) static int linux_mmap_common(struct thread *, struct l_mmap_argv *); int linux_mmap2(struct thread *td, struct linux_mmap2_args *args) { struct l_mmap_argv linux_args; #ifdef DEBUG if (ldebug(mmap2)) printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"), (void *)args->addr, args->len, args->prot, args->flags, args->fd, args->pgoff); #endif linux_args.addr = (l_caddr_t)args->addr; linux_args.len = args->len; linux_args.prot = args->prot; linux_args.flags = args->flags; linux_args.fd = args->fd; linux_args.pos = args->pgoff * PAGE_SIZE; return (linux_mmap_common(td, &linux_args)); } int linux_mmap(struct thread *td, struct linux_mmap_args *args) { int error; struct l_mmap_argv linux_args; error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); #ifdef DEBUG if (ldebug(mmap)) printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"), (void *)linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, linux_args.pos); #endif return (linux_mmap_common(td, &linux_args)); } static int linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args) { struct proc *p = td->td_proc; struct mmap_args /* { caddr_t addr; size_t len; int prot; int flags; int fd; long pad; off_t pos; } */ bsd_args; int error; error = 0; bsd_args.flags = 0; if (linux_args->flags & LINUX_MAP_SHARED) bsd_args.flags |= MAP_SHARED; if (linux_args->flags & LINUX_MAP_PRIVATE) bsd_args.flags |= MAP_PRIVATE; if (linux_args->flags & LINUX_MAP_FIXED) bsd_args.flags |= MAP_FIXED; if (linux_args->flags & LINUX_MAP_ANON) bsd_args.flags |= MAP_ANON; else bsd_args.flags |= MAP_NOSYNC; if (linux_args->flags & LINUX_MAP_GROWSDOWN) { bsd_args.flags |= MAP_STACK; /* The linux MAP_GROWSDOWN option does not limit auto * growth of the region. Linux mmap with this option * takes as addr the inital BOS, and as len, the initial * region size. It can then grow down from addr without * limit. However, linux threads has an implicit internal * limit to stack size of STACK_SIZE. Its just not * enforced explicitly in linux. But, here we impose * a limit of (STACK_SIZE - GUARD_SIZE) on the stack * region, since we can do this with our mmap. * * Our mmap with MAP_STACK takes addr as the maximum * downsize limit on BOS, and as len the max size of * the region. It them maps the top SGROWSIZ bytes, * and autgrows the region down, up to the limit * in addr. * * If we don't use the MAP_STACK option, the effect * of this code is to allocate a stack region of a * fixed size of (STACK_SIZE - GUARD_SIZE). */ /* This gives us TOS */ bsd_args.addr = linux_args->addr + linux_args->len; if (bsd_args.addr > p->p_vmspace->vm_maxsaddr) { /* Some linux apps will attempt to mmap * thread stacks near the top of their * address space. If their TOS is greater * than vm_maxsaddr, vm_map_growstack() * will confuse the thread stack with the * process stack and deliver a SEGV if they * attempt to grow the thread stack past their * current stacksize rlimit. To avoid this, * adjust vm_maxsaddr upwards to reflect * the current stacksize rlimit rather * than the maximum possible stacksize. * It would be better to adjust the * mmap'ed region, but some apps do not check * mmap's return value. */ mtx_assert(&Giant, MA_OWNED); p->p_vmspace->vm_maxsaddr = (char *)USRSTACK - p->p_rlimit[RLIMIT_STACK].rlim_cur; } /* This gives us our maximum stack size */ if (linux_args->len > STACK_SIZE - GUARD_SIZE) bsd_args.len = linux_args->len; else bsd_args.len = STACK_SIZE - GUARD_SIZE; /* This gives us a new BOS. If we're using VM_STACK, then * mmap will just map the top SGROWSIZ bytes, and let * the stack grow down to the limit at BOS. If we're * not using VM_STACK we map the full stack, since we * don't have a way to autogrow it. */ bsd_args.addr -= bsd_args.len; } else { bsd_args.addr = linux_args->addr; bsd_args.len = linux_args->len; } bsd_args.prot = linux_args->prot | PROT_READ; /* always required */ if (linux_args->flags & LINUX_MAP_ANON) bsd_args.fd = -1; else bsd_args.fd = linux_args->fd; bsd_args.pos = linux_args->pos; bsd_args.pad = 0; #ifdef DEBUG if (ldebug(mmap)) printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", __func__, (void *)bsd_args.addr, bsd_args.len, bsd_args.prot, bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); #endif error = mmap(td, &bsd_args); #ifdef DEBUG if (ldebug(mmap)) printf("-> %s() return: 0x%x (0x%08x)\n", __func__, error, (u_int)td->td_retval[0]); #endif return (error); } int linux_pipe(struct thread *td, struct linux_pipe_args *args) { int error; int reg_edx; #ifdef DEBUG if (ldebug(pipe)) printf(ARGS(pipe, "*")); #endif reg_edx = td->td_retval[1]; error = pipe(td, 0); if (error) { td->td_retval[1] = reg_edx; return (error); } error = copyout(td->td_retval, args->pipefds, 2*sizeof(int)); if (error) { td->td_retval[1] = reg_edx; return (error); } td->td_retval[1] = reg_edx; td->td_retval[0] = 0; return (0); } int linux_ioperm(struct thread *td, struct linux_ioperm_args *args) { struct sysarch_args sa; struct i386_ioperm_args *iia; caddr_t sg; sg = stackgap_init(); iia = stackgap_alloc(&sg, sizeof(struct i386_ioperm_args)); iia->start = args->start; iia->length = args->length; iia->enable = args->enable; sa.op = I386_SET_IOPERM; sa.parms = (char *)iia; return (sysarch(td, &sa)); } int linux_iopl(struct thread *td, struct linux_iopl_args *args) { int error; if (args->level < 0 || args->level > 3) return (EINVAL); if ((error = suser(td)) != 0) return (error); if ((error = securelevel_gt(td->td_ucred, 0)) != 0) return (error); td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) | (args->level * (PSL_IOPL / 3)); return (0); } int linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap) { int error; caddr_t sg; struct sysarch_args args; struct i386_ldt_args *ldt; struct l_descriptor ld; union descriptor *desc; sg = stackgap_init(); if (uap->ptr == NULL) return (EINVAL); switch (uap->func) { case 0x00: /* read_ldt */ ldt = stackgap_alloc(&sg, sizeof(*ldt)); ldt->start = 0; ldt->descs = uap->ptr; ldt->num = uap->bytecount / sizeof(union descriptor); args.op = I386_GET_LDT; args.parms = (char*)ldt; error = sysarch(td, &args); td->td_retval[0] *= sizeof(union descriptor); break; case 0x01: /* write_ldt */ case 0x11: /* write_ldt */ if (uap->bytecount != sizeof(ld)) return (EINVAL); error = copyin(uap->ptr, &ld, sizeof(ld)); if (error) return (error); ldt = stackgap_alloc(&sg, sizeof(*ldt)); desc = stackgap_alloc(&sg, sizeof(*desc)); ldt->start = ld.entry_number; ldt->descs = desc; ldt->num = 1; desc->sd.sd_lolimit = (ld.limit & 0x0000ffff); desc->sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16; desc->sd.sd_lobase = (ld.base_addr & 0x00ffffff); desc->sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24; desc->sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) | (ld.contents << 2); desc->sd.sd_dpl = 3; desc->sd.sd_p = (ld.seg_not_present ^ 1); desc->sd.sd_xx = 0; desc->sd.sd_def32 = ld.seg_32bit; desc->sd.sd_gran = ld.limit_in_pages; args.op = I386_SET_LDT; args.parms = (char*)ldt; error = sysarch(td, &args); break; default: error = EINVAL; break; } if (error == EOPNOTSUPP) { printf("linux: modify_ldt needs kernel option USER_LDT\n"); error = ENOSYS; } return (error); } int linux_sigaction(struct thread *td, struct linux_sigaction_args *args) { l_osigaction_t osa; l_sigaction_t act, oact; int error; #ifdef DEBUG if (ldebug(sigaction)) printf(ARGS(sigaction, "%d, %p, %p"), args->sig, (void *)args->nsa, (void *)args->osa); #endif if (args->nsa != NULL) { error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); if (error) return (error); act.lsa_handler = osa.lsa_handler; act.lsa_flags = osa.lsa_flags; act.lsa_restorer = osa.lsa_restorer; LINUX_SIGEMPTYSET(act.lsa_mask); act.lsa_mask.__bits[0] = osa.lsa_mask; } error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, args->osa ? &oact : NULL); if (args->osa != NULL && !error) { osa.lsa_handler = oact.lsa_handler; osa.lsa_flags = oact.lsa_flags; osa.lsa_restorer = oact.lsa_restorer; osa.lsa_mask = oact.lsa_mask.__bits[0]; error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); } return (error); } /* * Linux has two extra args, restart and oldmask. We dont use these, * but it seems that "restart" is actually a context pointer that * enables the signal to happen with a different register set. */ int linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) { sigset_t sigmask; l_sigset_t mask; #ifdef DEBUG if (ldebug(sigsuspend)) printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); #endif LINUX_SIGEMPTYSET(mask); mask.__bits[0] = args->mask; linux_to_bsd_sigset(&mask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) { l_sigset_t lmask; sigset_t sigmask; int error; #ifdef DEBUG if (ldebug(rt_sigsuspend)) printf(ARGS(rt_sigsuspend, "%p, %d"), (void *)uap->newset, uap->sigsetsize); #endif if (uap->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); if (error) return (error); linux_to_bsd_sigset(&lmask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_pause(struct thread *td, struct linux_pause_args *args) { struct proc *p = td->td_proc; sigset_t sigmask; #ifdef DEBUG if (ldebug(pause)) printf(ARGS(pause, "")); #endif PROC_LOCK(p); sigmask = td->td_sigmask; PROC_UNLOCK(p); return (kern_sigsuspend(td, sigmask)); } int linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) { stack_t ss, oss; l_stack_t lss; int error; #ifdef DEBUG if (ldebug(sigaltstack)) printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); #endif if (uap->uss != NULL) { error = copyin(uap->uss, &lss, sizeof(l_stack_t)); if (error) return (error); ss.ss_sp = lss.ss_sp; ss.ss_size = lss.ss_size; ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); } error = kern_sigaltstack(td, (uap->uoss != NULL) ? &oss : NULL, (uap->uss != NULL) ? &ss : NULL); if (!error && uap->uoss != NULL) { lss.ss_sp = oss.ss_sp; lss.ss_size = oss.ss_size; lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); } return (error); } int linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) { struct ftruncate_args sa; #ifdef DEBUG if (ldebug(ftruncate64)) printf(ARGS(ftruncate64, "%u, %jd"), args->fd, (intmax_t)args->length); #endif sa.fd = args->fd; sa.pad = 0; sa.length = args->length; return ftruncate(td, &sa); }